1
|
Yadav S, Lyons RS, Readi-Brown Z, Siegler MA, Goldberg DP. Influence of the second coordination sphere on O 2 activation by a nonheme iron(II) thiolate complex. J Inorg Biochem 2024; 264:112776. [PMID: 39644805 DOI: 10.1016/j.jinorgbio.2024.112776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
The synthesis and characterization of a new ligand, 1-(bis(pyridin-2-ylmethyl) amino)-2-methylpropane-2-thiolate (BPAMe2S-) and its nonheme iron complex, FeII(BPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -20 °C generates a high-spin iron(III)-hydroxide complex, [FeIII(OH)(BPAMe2S)(Br)] (2), that was characterized by UV-vis, 57Fe Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies, and electrospray ionization mass spectrometry (ESI-MS). Density functional theory (DFT) calculations were employed to support the spectroscopic assignments. In a previous report (J. Am. Chem. Soc.2024, 146, 7915-7921), the related iron(II) complex, FeII(BNPAMe2S)Br (BNPAMe2S- = (bis((6-(neopentylamino)pyridinyl) methyl)amino)-2-methylpropane-2-thiolate) was reported and shown to react with O2 at low temperature to give a rare iron(III)-superoxide intermediate, which then converts to an S‑oxygenated sulfinate as seen for the nonheme iron thiol dioxygenases. This complex includes two hydrogen bonding neopentylamino groups in the second coordination sphere. Complex 1 does not include these H-bonding groups, and its reactivity with O2 does not yield a stabilized Fe/O2 intermediate or S‑oxygenated products, although the data suggest an inner-sphere mechanism and formation of an iron‑oxygen species that is capable of abstracting hydrogen atoms from solvent or weak CH bond substrates. This study indicates that the H-bond donors are critical for stabilizing the FeIII(O2-•) intermediate with the BNPAMe2S- ligand, which in turn leads to S‑oxygenation, as opposed to H-atom abstraction, following O2 activation by the nonheme iron center.
Collapse
Affiliation(s)
- Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Robert S Lyons
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Zoe Readi-Brown
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States.
| |
Collapse
|
2
|
Zhang P, Lee WZ, Ye S. Insights into dioxygen binding on metal centers: an ab initio multireference electronic structure analysis. Phys Chem Chem Phys 2024; 26:25057-25068. [PMID: 39301704 DOI: 10.1039/d4cp02915a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Why does binding of dioxygen (O2) to metal centers, the initial step of O2 storage, transportation, and activation, almost inevitably induce metal-to-O2 single-electron transfer and generate superoxo (O2-˙) species, instead of genuine O02 adducts? To address this question, this study describes highly correlated wavefunction-based ab initio calculations using CASSCF/NEVPT2 (CASSCF = complete active space self-consistent field, and NEVPT2 = N-electron valence state second-order perturbation theory) approaches to explore the electronic-structure evolution of O2 association on Fe(II)(BDPP) (H2BDPP = 2,6-bis((2-(S)-diphenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine) and Co(II)(BDPP) to produce S = 3 Fe(III)(BDPP)(O2-˙) (1) and Co(III)(BDPP)(O2-˙) (2). CASSCF/NEVPT2 calculations suggest that the processes furnishing 1 and 2 feature an avoided crossing resulting from interactions of two diabatic curves, of which one is characterized as Co(II) and Fe(II) centers interacting with a triplet O2 ligand and the other as Co(III) and Fe(III) centers bound to a superoxo ligand. In both cases, the avoided crossing induces a one-electron transfer from the divalent metal center to the incoming O2 ligand and leads to formation of trivalent metal-O2-˙ complexes. To facilitate the interpretation of complicated multireference wavefunctions, we formulated two-fragment spin eigenfunctions utilizing Clebsch-Gordan coefficients (CGCs) to rationalize computed spin populations on the metal centers and the O2 ligand and compared these results with usual valence bonding (VB) analyses. It turns out that both methods give the same results and are complementary to each other. Finally, the limitation of DFT approaches in describing complex electronic structures involving metal-ligand magnetic couplings is delineated.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
3
|
Han J, Tan H, Guo K, Lv H, Peng X, Zhang W, Lin H, Apfel UP, Cao R. The "Pull Effect" of a Hanging Zn II on Improving the Four-Electron Oxygen Reduction Selectivity with Co Porphyrin. Angew Chem Int Ed Engl 2024; 63:e202409793. [PMID: 38923266 DOI: 10.1002/anie.202409793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Due to the challenge of cleaving O-O bonds at single Co sites, mononuclear Co complexes typically show poor selectivity for the four-electron (4e-) oxygen reduction reaction (ORR). Herein, we report on selective 4e- ORR catalyzed by a Co porphyrin with a hanged ZnII ion. Inspired by Cu/Zn-superoxide dismutase, we designed and synthesized 1-CoZn with a hanging ZnII at the second sphere of a Co porphyrin. Complex 1-CoZn is much more effective than its Zn-lacking analogues to catalyze the 4e- ORR in neutral aqueous solutions, giving an electron number of 3.91 per O2 reduction. With spectroscopic studies, the hanging ZnII was demonstrated to be able to facilitate the electron transfer from CoII to O2, through an electronic "pull effect", to give CoIII-superoxo. Theoretical studies further suggested that this "pull effect" plays crucial roles in assisting O-O bond cleavage. This work is significant to present a new strategy of hanging a ZnII to improve O2 activation and O-O bond cleavage.
