1
|
Ning J, Du B, Cao S, Liu X, Kong D. Combining Umpolung and Carbon Isotope Exchange Strategies for Accessing Isotopically Labeled α-Keto Acids. Org Lett 2024; 26:5966-5971. [PMID: 38958587 DOI: 10.1021/acs.orglett.4c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The integration of umpolung and carbon isotope exchange for accessing isotopically labeled α-keto acids through photoredox catalysis is elucidated. This process involves the carbonyl umpolung of C(sp2)-α-keto acids to yield C(sp3)-α-thioketal acids, followed by the carbon isotope exchange of C(sp3)-α-thioketal acids, and ultimately, deprotection to generate carbon-labeled α-keto acids.
Collapse
Affiliation(s)
- Jingran Ning
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoyang Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shilong Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xia Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Doyle MGJ, Bsharat O, Sib A, Derdau V, Lundgren RJ. Enantioselective Carbon Isotope Exchange. J Am Chem Soc 2024; 146:18804-18810. [PMID: 38968381 DOI: 10.1021/jacs.4c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
The synthesis of isotopically labeled organic molecules is vital for drug and agrochemical discovery and development. Carbon isotope exchange is emerging as a leading method to generate carbon-labeled targets, which are sought over hydrogen-based labels due to their enhanced stability in biological systems. While many bioactive small molecules bear carbon-containing stereocenters, direct enantioselective carbon isotope exchange reactions have not been established. We describe the first example of an enantioselective carbon isotope exchange reaction, where (radio)labeled α-amino acids can be generated from their unlabeled precursors using a stoichiometric chiral aldehyde receptor with isotopically labeled CO2 followed by imine hydrolysis. Many proteinogenic and non-natural derivatives undergo enantioselective labeling, including the late-stage radiolabeling of complex drug targets.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Anna Sib
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Volker Derdau
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
3
|
Kinney RG, Zgheib J, Lagueux-Tremblay PL, Zhou C, Yang H, Li J, Gauthier DR, Arndtsen BA. A metal-catalysed functional group metathesis approach to the carbon isotope labelling of carboxylic acids. Nat Chem 2024; 16:556-563. [PMID: 38374455 DOI: 10.1038/s41557-024-01447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
The distribution, metabolism and ultimate fate of molecules within the body is central to the activity of pharmaceuticals. However, the introduction of radioisotopes into the metabolically stable carbon sites on drugs to probe these features typically requires toxic, radioactive gases such as [14C]CO and [14C]CO2. Here we describe an approach to directly carbon-label carboxylic-acid-containing pharmaceuticals via a metal-catalysed functional group exchange reaction, forming 14C-labelled carboxylic-acid-containing drugs without radioactive gases, in one pot, using an easily available and handled carboxylic acid 14C source. To enable this process, a functional group metathesis of carbon-carbon covalent bonds in acid chloride functionalities is developed, exploiting the ability of nickel catalysts to both reversibly activate carbon-chloride bonds and exchange functionalities between organic molecules. The drug development applicability is illustrated by the direct incorporation of the 14C label or 13C label into an array of complex aryl, alkyl, vinyl and heterocyclic carboxylic acid drugs or drug candidates without gases or a special apparatus, at ambient conditions and without loss of the radiolabel.
Collapse
Affiliation(s)
- R Garrison Kinney
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - José Zgheib
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | | | - Cuihan Zhou
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Haifeng Yang
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Jingwei Li
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Donald R Gauthier
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA.
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Carbon isotope exchange for pharmaceutical radiolabelling through metal-catalysed functional group metathesis. Nat Chem 2024; 16:489-490. [PMID: 38378949 DOI: 10.1038/s41557-024-01449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
|
5
|
Wang T, Guan Y, Zhang T, Liang Y. Ligand Relay for Nickel-Catalyzed Decarbonylative Alkylation of Aroyl Chlorides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306923. [PMID: 38088530 PMCID: PMC10916626 DOI: 10.1002/advs.202306923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/26/2023] [Indexed: 03/07/2024]
Abstract
Transition metal-catalyzed direct decarboxylative transformations of aromatic carboxylic acids usually require high temperatures, which limit the substrate's scope, especially for late-stage applications. The development of the selective decarbonylative of carboxylic acid derivatives, especially the most fundamental aroyl chlorides, with stable and cheap electrophiles under mild conditions is highly desirable and meaningful, but remains challenging. Herein, a strategy of nickel-catalyzed decarbonylative alkylation of aroyl chlorides via phosphine/nitrogen ligand relay is reported. The simple phosphine ligand is found essential for the decarbonylation step, while the nitrogen ligand promotes the cross-electrophile coupling. Such a ligand relay system can effectively and orderly carry out the catalytic process at room temperature, utilizing easily available aroyl chlorides as an aryl electrophile for reductive alkylation. This discovery provides a new strategy for direct decarbonylative coupling, features operationally simple, mild conditions, and excellent functional group tolerance. The mild approach is applied to the late-stage methylation of various pharmaceuticals. Extensive experiments are carried out to provide insights into the reaction pathway and support the ligand relay process.
Collapse
Affiliation(s)
- Tian‐Zhang Wang
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Yu‐Qiu Guan
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Tian‐Yu Zhang
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Yu‐Feng Liang
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| |
Collapse
|
6
|
Li S, Qian C, Wu XN, Zhou S. Carbon-Atom Exchange between [MC 2] + (M = Os and Ir) and Methane: on the Thermodynamic and Dynamic Aspects. J Phys Chem A 2024; 128:792-798. [PMID: 38239066 DOI: 10.1021/acs.jpca.3c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Gas-phase reactions of [OsC2]+ and [IrC2]+ with methane at ambient temperature have been studied using quadrupole-ion trap mass spectrometry combined with quantum chemical calculations. Both [OsC2]+ and [IrC2]+ undergo carbon-atom exchange reactions with methane. The associated mechanisms for the two systems are found to be similar. The differences in the rates of carbon isotope exchange reactions of methane with [MC2]+ (M = Os and Ir) are explained by several factors like the energy barrier for the initial H3C-H bond breaking processes, the molecular dynamics, orbital interactions, and the H-binding energies of the pivotal steps. Besides, the number of participating valence orbitals might be one of the keys to regulate the rate in the key step. The present findings may provide useful ideas and inspiration for designing similar processes.
Collapse
Affiliation(s)
- Shihan Li
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, Quzhou 324000, P.R. China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, Quzhou 324000, P.R. China
| | - Xiao-Nan Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, Quzhou 324000, P.R. China
| |
Collapse
|
7
|
Derdau V, Elmore CS, Hartung T, McKillican B, Mejuch T, Rosenbaum C, Wiebe C. The Future of (Radio)-Labeled Compounds in Research and Development within the Life Science Industry. Angew Chem Int Ed Engl 2023; 62:e202306019. [PMID: 37610759 DOI: 10.1002/anie.202306019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
In this review the applications of isotopically labeled compounds are discussed and put into the context of their future impact in the life sciences. Especially discussing their use in the pharma and crop science industries to follow their fate in the environment, in vivo or in complex matrices to understand the potential harm of new chemical structures and to increase the safety of human society.
Collapse
Affiliation(s)
- Volker Derdau
- Sanofi-Aventis Deutschland GmbH, Research & Development, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Thomas Hartung
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bruce McKillican
- Syngenta Crop Protection, LLC, North America Product Safety (retired), USA
| | - Tom Mejuch
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
8
|
Zhang R, Yu T, Dong G. Rhodium catalyzed tunable amide homologation through a hook-and-slide strategy. Science 2023; 382:951-957. [PMID: 37995236 PMCID: PMC11102777 DOI: 10.1126/science.adk1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
Preparation of diverse homologs from lead compounds has been a common and important practice in medicinal chemistry. However, homologation of carboxylic acid derivatives, particularly amides, remains challenging. Here we report a hook-and-slide strategy for homologation of tertiary amides with tunable lengths of the inserted carbon chain. Alkylation at the α-position of the amide (hook) is followed by highly selective branched-to-linear isomerization (slide) to effect amide migration to the end of the newly introduced alkyl chain; thus, the choice of alkylation reagent sets the homologation length. The key step involves a carbon-carbon bond activation process by a carbene-coordinated rhodium complex with assistance from a removable directing group. The approach is demonstrated for introduction of chains as long as 16 carbons and is applicable to derivatized carboxylic acids in complex bioactive molecules.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Tingting Yu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Labiche A, Malandain A, Molins M, Taran F, Audisio D. Modern Strategies for Carbon Isotope Exchange. Angew Chem Int Ed Engl 2023; 62:e202303535. [PMID: 37074841 DOI: 10.1002/anie.202303535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
In contrast to stable and natural abundant carbon-12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive waste generation. In addition, it must initiate from the small cohort of available C-labeled building blocks. For long time, multi-step approaches have represented the sole available patterns. On the other side, the development of chemical reactions based on the reversible cleavage of C-C bonds might offer new opportunities and reshape retrosynthetic analysis in radiosynthesis. This review aims to provide a short survey on the recently emerged carbon isotope exchange technologies that provide effective opportunity for late-stage labeling. At present, such strategies have relied on the use of primary and easily accessible radiolabeled C1-building blocks, such as carbon dioxide, carbon monoxide and cyanides, while the activation principles have been based on thermal, photocatalytic, metal-catalyzed and biocatalytic processes.
Collapse
Affiliation(s)
- Alexandre Labiche
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Augustin Malandain
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Maxime Molins
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Monticelli S, Talbot A, Gotico P, Caillé F, Loreau O, Del Vecchio A, Malandain A, Sallustrau A, Leibl W, Aukauloo A, Taran F, Halime Z, Audisio D. Unlocking full and fast conversion in photocatalytic carbon dioxide reduction for applications in radio-carbonylation. Nat Commun 2023; 14:4451. [PMID: 37488106 PMCID: PMC10366225 DOI: 10.1038/s41467-023-40136-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Harvesting sunlight to drive carbon dioxide (CO2) valorisation represents an ideal concept to support a sustainable and carbon-neutral economy. While the photochemical reduction of CO2 to carbon monoxide (CO) has emerged as a hot research topic, the full CO2-to-CO conversion remains an often-overlooked criterion that prevents a productive and direct valorisation of CO into high-value-added chemicals. Herein, we report a photocatalytic process that unlocks full and fast CO2-to-CO conversion (<10 min) and its straightforward valorisation into human health related field of radiochemistry with carbon isotopes. Guided by reaction-model-based kinetic simulations to rationalize reaction optimisations, this manifold opens new opportunities for the direct access to 11C- and 14C-labeled pharmaceuticals from their primary isotopic sources [11C]CO2 and [14C]CO2.