Collapse
Affiliation(s)
- Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Huang Tan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Activation of Small Molecules/Technical Electrochemistry, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Schneider JE, Zeng S, Anferov SW, Filatov AS, Anderson JS. Isolation and Crystallographic Characterization of an Octavalent Co 2O 2 Diamond Core. J Am Chem Soc 2024; 146:23998-24008. [PMID: 39146525 DOI: 10.1021/jacs.4c07335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
High-valent cobalt oxides play a pivotal role in alternative energy technology as catalysts for water splitting and as cathodes in lithium-ion batteries. Despite this importance, the properties governing the stability of high-valent cobalt oxides and specifically possible oxygen evolution pathways are not clear. One root of this limited understanding is the scarcity of high-valent Co(IV)-containing model complexes; there are no reports of stable, well-defined complexes with multiple Co(IV) centers. Here, an oxidatively robust fluorinated ligand scaffold enables the isolation and crystallographic characterization of a Co(IV)2-bis-μ-oxo complex. This complex is remarkably stable, in stark contrast with previously reported Co(IV)2 species that are highly reactive, which demonstrates that oxy-Co(IV)2 species are not necessarily unstable with respect to oxygen evolution. This example underscores a new design strategy for highly oxidizing transition-metal fragments and provides detailed data on a previously inaccessible chemical unit of relevance to O-O bond formation and oxygen evolution.
Collapse
Affiliation(s)
- Joseph E Schneider
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shilin Zeng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W Anferov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Gera R, De P, Singh KK, Jannuzzi SAV, Mohanty A, Velasco L, Kulbir, Kumar P, Marco JF, Nagarajan K, Pecharromán C, Rodríguez-Pascual PM, DeBeer S, Moonshiram D, Gupta SS, Dasgupta J. Trapping an Elusive Fe(IV)-Superoxo Intermediate Inside a Self-Assembled Nanocage in Water at Room Temperature. J Am Chem Soc 2024; 146:21729-21741. [PMID: 39078020 DOI: 10.1021/jacs.4c05849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Molecular cavities that mimic natural metalloenzymes have shown the potential to trap elusive reaction intermediates. Here, we demonstrate the formation of a rare yet stable Fe(IV)-superoxo intermediate at room temperature subsequent to dioxygen binding at the Fe(III) site of a (Et4N)2[FeIII(Cl)(bTAML)] complex confined inside the hydrophobic interior of a water-soluble Pd6L412+ nanocage. Using a combination of electron paramagnetic resonance, Mössbauer, Raman/IR vibrational, X-ray absorption, and emission spectroscopies, we demonstrate that the cage-encapsulated complex has a Fe(IV) oxidation state characterized by a stable S = 1/2 spin state and a short Fe-O bond distance of ∼1.70 Å. We find that the O2 reaction in confinement is reversible, while the formed Fe(IV)-superoxo complex readily reacts when presented with substrates having weak C-H bonds, highlighting the lability of the O-O bond. We envision that such optimally trapped high-valent superoxos can show new classes of reactivities catalyzing both oxygen atom transfer and C-H bond activation reactions.
Collapse
Affiliation(s)
- Rahul Gera
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
- Department of Education in Science and Mathematics, Regional Institute of Education - Mysuru, NCERT, Mysuru 570006, India
| | - Puja De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Kundan K Singh
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India
- Chemistry Department, Indian Institute of Technology, Dharwad 580007, India
| | - Sergio A V Jannuzzi
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Aisworika Mohanty
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Lucia Velasco
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - J F Marco
- Instituto de Quimica Fisica Blas Cabrera, Consejo Superior de Investigaciones Científicas, Serrano 119, Madrid 28006, Spain
| | - Kalaivanan Nagarajan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Carlos Pecharromán
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - P M Rodríguez-Pascual
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
6
|
Yang Y, Yuwono JA, Whittaker T, Ibáñez MM, Wang B, Kim C, Borisevich AY, Chua S, Prada JP, Wang X, Autran PO, Unocic RR, Dai L, Holewinski A, Bedford NM. Double Hydroxide Nanocatalysts for Urea Electrooxidation Engineered toward Environmentally Benign Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403187. [PMID: 39003619 DOI: 10.1002/adma.202403187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Recent advancements in the electrochemical urea oxidation reaction (UOR) present promising avenues for wastewater remediation and energy recovery. Despite progress toward optimized efficiency, hurdles persist in steering oxidation products away from environmentally unfriendly products, mostly due to a lack of understanding of structure-selectivity relationships. In this study, the UOR performance of Ni and Cu double hydroxides, which show marked differences in their reactivity and selectivity is evaluated. CuCo hydroxides predominantly produce N2, reaching a current density of 20 mA cmgeo -2 at 1.04 V - 250 mV less than NiCo hydroxides that generate nitrogen oxides. A collection of in-situ spectroscopies and scattering experiments reveal a unique in situ generated Cu(2-x)+-OO-• active sites in CuCo, which initiates nucleophilic substitution of NH2 from the amide, leading to N-N coupling between *NH on Co and Cu. In contrast, the formation of nitrogen oxides on NiCo is primarily attributed to the presence of high-valence Ni3+ and Ni4+, which facilitates N-H activation. This process, in conjunction with the excessive accumulation of OH- ions on Jahn-Teller (JT) distorted Co sites, leads to the generation of NO2 - as the primary product. This work underscores the importance of catalyst composition and structural engineering in tailoring innocuous UOR products.
Collapse
Affiliation(s)
- Yuwei Yang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Research Council Centre of Excellence in Carbon Science and Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jodie A Yuwono
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Todd Whittaker
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Marc Manyé Ibáñez
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Bingliang Wang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Changmin Kim
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Albina Y Borisevich
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stephanie Chua
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jhair Pena Prada
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xichu Wang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liming Dai
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Research Council Centre of Excellence in Carbon Science and Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Adam Holewinski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Nicholas M Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Research Council Centre of Excellence in Carbon Science and Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| |
Collapse
|
7
|
Li J, Duan R, Liu A. Cobalt(II)-Substituted Cysteamine Dioxygenase Oxygenation Proceeds through a Cobalt(III)-Superoxo Complex. J Am Chem Soc 2024; 146:18292-18297. [PMID: 38941563 PMCID: PMC11608028 DOI: 10.1021/jacs.4c01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
We investigated the metal-substituted catalytic activity of human cysteamine dioxygenase (ADO), an enzyme pivotal in regulating thiol metabolism and contributing to oxygen homeostasis. Our findings demonstrate the catalytic competence of cobalt(II)- and nickel(II)-substituted ADO in cysteamine oxygenation. Notably, Co(II)-ADO exhibited superiority over Ni(II)-ADO despite remaining significantly less active than the natural enzyme. Structural analyses through X-ray crystallography and cobalt K-edge excitation confirmed successful metal substitution with minimal structural perturbations. This provided a robust structural basis, supporting a conserved catalytic mechanism tailored to distinct metal centers. This finding challenges the proposed high-valent ferryl-based mechanism for thiol dioxygenases, suggesting a non-high-valent catalytic pathway in the native enzyme. Further investigation of the cysteamine-bound or a peptide mimic of N-terminus RGS5 bound Co(II)-ADO binary complex revealed the metal center's high-spin (S = 3/2) state. Upon reaction with O2, a kinetically and spectroscopically detectable intermediate emerged with a ground spin state of S = 1/2. This intermediate exhibits a characteristic 59Co hyperfine splitting (A = 67 MHz) structure in the EPR spectrum alongside UV-vis features, consistent with known low-spin Co(III)-superoxo complexes. This observation, unique for protein-bound thiolate-ligated cobalt centers in a protein, unveils the capacities for O2 activation in such metal environments. These findings provide valuable insights into the non-heme iron-dependent thiol dioxygenase mechanistic landscape, furthering our understanding of thiol metabolism regulation. The exploration of metal-substituted ADO sheds light on the intricate interplay between metal and catalytic activity in this essential enzyme.
Collapse
Affiliation(s)
- Jiasong Li
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ran Duan
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
8
|
Depenbrock F, Limpke T, Stammler A, Oldengott J, Bögge H, Glaser T. Increasing the electron donation in a dinucleating ligand family: molecular and electronic structures in a series of Co IICo II complexes. Dalton Trans 2024; 53:9554-9567. [PMID: 38771300 DOI: 10.1039/d4dt00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We have developed a family of dinucleating ligands with varying terminal donors to generate dinuclear peroxo and high-valent complexes and to correlate their stabilities and reactivities with their molecular and electronic structures as a function of the terminal donors. It appears that the electron-donating ability of the terminal donors is an important handle for controlling these stabilities and reactivities. Here, we present the synthesis of a new dinucleating ligand with potentially strong donating terminal imidazole donors. As CoII ions are sensitive to variations in donor strength in terms of coordination number, magnetism, UV-Vis-NIR spectra, redox potentials, we probe the electron donation ability of this new ligand in CoIICoII complexes in comparison to the parent CoIICoII complexes with terminal pyridine donors and we synthesize the analogous CoIICoII complexes with terminal 6-methylpyridines and methoxy-substituted pyridines. The molecular structures show indeed strong variations in coordination numbers and bond lengths. These differences in the molecular structures are reflected in the magnetic properties and in the d-d transitions demonstrating that the molecular structures remain intact upon dissolution. The redox potentials are analyzed with respect to the electron donation ability and are the only handle to observe an effect of the methoxy-substituted pyridines. All data taken together show the following order of electron donating ability for the terminal donors: 6-methylpyridines ≪ pyridines < methoxy-substituted pyridines ≪ imidazoles.