Collapse
Affiliation(s)
- Serena Monticelli
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Alex Talbot
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Philipp Gotico
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91191, Gif-sur-Yvette, France
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), F-91401, Orsay, France
| | - Olivier Loreau
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Antonio Del Vecchio
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Augustin Malandain
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Antoine Sallustrau
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Winfried Leibl
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91191, Gif-sur-Yvette, France
| | - Ally Aukauloo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91191, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, F-91400,, Orsay, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, F-91400,, Orsay, France.
| | - Davide Audisio
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Wu F, Wang B, Li NQ, Yang HY, Ren ZH, Guan ZH. Palladium-catalyzed regiodivergent hydrochlorocarbonylation of alkenes for formation of acid chlorides. Nat Commun 2023; 14:3167. [PMID: 37258529 DOI: 10.1038/s41467-023-38748-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Novel strategy for acid chlorides formation that do not use carboxylic acids is particularly attractive in chemical synthesis but remains challenging. Herein, we reported the development of a highly effective Pd-catalyzed hydrochlorocarbonylation of alkenes with CO for the formation of alkyl acid chlorides. Chlorosilane and AcOH were found as a mild HCl source for the reaction. The reaction shows broad substrate scope and produces both branched and linear alkyl acid chlorides in good to high yields upon different ligands and solvents. Cooperating with follow-up acylation reactions, the Pd-catalyzed hydrochlorocarbonylation offers a complementary platform for the synthesis of diverse carbonyl compounds from alkenes. Mechanistic investigations suggested that the reaction proceeded though a palladium hydride pathway, and CO prompted reductive elimination of the acyl-Pd-Cl intermediate.
Collapse
Affiliation(s)
- Fei Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Bo Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Na-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Hui-Yi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China.
| |
Collapse
|
12
|
Ruck RT, Strotman NA, Krska SW. The Catalysis Laboratory at Merck: 20 Years of Catalyzing Innovation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rebecca T. Ruck
- Department of Process Research & Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Neil A. Strotman
- Department of Pharmaceutical Sciences & Clinical Supplies, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Shane W. Krska
- Chemistry Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| |
Collapse
|
13
|
Neumann KT, Skrydstrup T. Enriched amino acids. Nat Chem 2022; 14:1339-1340. [PMID: 36344819 DOI: 10.1038/s41557-022-01089-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karoline T Neumann
- Department of Chemistry and Interdisciplinary Nanoscience Center at Aarhus University, Aarhus C, Denmark.
| | - Troels Skrydstrup
- Department of Chemistry and Interdisciplinary Nanoscience Center at Aarhus University, Aarhus C, Denmark
| |
Collapse
|
14
|
Babin V, Taran F, Audisio D. Late-Stage Carbon-14 Labeling and Isotope Exchange: Emerging Opportunities and Future Challenges. JACS AU 2022; 2:1234-1251. [PMID: 35783167 PMCID: PMC9241029 DOI: 10.1021/jacsau.2c00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 05/04/2023]
Abstract
Carbon-14 (14C) is a gold standard technology routinely utilized in pharmaceutical and agrochemical industries for tracking synthetic organic molecules and providing their metabolic and safety profiles. While the state of the art has been dominated for decades by traditional multistep synthetic approaches, the recent emergence of late-stage carbon isotope labeling has provided new avenues to rapidly access carbon-14-labeled biologically relevant compounds. In particular, the development of carbon isotope exchange has represented a fundamental paradigm change, opening the way to unexplored synthetic transformations. In this Perspective, we discuss the recent developments in the field with a critical assessment of the literature. We subsequently discuss research directions and future challenges within this rapidly evolving field.
Collapse
|
15
|
Mao B, Wei JS, Shi M. Recent advancements in visible-light-driven carboxylation with carbon dioxide. Chem Commun (Camb) 2022; 58:9312-9327. [DOI: 10.1039/d2cc03380a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dioxide as a classic C1 source has long been investigated in organic synthetic chemistry. Diverse catalytic methods for CO2 activation were reported in the past several decades. In this...
Collapse
|
16
|
Ton SJ, Neumann KT, Nørby P, Skrydstrup T. Nickel-Mediated Alkoxycarbonylation for Complete Carbon Isotope Replacement. J Am Chem Soc 2021; 143:17816-17824. [PMID: 34643376 DOI: 10.1021/jacs.1c09170] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many commercial drugs, as well as upcoming pharmaceutically active compounds in the pipeline, display aliphatic carboxylic acids or derivatives thereof as key structural entities. Synthetic methods for rapidly accessing isotopologues of such compounds are highly relevant for undertaking critical pharmacological studies. In this paper, we disclose a direct synthetic route allowing for full carbon isotope replacement via a nickel-mediated alkoxycarbonylation. Employing a nickelII pincer complex ([(N2N)Ni-Cl]) in combination with carbon-13 labeled CO, alkyl iodide, sodium methoxide, photocatalyst, and blue LED light, it was possible to generate the corresponding isotopically labeled aliphatic carboxylates in good yields. Furthermore, the developed methodology was applied to the carbon isotope substitution of several pharmaceutically active compounds, whereby complete carbon-13 labeling was successfully accomplished. It was initially proposed that the carboxylation step would proceed via the in situ formation of a nickellacarboxylate, generated by CO insertion into the Ni-alkoxide bond. However, preliminary mechanistic investigations suggest an alternative pathway involving attack of an open shell species generated from the alkyl halide to a metal ligated CO to generate an acyl NiIII species. Subsequent reductive elimination involving the alkoxide eventually leads to carboxylate formation. An excess of the alkoxide was essential for obtaining a high yield of the product. In general, the presented methodology provides a simple and convenient setup for the synthesis and carbon isotope labeling of aliphatic carboxylates, while providing new insights about the reactivity of the N2N nickel pincer complex applied.
Collapse
Affiliation(s)
- Stephanie J Ton
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Karoline T Neumann
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Peter Nørby
- Center for Materials Crystallography, Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
17
|
Alektiar SN, Wickens ZK. Photoinduced Hydrocarboxylation via Thiol-Catalyzed Delivery of Formate Across Activated Alkenes. J Am Chem Soc 2021; 143:13022-13028. [PMID: 34380308 DOI: 10.1021/jacs.1c07562] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein we disclose a new photochemical process to prepare carboxylic acids from formate salts and alkenes. This redox-neutral hydrocarboxylation proceeds in high yields across diverse functionalized alkene substrates with excellent regioselectivity. This operationally simple procedure can be readily scaled in batch at low photocatalyst loading (0.01% photocatalyst). Furthermore, this new reaction can leverage commercially available formate carbon isotologues to enable the direct synthesis of isotopically labeled carboxylic acids. Mechanistic studies support the working model involving a thiol-catalyzed radical chain process wherein the atoms from formate are delivered across the alkene substrate via CO2•- as a key reactive intermediate.