Collapse
Affiliation(s)
- Felix Depenbrock
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Thomas Limpke
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Jan Oldengott
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| |
Collapse
|
9
|
Hota PK, Jose A, Panda S, Dunietz EM, Herzog AE, Wojcik L, Le Poul N, Belle C, Solomon EI, Karlin KD. Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties. J Am Chem Soc 2024; 146:13066-13082. [PMID: 38688016 PMCID: PMC11161030 DOI: 10.1021/jacs.3c14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [CuI2(BPMPO-)]1+ {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [CuII2(BPMPO-)(O22-)]1+, hydroperoxo [CuII2(BPMPO-)(-OOH)]2+, and superoxo [CuII2(BPMPO-)(O2•-)]2+ species, characterized by UV-vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII2(BPMPO-)(O2•-)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII2(BPMPO-)(O22-)]1+ ⇄ [CuII2(BPMPO-)(O2•-)]2+, is established utilizing Me8Fc+/Cr(η6-C6H6)2, allowing for [CuII2(BPMPO-)(O2•-)]2+/[CuII2(BPMPO-)(O22-)]1+ reduction potential calculation, E°' = -0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°' = -0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII2(BPMPO-)(O22-)]1+ produces [CuII2(BPMPO-)(-OOH)]2+; using a phosphazene base, an acid-base equilibrium was achieved, pKa = 22.3 ± 0.7 for [CuII2(BPMPO-)(-OOH)]2+. The BDFEOO-H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII2(BPMPO-)(-OOH)]2+; this is further substantiated by H atom abstraction from O-H substrates by [CuII2(BPMPO-)(O2•-)]2+ forming [CuII2(BPMPO-)(-OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII2(BPMPO-)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO- framework and the resulting enhanced CuII-ion Lewis acidity.
Collapse
Affiliation(s)
- Pradip Kumar Hota
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anex Jose
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eleanor M Dunietz
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Austin E Herzog
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Laurianne Wojcik
- UMR CNRS 6521, Université de Bretagne Occidentale, 6 Avenue Le Gorgeu, CS 93837, Brest Cedex 3 29238, France
| | - Nicolas Le Poul
- UMR CNRS 6521, Université de Bretagne Occidentale, 6 Avenue Le Gorgeu, CS 93837, Brest Cedex 3 29238, France
| | - Catherine Belle
- Université Grenoble-Alpes, CNRS, DCM, UMR 5250, Grenoble 38058, France
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Yadav S, Yadav V, Siegler MA, Moënne-Loccoz P, Jameson GNL, Goldberg DP. A Nonheme Iron(III) Superoxide Complex Leads to Sulfur Oxygenation. J Am Chem Soc 2024; 146:7915-7921. [PMID: 38488295 DOI: 10.1021/jacs.3c12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A new alkylthiolate-ligated nonheme iron complex, FeII(BNPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -40 °C, or reaction of the ferric form with O2•- at -80 °C, gives a rare iron(III)-superoxide intermediate, [FeIII(O2)(BNPAMe2S)]+ (2), characterized by UV-vis, 57Fe Mössbauer, ATR-FTIR, EPR, and CSIMS. Metastable 2 then converts to an S-oxygenated FeII(sulfinate) product via a sequential O atom transfer mechanism involving an iron-sulfenate intermediate. These results provide evidence for the feasibility of proposed intermediates in thiol dioxygenases.
Collapse
Affiliation(s)
- Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Guy N L Jameson
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road,Parkville, Victoria 3010, Australia
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Battistella B, Iffland-Mühlhaus L, Schütze M, Cula B, Kuhlmann U, Dau H, Hildebrandt P, Lohmiller T, Mebs S, Apfel UP, Ray K. Evidence of Sulfur Non-Innocence in [Co II (dithiacyclam)] 2+ -Mediated Catalytic Oxygen Reduction Reactions. Angew Chem Int Ed Engl 2023; 62:e202214074. [PMID: 36378951 PMCID: PMC10108118 DOI: 10.1002/anie.202214074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
In many metalloenzymes, sulfur-containing ligands participate in catalytic processes, mainly via the involvement in electron transfer reactions. In a biomimetic approach, we now demonstrate the implication of S-ligation in cobalt mediated oxygen reduction reactions (ORR). A comparative study between the catalytic ORR capabilities of the four-nitrogen bound [Co(cyclam)]2+ (1; cyclam=1,5,8,11-tetraaza-cyclotetradecane) and the S-containing analog [Co(S2 N2 -cyclam)]2+ (2; S2 N2 -cyclam=1,8-dithia-5,11-diaza-cyclotetradecane) reveals improved catalytic performance once the chalcogen is introduced in the Co coordination sphere. Trapping and characterization of the intermediates formed upon dioxygen activation at the CoII centers in 1 and 2 point to the involvement of sulfur in the O2 reduction process as the key for the improved catalytic ORR capabilities of 2.
Collapse
Affiliation(s)
- Beatrice Battistella
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Linda Iffland-Mühlhaus
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Maximillian Schütze
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Beatrice Cula
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Uwe Kuhlmann
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Holger Dau
- Institut für Physik, Freie Universität zu Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Lohmiller
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany.,EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany
| | - Stefan Mebs
- Institut für Physik, Freie Universität zu Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Department for Electrosynthesis, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047, Oberhausen, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
12
|
Gordon JB, Albert T, Yadav S, Thomas J, Siegler MA, Moënne-Loccoz P, Goldberg DP. Oxygen versus Sulfur Coordination in Cobalt Superoxo Complexes: Spectroscopic Properties, O 2 Binding, and H-Atom Abstraction Reactivity. Inorg Chem 2023; 62:392-400. [PMID: 36538786 PMCID: PMC10194424 DOI: 10.1021/acs.inorgchem.2c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A five-coordinate, disiloxide-ligated cobalt(II) (S = 3/2) complex (1) was prepared as an oxygen-ligated analogue to the previously reported silanedithiolate-ligated CoII(Me3TACN)(S2SiMe2) (J. Am. Chem. Soc., 2019, 141, 3641-3653). The structural and spectroscopic properties of 1 were analyzed by single-crystal X-ray diffraction, electron paramagnetic resonance (EPR), and NMR spectroscopies. The reactivity of 1 with dioxygen was examined, and it was shown to bind O2 reversibly in a range of solvents at low temperatures. A cobalt(III)-superoxo complex, CoIII(O2·-)(Me3TACN)((OSi2Ph)2O) (2), was generated, and was analyzed by UV-vis, EPR, and resonance Raman spectroscopies. Unlike its sulfur-ligated analogue, complex 2 can thermally release O2 to regenerate 1. Vibrational assignments for selective 18O isotopic labeling of both O2 and disiloxide ligands in 2 are consistent with a 6-coordinate, Co(η1-O2·-)("end-on") complex. Complex 2 reacts with the O-H bond of 4-methoxy-2,2,6,6-tetramethylpiperidin-1-ol (4-MeO-TEMPOH) via H-atom abstraction with a rate of 0.58(2) M-1 s-1 at -105 °C, but it is unable to oxidize phenol substrates. This bracketed reactivity suggests that the O-H bond being formed in the putative CoIII(OOH) product has a relatively weak O-H bond strength (BDFE ∼66-74 kcal mol-1). These thermodynamic and kinetic parameters are similar to those seen for the sulfur-ligated Co(O2)(Me3TACN)(S2SiMe2), indicating that the differences in the electronic structure for O versus S ligation do not have a large impact on H-atom abstraction reactivity.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
13
|
Wu H, Xiong Y, Yu D, Yang P, Shi H, Huang L, Wu Y, Xi M, Xiao P, Yang L. Fe-Co controlled super-hygroscopic hydrogels toward efficient atmospheric water harvesting. NANOSCALE 2022; 14:18022-18032. [PMID: 36444669 DOI: 10.1039/d2nr04830b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Extracting atmospheric moisture for freshwater production is an appealing way to mitigate the global water crisis. However, the low moisture sorption capacity and high desorption temperature are the major bottlenecks for efficient atmospheric water harvesting. Herein, we develop a transition metal super-hygroscopic hydrogel by an economical strategy, which is constructed through a facile coordination between metal salts and ethanolamine. When the empty electron orbital of the metal ion is coordinated with the lone electron pair of nitrogen or oxygen atom, the water active sorption site is formed. A single water layer is bonded on the sites by a coordination effect, followed by physical interaction with water to form multi-layer structures. The Fe and Co ions in the hydrogel function as dual sorption sites to capture moisture, which can harvest additional water by the synergistic effect of bimetals. As a result, the bimetal hydrogel contributes to a high water uptake of 5.22 g g-1 at 95% RH, triggering the desorption process by one solar intensity due to its low desorption temperature (≤50 °C).
Collapse
Affiliation(s)
- Hangfei Wu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, P. R. China.
| | - Yuli Xiong
- College of Physical and Electrical Engineering, Chongqing Normal University, Chongqing, P. R. China
| | - Duohuan Yu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, P. R. China.
| | - Peixin Yang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, P. R. China.
| | - Huihui Shi
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Lu Huang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Yali Wu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Mufeng Xi
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Peng Xiao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, P. R. China.