Collapse
Affiliation(s)
- Sara N Alektiar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary K Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Schink C, Spielvogel S, Imhof W. Synthesis of 13 C-labelled ω-hydroxy carboxylic acids of the general formula HO 2 13 C-(CH 2 ) n -CH 2 OH or HO 2 C-(CH 2 ) n - 13 CH 2 OH (n = 12, 16, 20, 28). J Labelled Comp Radiopharm 2021; 64:385-402. [PMID: 34157793 DOI: 10.1002/jlcr.3931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022]
Abstract
13 C-labelled ω-hydroxy-carboxylic acids HO2 13 C-(CH2 )n -CH2 OH or HO2 C-(CH2 )n -13 CH2 OH (n = 12, 16, 20, 28) with 13 C labels selectively introduced either at the carboxy group or at the primary alcohol function at the end of the hydrocarbon chain have been synthesized. Different synthetic strategies had to be applied depending on the position of the label, the chain length of the respective synthetic target and due to economic considerations. 13 C labels in general were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding labelled carboxy functions, which may also be reduced to give the labelled primary alcohol group. All new compounds are characterized by GC/MS, IR and NMR methods as well as by elemental analysis.
Collapse
Affiliation(s)
- Carina Schink
- Institute of Integrated Natural Sciences, University Koblenz - Landau, Koblenz, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wolfgang Imhof
- Institute of Integrated Natural Sciences, University Koblenz - Landau, Koblenz, Germany
| |
Collapse
|
19
|
Pedersen SS, Donslund AS, Mikkelsen JH, Bakholm OS, Papp F, Jensen KB, Gustafsson MBF, Skrydstrup T. A Nickel(II)-Mediated Thiocarbonylation Strategy for Carbon Isotope Labeling of Aliphatic Carboxamides. Chemistry 2021; 27:7114-7123. [PMID: 33452676 DOI: 10.1002/chem.202005261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/15/2022]
Abstract
A series of pharmaceutically relevant small molecules and biopharmaceuticals bearing aliphatic carboxamides have been successfully labeled with carbon-13. Key to the success of this novel carbon isotope labeling technique is the observation that 13 C-labeled NiII -acyl complexes, formed from a 13 CO insertion step with NiII -alkyl intermediates, rapidly react in less than one minute with 2,2'-dipyridyl disulfide to quantitatively form the corresponding 2-pyridyl thioesters. Either the use of 13 C-SilaCOgen or 13 C-COgen allows for the stoichiometric addition of isotopically labeled carbon monoxide. Subsequent one-pot acylation of a series of structurally diverse amines provides the desired 13 C-labeled carboxamides in good yields. A single electron transfer pathway is proposed between the NiII -acyl complexes and the disulfide providing a reactive NiIII -acyl sulfide intermediate, which rapidly undergoes reductive elimination to the desired thioester. By further optimization of the reaction parameters, reaction times down to only 11 min were identified, opening up the possibility of exploring this chemistry for carbon-11 isotope labeling. Finally, this isotope labeling strategy could be adapted to the synthesis of 13 C-labeled liraglutide and insulin degludec, representing two antidiabetic drugs.
Collapse
Affiliation(s)
- Simon S Pedersen
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Aske S Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Jesper H Mikkelsen
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Oskar S Bakholm
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Florian Papp
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Kim B Jensen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Magnus B F Gustafsson
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
20
|
Feng M, De Oliveira J, Sallustrau A, Destro G, Thuéry P, Roy S, Cantat T, Elmore CS, Blankenstein J, Taran F, Audisio D. Direct Carbon Isotope Exchange of Pharmaceuticals via Reversible Decyanation. J Am Chem Soc 2021; 143:5659-5665. [PMID: 33825486 DOI: 10.1021/jacs.1c01923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The incorporation of carbon-14 allows tracking of organic molecules and provides vital knowledge on their fate. This information is critical in pharmaceutical development, crop science, and human food safety evaluation. Herein, a transition-metal-catalyzed procedure enabling carbon isotope exchange on aromatic nitriles is described. By utilizing the radiolabeled precursor Zn([14C]CN)2, this protocol allows the insertion of the desired carbon tag without the need for structural modifications, in a single step. By reducing synthetic costs and limiting the generation of radioactive waste, this procedure will facilitate the labeling of nitrile containing drugs and accelerate 14C-based ADME studies supporting drug development.
Collapse
Affiliation(s)
- Minghao Feng
- Université Paris Saclay, CEA, DMTS, Service de Chimie Bio-organique et Marquage, 91191 Gif-sur-Yvette, France
| | - Joao De Oliveira
- Université Paris Saclay, CEA, DMTS, Service de Chimie Bio-organique et Marquage, 91191 Gif-sur-Yvette, France.,Isotope Chemistry, Integrated Drug Discovery Sanofi R&D, 94403 Vitry-sur-Seine, France
| | - Antoine Sallustrau
- Université Paris Saclay, CEA, DMTS, Service de Chimie Bio-organique et Marquage, 91191 Gif-sur-Yvette, France
| | - Gianluca Destro
- Université Paris Saclay, CEA, DMTS, Service de Chimie Bio-organique et Marquage, 91191 Gif-sur-Yvette, France.,Université Paris Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Pierre Thuéry
- Université Paris Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Sebastien Roy
- Isotope Chemistry, Integrated Drug Discovery Sanofi R&D, 94403 Vitry-sur-Seine, France
| | - Thibault Cantat
- Université Paris Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Charles S Elmore
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Jorg Blankenstein
- Isotope Chemistry, Integrated Drug Discovery Sanofi R&D, 94403 Vitry-sur-Seine, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, DMTS, Service de Chimie Bio-organique et Marquage, 91191 Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris Saclay, CEA, DMTS, Service de Chimie Bio-organique et Marquage, 91191 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Reilly SW, Lam YH, Ren S, Strotman NA. Late-Stage Carbon Isotope Exchange of Aryl Nitriles through Ni-Catalyzed C-CN Bond Activation. J Am Chem Soc 2021; 143:4817-4823. [PMID: 33725443 DOI: 10.1021/jacs.1c01454] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile one-pot strategy for 13CN and 14CN exchange with aryl, heteroaryl, and alkenyl nitriles using a Ni phosphine catalyst and BPh3 is described. This late-stage carbon isotope exchange (CIE) strategy employs labeled Zn(CN)2 to facilitate enrichment using the nonlabeled parent compound as the starting material, eliminating de novo synthesis for precursor development. A broad substrate scope encompassing multiple pharmaceuticals is disclosed, including the preparation of [14C] belzutifan to illustrate the exceptional functional group tolerance and utility of this labeling approach. Preliminary experimental and computational studies suggest the Lewis acid BPh3 is not critical for the oxidative addition step and instead plays a role in facilitating CN exchange on Ni. This CIE method dramatically reduces the synthetic steps and radioactive waste involved in preparation of 14C labeled tracers for clinical development.
Collapse
Affiliation(s)
- Sean W Reilly
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yu-Hong Lam
- Department of Computational and Structural Chemistry, Merck & Co., Inc. Rahway, New Jersey 07065, United States
| | - Sumei Ren
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A Strotman
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
22
|
Babin V, Talbot A, Labiche A, Destro G, Del Vecchio A, Elmore CS, Taran F, Sallustrau A, Audisio D. Photochemical Strategy for Carbon Isotope Exchange with CO2. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05344] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victor Babin
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Alex Talbot
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Alexandre Labiche
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Gianluca Destro
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Antonio Del Vecchio
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Charles S. Elmore
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Frédéric Taran
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Antoine Sallustrau
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Davide Audisio
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
23
|
Lee YH, Denton EH, Morandi B. Palladium-catalysed carboformylation of alkynes using acid chlorides as a dual carbon monoxide and carbon source. Nat Chem 2021; 13:123-130. [PMID: 33514937 DOI: 10.1038/s41557-020-00621-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/07/2020] [Indexed: 01/30/2023]
Abstract
Hydroformylation, a reaction that installs both a C-H bond and an aldehyde group across an unsaturated substrate, is one of the most important catalytic reactions in both industry and academia. Given the synthetic importance of creating new C-C bonds, the development of carboformylation reactions, wherein a new C-C bond is formed instead of a C-H bond, would bear enormous synthetic potential to rapidly increase molecular complexity in the synthesis of valuable aldehydes. However, the demanding complexity inherent in a four-component reaction, utilizing an exogenous CO source, has made the development of a direct carboformylation reaction a formidable challenge. Here, we describe a palladium-catalysed strategy that uses readily available aroyl chlorides as a carbon electrophile and CO source, in tandem with a sterically congested hydrosilane, to perform a stereoselective carboformylation of alkynes. An extension of this protocol to four chemodivergent carbonylations further highlights the creative opportunity offered by this strategy in carbonylation chemistry.
Collapse
Affiliation(s)
- Yong Ho Lee
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Elliott H Denton
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Bill Morandi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Kong D, Munch M, Qiqige Q, Cooze CJC, Rotstein BH, Lundgren RJ. Fast Carbon Isotope Exchange of Carboxylic Acids Enabled by Organic Photoredox Catalysis. J Am Chem Soc 2021; 143:2200-2206. [PMID: 33507731 DOI: 10.1021/jacs.0c12819] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carbazole/cyanobenzene photocatalysts promote the direct isotopic carboxylate exchange of C(sp3) acids with labeled CO2. Substrates that are not compatible with transition-metal-catalyzed degradation-reconstruction approaches or prone to thermally induced reversible decarboxylation undergo isotopic incorporation at room temperature in short reaction times. The radiolabeling of drug molecules and precursors with [11C]CO2 is demonstrated.
Collapse
Affiliation(s)
- Duanyang Kong
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Maxime Munch
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Qiqige Qiqige
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
25
|
Schink C, Spielvogel S, Imhof W. Synthesis of 13 C-labelled cutin and suberin monomeric dicarboxylic acids of the general formula HO 213 C-(CH 2 ) n - 13 CO 2 H (n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 28). J Labelled Comp Radiopharm 2021; 64:14-29. [PMID: 33063895 DOI: 10.1002/jlcr.3885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
13 C-labeled dicarboxylic acids HO213 C-(CH2 )n -13 CO2 H (n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 28) have been synthesized as internal standards for LC-MS and GC-MS analysis of cutin and suberin monomer degradation by soil-based microorganisms. Different synthetic strategies had to be applied depending on the chain length of the respective synthetic target and because of economic considerations. 13 C-labels were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding dicarboxylic acids. All new compounds are characterized by GC/MS, IR, and NMR methods as well as by elemental analysis.