| | - Lin Yang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
14
|
Kumar P, Devkota L, Casey MC, Fischer AA, Lindeman SV, Fiedler AT. Reversible Dioxygen Binding to Co(II) Complexes with Noninnocent Ligands. Inorg Chem 2022; 61:16664-16677. [PMID: 36206536 PMCID: PMC11218047 DOI: 10.1021/acs.inorgchem.2c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of mononuclear Co(II) complexes with noninnocent (redox-active) ligands are prepared that exhibit metal-ligand cooperativity during the reversible binding of O2. The complexes have the general formula, [CoII(LS,N)(TpR2)] (R = Me, Ph), where LS,N is a bidentate o-aminothiophenolate and TpR2 is a hydrotris(pyrazol-1-yl)borate scorpionate with R-substituents at the 3- and 5-positions. Exposure to O2 at room temperature results in one-electron oxidation and deprotonation of LS,N. The oxidized derivatives possess substantial "singlet diradical" character arising from antiferromagnetic coupling between an iminothiosemiquinonate (ITSQ•-) ligand radical and a low-spin Co(II) ion. The [CoII(TpMe2)(X2ITSQ)] complexes, where X = H or tBu, coordinate O2 reversibly at reduced temperatures to provide Co/O2 adducts. The O2 binding reactions closely resemble those previously reported by our group (Kumar et al., J. Am. Chem. Soc. 2019,141, 10984-10987) for the related complexes [CoII(TpMe2)(tBu2SQ)] and [CoII(TpMe2)(tBu2ISQ)], where tBu2(I)SQ represents 4,6-di-tert-butyl-(2-imino)semiquinonate radicals. In each case, the oxygenation reaction proceeds via the addition of O2 to both the cobalt ion and the ligand radical, generating metallocyclic cobalt(III)-alkylperoxo structures. Thermodynamic measurements elucidate the relationship between O2 affinity and redox potentials of the (imino)(thio)semiquinonate radicals, as well as energetic differences between these reactions and conventional metal-based oxygenations. The results highlight the utility and versatility of noninnocent ligands in the design of O2-absorbing compounds.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Marquette University, 1414 W. Clybourn Street, Milwaukee, Wisconsin53233, United States
| | - Laxmi Devkota
- Department of Chemistry, Marquette University, 1414 W. Clybourn Street, Milwaukee, Wisconsin53233, United States
| | - Maximilian C Casey
- Department of Chemistry, Marquette University, 1414 W. Clybourn Street, Milwaukee, Wisconsin53233, United States
| | - Anne A Fischer
- Department of Chemistry, Marquette University, 1414 W. Clybourn Street, Milwaukee, Wisconsin53233, United States
| | - Sergey V Lindeman
- Department of Chemistry, Marquette University, 1414 W. Clybourn Street, Milwaukee, Wisconsin53233, United States
| | - Adam T Fiedler
- Department of Chemistry, Marquette University, 1414 W. Clybourn Street, Milwaukee, Wisconsin53233, United States
| |
Collapse
|
15
|
Yang J, Li P, Li X, Xie L, Wang N, Lei H, Zhang C, Zhang W, Lee YM, Zhang W, Cao R, Fukuzumi S, Nam W. Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew Chem Int Ed Engl 2022; 61:e202208143. [PMID: 35730106 DOI: 10.1002/anie.202208143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/10/2022]
Abstract
A cobalt porphyrin complex with a pendant imidazole base ([(L1 )CoII ]) is an efficient catalyst for the homogeneous catalytic two-electron reduction of dioxygen by 1,1'-dimethylferrocene (Me2 Fc) in the presence of triflic acid (HOTf), as compared with a cobalt porphyrin complex without a pendant imidazole base ([(L2 )CoII ]). The pendant imidazole ligand plays a crucial role not only to provide an imidazolinium proton for proton-coupled electron transfer (PCET) from [(L1 )CoII ] to O2 in the presence of HOTf but also to facilitate electron transfer (ET) from [(L1 )CoII ] to O2 in the absence of HOTf. The kinetics analysis and the detection of intermediates in the stoichiometric and catalytic reduction of O2 have provided clues to clarify the crucial roles of the pendant imidazole ligand of [(L1 )CoII ] for the first time.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ni Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chaochao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
16
|
Tian YC, Jiang Y, Lin YH, Zhang P, Wang CC, Ye S, Lee WZ. Hydrogen Atom Transfer Thermodynamics of Homologous Co(III)- and Mn(III)-Superoxo Complexes: The Effect of the Metal Spin State. JACS AU 2022; 2:1899-1909. [PMID: 36032524 PMCID: PMC9400055 DOI: 10.1021/jacsau.2c00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Systematic investigations on H atom transfer (HAT) thermodynamics of metal O2 adducts is of fundamental importance for the design of transition metal catalysts for substrate oxidation and/or oxygenation directly using O2. Such work should help elucidate underlying electronic-structure features that govern the OO-H bond dissociation free energies (BDFEs) of metal-hydroperoxo species, which can be used to quantitatively appraise the HAT activity of the corresponding metal-superoxo complexes. Herein, the BDFEs of two homologous CoIII- and MnIII-hydroperoxo complexes, 3-Co and 3-Mn, were calculated to be 79.3 and 81.5 kcal/mol, respectively, employing the Bordwell relationship based on experimentally determined pK a values and redox potentials of the one-electron-oxidized forms, 4-Co and 4-Mn. To further verify these values, we tested the HAT capability of their superoxo congeners, 2-Co and 2-Mn, toward three different substrates possessing varying O-H BDFEs. Specifically, both metal-superoxo species are capable of activating the O-H bond of 4-oxo-TEMPOH with an O-H BDFE of 68.9 kcal/mol, only 2-Mn is able to abstract a H atom from 2,4-di-tert-butylphenol with an O-H BDFE of 80.9 kcal/mol, and neither of them can react with 3,5-dimethylphenol with an O-H BDFE of 85.6 kcal/mol. Further computational investigations suggested that it is the high spin state of the MnIII center in 3-Mn that renders its OO-H BDFE higher than that of 3-Co, which features a low-spin CoIII center. The present work underscores the role of the metal spin state being as crucial as the oxidation state in modulating BDFEs.