Collapse
Affiliation(s)
- Carina Schink
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Wolfgang Imhof
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Germany
| |
Collapse
|
26
|
Ren S, Huffman MA, Whittaker AM, Yang H, Nawrat CC, Waterhouse DJ, Maloney KM, Strotman NA. Synthesis of Isotopically Labeled Anti-HIV Nucleoside Islatravir through a One-Pot Biocatalytic Cascade Reaction. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sumei Ren
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mark A. Huffman
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Aaron M. Whittaker
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hao Yang
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Christopher C. Nawrat
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - David J. Waterhouse
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kevin M. Maloney
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A. Strotman
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
27
|
Roy SA, Zgheib J, Zhou C, Arndtsen BA. Palladium catalyzed synthesis of indolizines via the carbonylative coupling of bromopyridines, imines and alkynes. Chem Sci 2020; 12:2251-2256. [PMID: 34163991 PMCID: PMC8179343 DOI: 10.1039/d0sc03977b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
We report herein the development of a palladium-catalyzed, multicomponent synthesis of indolizines. The reaction proceeds via the carbonylative formation of a high energy, mesoionic pyridine-based 1,3-dipole, which can undergo spontaneous cycloaddition with alkynes. Overall, this provides a route to prepare indolizines in a modular fashion from combinations of commercially available or easily generated reagents: 2-bromopyridines, imines and alkynes.
Collapse
Affiliation(s)
- Sébastien A Roy
- Department of Chemistry, McGill University 801 Sherbrooke Street W. Montreal QC H3A 0B8 Canada
| | - José Zgheib
- Department of Chemistry, McGill University 801 Sherbrooke Street W. Montreal QC H3A 0B8 Canada
| | - Cuihan Zhou
- Department of Chemistry, McGill University 801 Sherbrooke Street W. Montreal QC H3A 0B8 Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University 801 Sherbrooke Street W. Montreal QC H3A 0B8 Canada
| |
Collapse
|
28
|
Destro G, Horkka K, Loreau O, Buisson D, Kingston L, Del Vecchio A, Schou M, Elmore CS, Taran F, Cantat T, Audisio D. Transition‐Metal‐Free Carbon Isotope Exchange of Phenyl Acetic Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gianluca Destro
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
- Université Paris-Saclay CEA, CNRS NIMBE 91191 Gif-sur-Yvette France
| | | | - Olivier Loreau
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| | - David‐Alexandre Buisson
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| | - Lee Kingston
- Early Chemical Development Pharmaceutical Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Antonio Del Vecchio
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| | - Magnus Schou
- Karolinska Institutet 17176 Stockholm Sweden
- PET Science Centre, Precision Medicine, Oncology R&D AstraZeneca Karolinska Institutet 17176 Stockholm Sweden
| | - Charles S. Elmore
- Early Chemical Development Pharmaceutical Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Frédéric Taran
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| | - Thibault Cantat
- Université Paris-Saclay CEA, CNRS NIMBE 91191 Gif-sur-Yvette France
| | - Davide Audisio
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| |
Collapse
|
29
|
Destro G, Horkka K, Loreau O, Buisson D, Kingston L, Del Vecchio A, Schou M, Elmore CS, Taran F, Cantat T, Audisio D. Transition-Metal-Free Carbon Isotope Exchange of Phenyl Acetic Acids. Angew Chem Int Ed Engl 2020; 59:13490-13495. [PMID: 32348625 PMCID: PMC7496475 DOI: 10.1002/anie.202002341] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Indexed: 11/16/2022]
Abstract
A transition-metal-free carbon isotope exchange procedure on phenyl acetic acids is described. Utilizing the universal precursor CO2 , this protocol allows the carbon isotope to be inserted into the carboxylic acid position, with no need of precursor synthesis. This procedure enabled the labeling of 15 pharmaceuticals and was compatible with carbon isotopes [14 C] and [13 C]. A proof of concept with [11 C] was also obtained with low molar activity valuable for distribution studies.
Collapse
Affiliation(s)
- Gianluca Destro
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
- Université Paris-SaclayCEA, CNRSNIMBE91191Gif-sur-YvetteFrance
| | | | - Olivier Loreau
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| | - David‐Alexandre Buisson
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| | - Lee Kingston
- Early Chemical DevelopmentPharmaceutical Sciences, R&DAstraZenecaGothenburgSweden
| | - Antonio Del Vecchio
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| | - Magnus Schou
- Karolinska Institutet17176StockholmSweden
- PET Science Centre, Precision Medicine, Oncology R&DAstraZenecaKarolinska Institutet17176StockholmSweden
| | - Charles S. Elmore
- Early Chemical DevelopmentPharmaceutical Sciences, R&DAstraZenecaGothenburgSweden
| | - Frédéric Taran
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| | - Thibault Cantat
- Université Paris-SaclayCEA, CNRSNIMBE91191Gif-sur-YvetteFrance
| | - Davide Audisio
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| |
Collapse
|
30
|
Liu Y, Kaiser AM, Arndtsen BA. Palladium catalyzed carbonylative generation of potent, pyridine-based acylating electrophiles for the functionalization of arenes to ketones. Chem Sci 2020; 11:8610-8616. [PMID: 34123121 PMCID: PMC8163404 DOI: 10.1039/d0sc03129a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We describe here the design of a palladium catalyzed route to generate aryl ketones via the carbonylative coupling of (hetero)arenes and aryl- or vinyl-triflates. In this, the use of the large bite angle Xantphos ligand on palladium provides a unique avenue to balance the activation of the relatively strong C(sp2)–OTf bond with the ultimate elimination of a new class of potent Friedel–Crafts acylating agent: N-acyl pyridinium salts. The latter can be exploited to modulate reactivity and selectivity in carbonylative arene functionalization chemistry, and allow the efficient synthesis of ketones with a diverse array of (hetero)arenes. A palladium catalyzed approach to the overall carbonylative functionalization of arenes to form ketones with aryl- and vinyl-triflates is described.![]()
Collapse
Affiliation(s)
- Yi Liu
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Angela M Kaiser
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
31
|
Kong D, Moon PJ, Lui EKJ, Bsharat O, Lundgren RJ. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution. Science 2020; 369:557-561. [PMID: 32554626 DOI: 10.1126/science.abb4129] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Many classical and emerging methodologies in organic chemistry rely on carbon dioxide (CO2) extrusion to generate reactive intermediates for bond-forming events. Synthetic reactions that involve the microscopic reverse-the carboxylation of reactive intermediates-have conventionally been undertaken using very different conditions. We report that chemically stable C(sp3) carboxylates, such as arylacetic acids and malonate half-esters, undergo uncatalyzed reversible decarboxylation in dimethylformamide solution. Decarboxylation-carboxylation occurs with substrates resistant to protodecarboxylation by Brønsted acids under otherwise identical conditions. Isotopically labeled carboxylic acids can be prepared in high chemical and isotopic yield by simply supplying an atmosphere of 13CO2 to carboxylate salts in polar aprotic solvents. An understanding of carboxylate reactivity in solution enables conditions for the trapping of aldehydes, ketones, and α,β-unsaturated esters.