Collapse
Affiliation(s)
- Yao-Cheng Tian
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yang Jiang
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yen-Hao Lin
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Peng Zhang
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Chieh Wang
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shengfa Ye
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Way-Zen Lee
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Jana RD, Chakraborty B, Paria S, Ohta T, Singh R, Mandal S, Paul S, Itoh S, Paine TK. Dioxygen Activation and Mandelate Decarboxylation by Iron(II) Complexes of N4 Ligands: Evidence for Dioxygen-Derived Intermediates from Cobalt Analogues. Inorg Chem 2022; 61:10461-10476. [PMID: 35759790 DOI: 10.1021/acs.inorgchem.2c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The isolation, characterization, and dioxygen reactivity of monomeric [(TPA)MII(mandelate)]+ (M = Fe, 1; Co, 3) and dimeric [(BPMEN)2MII2(μ-mandelate)2]2+ (M = Fe, 2; Co, 4) (TPA = tris(2-pyridylmethyl)amine and BPMEN = N1,N2-dimethyl-N1,N2-bis(pyridin-2-yl-methyl)ethane-1,2-diamine) complexes are reported. The iron(II)- and cobalt(II)-mandelate complexes react with dioxygen to afford benzaldehyde and benzoic acid in a 1:1 ratio. In the reactions, one oxygen atom from dioxygen is incorporated into benzoic acid, but benzaldehyde does not derive any oxygen atom from dioxygen. While no O2-derived intermediate is observed with the iron(II)-mandelate complexes, the analogous cobalt(II) complexes react with dioxygen at a low temperature (-80 °C) to generate the corresponding cobalt(III)-superoxo species (S), a key intermediate implicated in the initiation of mandelate decarboxylation. At -20 °C, the cobalt(II)-mandelate complexes bind dioxygen reversibly leading to the formation of μ-1,2-peroxo-dicobalt(III)-mandelate species (P). The geometric and electronic structures of the O2-derived intermediates (S and P) have been established by computational studies. The intermediates S and P upon treatment with a protic acid undergo decarboxylation to afford benzaldehyde (50%) with a concomitant formation of the corresponding μ-1,2-peroxo-μ-mandelate-dicobalt(III) (P1) species. The crystal structure of a peroxide species isolated from the cobalt(II)-carboxylate complex [(TPA)CoII(MPA)]+ (5) (MPA = 2-methoxyphenylacetate) supports the composition of P1. The observations of the dioxygen-derived intermediates from cobalt complexes and their electronic structure analyses not only provide information about the nature of active species involved in the decarboxylation of mandelate but also shed light on the mechanistic pathway of two-electron versus four-electron reduction of dioxygen.
Collapse
Affiliation(s)
- Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Biswarup Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sayantan Paria
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Reena Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sourav Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19, Rajkumar Chakraborty Sarani, Kolkata 700009, India
| | - Shinobu Itoh
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
18
|
Yang J, Li P, Li X, Xie L, Wang N, Lei H, Zhang C, Zhang W, Lee YM, Zhang W, Cao R, Fukuzumi S, Nam W. Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jindou Yang
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Ping Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xialiang Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Lisi Xie
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ni Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Haitao Lei
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chaochao Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yong-Min Lee
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Weiqiang Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Rui Cao
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Shunichi Fukuzumi
- Osaka University Department of Material and Life Science 2-1 Yamada-oka 565-0871 Suita JAPAN
| | - Wonwoo Nam
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| |
Collapse
|
19
|
Monika, Ansari A. Effect of the ring size of TMC ligands in controlling C-H bond activation by metal-superoxo species. Dalton Trans 2022; 51:5878-5889. [PMID: 35347335 DOI: 10.1039/d2dt00491g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metal-superoxo species play a very important role in many metal-mediated catalytic transformation reactions. Their catalytic reactivity is affected by many factors such as the nature of metal ions and ring size of ligands. Herein, for the first time, we report DFT calculations on the electronic structures of a series of metal-superoxo species (M = V, Cr, Mn, Fe, and Co) with two ring size ligands, i.e., 13-TMC/14-TMC, and a detailed mechanistic study on the C-H bond activation of cyclohexa-1,4-diene followed by the effect of the ring size of ligands. Our DFT results showed that the electron density at the distal oxygen plays an important role in C-H bond activation. By computing the energetics of C-H bond activation and mapping the potential energy surface, it was found that the initial hydrogen abstraction is the rate-determining step with both TMC rings and all the studied metal-superoxo species. The significant electron density at the cyclohex-1,4-diene carbon indicates that the reaction proceeds via the proton-coupled electron transfer mechanism. By mapping the potential energy surfaces, we found that the 13-TMC ligated superoxo with the anti-isomer are more reactive than the 14-TMC superoxo species except for the iron-superoxo species where the 14-TMC ligated superoxo species is more reactive i.e. smaller ring size TMC is more reactive towards C-H bond activation. This is also supported by the structural correlation, i.e., the greater contraction in the smaller ring results in the metal being pushed out of plane along the z-axis, which reduces the steric hindrance. Thus, the ring size can help in designing catalysts with better efficiency for catalytic reactions.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, Central University of Haryana, India, 123031.