Collapse
Affiliation(s)
- Duanyang Kong
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Patrick J Moon
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Erica K J Lui
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
32
|
Li Y, Xiong W, Zhang Z, Xu T. Synthesis of Indolizine Derivatives Triggered by the Oxidative Addition of Aroyl Chloride to Pd(0) Complex. J Org Chem 2020; 85:6392-6399. [PMID: 32348132 DOI: 10.1021/acs.joc.0c00161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient synthesis of indolizine derivatives from propargylic pyridines and aroyl chlorides was developed. The 5-endo-dig cyclization was initiated by the in situ formed acylpalladium species from the facile oxidative addition of aroyl chloride to Pd(0) complex. This transformation successfully occurred in the presence of an N-nucleophilic moiety and acid chlorides, a good electrophilic partner, affording highly functionalized indolizines in good-to-excellent yields.
Collapse
Affiliation(s)
- Yahui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Wei Xiong
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Zhifeng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
33
|
Donslund AS, Pedersen SS, Gaardbo C, Neumann KT, Kingston L, Elmore CS, Skrydstrup T. Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Aske S. Donslund
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Simon S. Pedersen
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Cecilie Gaardbo
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Karoline T. Neumann
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Lee Kingston
- Isotope ChemistryEarly Chemical DevelopmentPharmaceutical Sciences, R&DAstraZeneca Pharmaceuticals 43183 Gothenberg Sweden
| | - Charles S. Elmore
- Isotope ChemistryEarly Chemical DevelopmentPharmaceutical Sciences, R&DAstraZeneca Pharmaceuticals 43183 Gothenberg Sweden
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
34
|
Donslund AS, Pedersen SS, Gaardbo C, Neumann KT, Kingston L, Elmore CS, Skrydstrup T. Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angew Chem Int Ed Engl 2020; 59:8099-8103. [PMID: 32017346 DOI: 10.1002/anie.201916391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Indexed: 12/14/2022]
Abstract
An extensive range of functionalized aliphatic ketones with good functional-group tolerance has been prepared by a NiI -promoted coupling of either primary or secondary alkyl iodides with NN2 pincer NiII -acyl complexes. The latter were easily accessed from the corresponding NiII -alkyl complexes with stoichiometric CO. This Ni-mediated carbonylative coupling is adaptable to late-stage carbon isotope labeling, as illustrated by the preparation of isotopically labelled pharmaceuticals. Preliminary investigations suggest the intermediacy of carbon-centered radicals.
Collapse
Affiliation(s)
- Aske S Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Simon S Pedersen
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Cecilie Gaardbo
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Karoline T Neumann
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Lee Kingston
- Isotope Chemistry, Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Pharmaceuticals, 43183, Gothenberg, Sweden
| | - Charles S Elmore
- Isotope Chemistry, Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Pharmaceuticals, 43183, Gothenberg, Sweden
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
35
|
Jones DJ, Lautens M, McGlacken GP. The emergence of Pd-mediated reversible oxidative addition in cross coupling, carbohalogenation and carbonylation reactions. Nat Catal 2019. [DOI: 10.1038/s41929-019-0361-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Holownia A, Tien C, Diaz DB, Larson RT, Yudin AK. Carboxyboronate: A Versatile C1 Building Block. Angew Chem Int Ed Engl 2019; 58:15148-15153. [DOI: 10.1002/anie.201907486] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/31/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Aleksandra Holownia
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Chieh‐Hung Tien
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Diego B. Diaz
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Reed T. Larson
- Process Research & Development, MRL Merck & Co Kenilworth NJ 07033 USA
| | - Andrei K. Yudin
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| |
Collapse
|
37
|
Holownia A, Tien C, Diaz DB, Larson RT, Yudin AK. Carboxyboronate: A Versatile C1 Building Block. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907486] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aleksandra Holownia
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Chieh‐Hung Tien
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Diego B. Diaz
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Reed T. Larson
- Process Research & Development, MRL Merck & Co Kenilworth NJ 07033 USA
| | - Andrei K. Yudin
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| |
Collapse
|
38
|
Ravn AK, Vilstrup MBT, Noerby P, Nielsen DU, Daasbjerg K, Skrydstrup T. Carbon Isotope Labeling Strategy for β-Amino Acid Derivatives via Carbonylation of Azanickellacycles. J Am Chem Soc 2019; 141:11821-11826. [PMID: 31310710 DOI: 10.1021/jacs.9b05934] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of 4-membered azametallacycles have been prepared by the oxidative addition of Ni(0) with aziridines. Stoichiometric 13C-labeled carbon monoxide could be efficiently incorporated via Ni-C bond insertion to generate air stable and isolable cyclic Ni-acyl complexes. Upon subjection to a range of C-, N-, O-, and S-nucleophiles, 13C-labeled β-amino acids and derivatives thereof, as well as β-aminoketones, could be rapidly accessed. The methodology proved highly adaptable for the synthesis of the antidiabetic drug, sitagliptin, with a single carbon isotope label.
Collapse
Affiliation(s)
- Anne K Ravn
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| | - Maria B T Vilstrup
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| | - Peter Noerby
- Center for Materials Crystallography, Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus , Denmark
| | - Dennis U Nielsen
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| | - Kim Daasbjerg
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus , Denmark
| |
Collapse
|
39
|
Hinsinger K, Pieters G. Das aufkommende Konzept des Kohlenstoffisotopenaustauschs. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karen Hinsinger
- SCBMCEA, Université Paris Saclay 91191 Gif-sur-Yvette Frankreich
| | - Grégory Pieters
- SCBMCEA, Université Paris Saclay 91191 Gif-sur-Yvette Frankreich
| |
Collapse
|
40
|
Abstract
Significant progress in C−C bond activation with transition metals has recently enabled the development of several carbon isotope exchange reactions. These methods are based on C−C bond decarboxylative carboxylation reactions in the presence of selected transition metals and labelled carbon monoxide or carbon dioxide.![]()
Collapse
Affiliation(s)
- Karen Hinsinger
- SCBM, CEA, Université Paris Saclay, 91191, Gif-sur-Yvette, France
| | - Grégory Pieters
- SCBM, CEA, Université Paris Saclay, 91191, Gif-sur-Yvette, France
| |
Collapse
|
41
|
Tortajada A, Duan Y, Sahoo B, Cong F, Toupalas G, Sallustrau A, Loreau O, Audisio D, Martin R. Catalytic Decarboxylation/Carboxylation Platform for Accessing Isotopically Labeled Carboxylic Acids. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01921] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andreu Tortajada
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Yaya Duan
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Basudev Sahoo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Fei Cong
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Georgios Toupalas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Antoine Sallustrau
- Service de Chimie Bio-Organique et Marquage (SCBM), CEA-DRF-JOLIOT-SCBM, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Olivier Loreau
- Service de Chimie Bio-Organique et Marquage (SCBM), CEA-DRF-JOLIOT-SCBM, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Davide Audisio
- Service de Chimie Bio-Organique et Marquage (SCBM), CEA-DRF-JOLIOT-SCBM, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
42
|
Kinney RG, Arndtsen BA. Decarboxylation with Carbon Monoxide: The Direct Conversion of Carboxylic Acids into Potent Acid Triflate Electrophiles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- R. Garrison Kinney
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Bruce A. Arndtsen
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
43
|
Kinney RG, Arndtsen BA. Decarboxylation with Carbon Monoxide: The Direct Conversion of Carboxylic Acids into Potent Acid Triflate Electrophiles. Angew Chem Int Ed Engl 2019; 58:5085-5089. [PMID: 30776306 DOI: 10.1002/anie.201814660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/13/2019] [Indexed: 01/07/2023]
Abstract
We report a new strategy for the conversion of carboxylic acids into potent acid triflate electrophiles. The reaction involves oxidative carbonylation of carboxylic acids with I2 in the presence of AgOTf, and is postulated to proceed via acyl hypoiodites that react with CO to form acid triflates. Coupling this chemistry with subsequent trapping with arenes offers a mild, room temperature approach to generate ketones directly from broadly available carboxylic acids without the use of corrosive and reactive Lewis or Bronsted acid additives, and instead from compounds that are readily available, stable, and functional group compatible.
Collapse
Affiliation(s)
- R Garrison Kinney
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
44
|
Kingston C, Wallace MA, Allentoff AJ, deGruyter JN, Chen JS, Gong SX, Bonacorsi S, Baran PS. Direct Carbon Isotope Exchange through Decarboxylative Carboxylation. J Am Chem Soc 2019; 141:774-779. [PMID: 30605319 DOI: 10.1021/jacs.8b12035] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A two-step degradation-reconstruction approach to the carbon-14 radiolabeling of alkyl carboxylic acids is presented. Simple activation via redox-active ester formation was followed by nickel-mediated decarboxylative carboxylation to afford a range of complex compounds with ample isotopic incorporations for drug metabolism and pharmacokinetic studies. The practicality and operational simplicity of the protocol were demonstrated by its use in an industrial carbon-14 radiolabeling setting.
Collapse
Affiliation(s)
- Cian Kingston
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Michael A Wallace
- Radiochemistry , Bristol-Myers Squibb Company , P.O. Box 4000, Princeton , New Jersey 08543 , United States
| | - Alban J Allentoff
- Radiochemistry , Bristol-Myers Squibb Company , P.O. Box 4000, Princeton , New Jersey 08543 , United States
| | - Justine N deGruyter
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Jason S Chen
- Automated Synthesis Facility , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Sharon X Gong
- Radiochemistry , Bristol-Myers Squibb Company , P.O. Box 4000, Princeton , New Jersey 08543 , United States
| | - Samuel Bonacorsi
- Radiochemistry , Bristol-Myers Squibb Company , P.O. Box 4000, Princeton , New Jersey 08543 , United States
| | - Phil S Baran
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
45
|
Destro G, Loreau O, Marcon E, Taran F, Cantat T, Audisio D. Dynamic Carbon Isotope Exchange of Pharmaceuticals with Labeled CO2. J Am Chem Soc 2018; 141:780-784. [DOI: 10.1021/jacs.8b12140] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gianluca Destro
- Service de Chimie
Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Olivier Loreau
- Service de Chimie
Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Elodie Marcon
- Service de Chimie
Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Frédéric Taran
- Service de Chimie
Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Thibault Cantat
- NIMBE, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Davide Audisio
- Service de Chimie
Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
46
|
Davey SG. Ease-C exchange. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|