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, India, 123031.
| |
Collapse
|
20
|
Elangovan S, Irran E, Klare HFT, Oestreich M. Cationic Cobalt–Thiolate Complexes for the Dehydrogenative Coupling of nBu 3SnH. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saravanakumar Elangovan
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Elisabeth Irran
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Hendrik F. T. Klare
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
21
|
Ghosh I, Chakraborty B, Bera A, Paul S, Paine TK. Selective oxygenation of C-H and CC bonds with H 2O 2 by high-spin cobalt(II)-carboxylate complexes. Dalton Trans 2022; 51:2480-2492. [PMID: 35050271 DOI: 10.1039/d1dt02235k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Four cobalt(II)-carboxylate complexes [(6-Me3-TPA)CoII(benzoate)](BPh4) (1), [(6-Me3-TPA)CoII(benzilate)](ClO4) (2), [(6-Me3-TPA)CoII(mandelate)](BPh4) (3), and [(6-Me3-TPA)CoII(MPA)](BPh4) (4) (HMPA = 2-methoxy-2-phenylacetic acid) of the 6-Me3-TPA (tris((6-methylpyridin-2-yl)methyl)amine) ligand were isolated to investigate their ability in H2O2-dependent selective oxygenation of C-H and CC bonds. All six-coordinate complexes contain a high-spin cobalt(II) center. While the cobalt(II) complexes are inert toward dioxygen, each of these complexes reacts readily with hydrogen peroxide to form a diamagnetic cobalt(III) species, which decays with time leading to the oxidation of the methyl groups on the pyridine rings of the supporting ligand. Intramolecular ligand oxidation by the cobalt-based oxidant is partially inhibited in the presence of external substrates, and the substrates are converted to their corresponding oxidized products. Kinetic studies and labelling experiments indicate the involvement of a metal-based oxidant in affecting the chemo- and stereo-selective catalytic oxygenation of aliphatic C-H bonds and epoxidation of alkenes. An electrophilic cobalt-oxygen species that exhibits a kinetic isotope effect (KIE) value of 5.3 in toluene oxidation by 1 is proposed as the active oxidant. Among the complexes, the cobalt(II)-benzoate (1) and cobalt(II)-MPA (4) complexes display better catalytic activity compared to their α-hydroxy analogues (2 and 3). Catalytic studies with the cobalt(II)-acetonitrile complex [(6-Me3-TPA)CoII(CH3CN)2](ClO4)2 (5) in the presence and absence of externally added benzoate support the role of the carboxylate co-ligand in oxidation reactions. The proposed catalytic reaction involves a carboxylate-bridged dicobalt complex in the activation of H2O2 followed by the oxidation of substrates by a metal-based oxidant.
Collapse
Affiliation(s)
- Ivy Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Biswarup Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Abhijit Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19, Rajkumar Chakraborty Sarani, Kolkata - 700 009, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
22
|
Sacramento JJD, Albert T, Siegler M, Moënne-Loccoz P, Goldberg DP. An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen. Angew Chem Int Ed Engl 2022; 61:e202111492. [PMID: 34850509 PMCID: PMC8789326 DOI: 10.1002/anie.202111492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/20/2021] [Indexed: 01/12/2023]
Abstract
A new structurally characterized ferrous corrole [FeII (ttppc)]- (1) binds one equivalent of dioxygen to form [FeIII (O2-. )(ttppc)]- (2). This complex exhibits a 16/18 O2 -isotope sensitive ν(O-O) stretch at 1128 cm-1 concomitantly with a single ν(Fe-O2 ) at 555 cm-1 , indicating it is an η1 -superoxo ("end-on") iron(III) complex. Complex 2 is the first well characterized Fe-O2 corrole, and mediates the following biologically relevant oxidation reactions: dioxygenation of an indole derivative, and H-atom abstraction from an activated O-H bond.
Collapse
Affiliation(s)
- Jireh Joy D Sacramento
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239-3098, USA
| | - Maxime Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239-3098, USA
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| |
Collapse
|
23
|
Sacramento JJD, Albert T, Siegler M, Moënne‐Loccoz P, Goldberg DP. An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jireh Joy D. Sacramento
- Department of Chemistry The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University Portland OR 97239-3098 USA
| | - Maxime Siegler
- Department of Chemistry The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Pierre Moënne‐Loccoz
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University Portland OR 97239-3098 USA
| | - David P. Goldberg
- Department of Chemistry The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| |
Collapse
|
24
|
Zhang J, Lee YM, Seo MS, Kim Y, Lee E, Fukuzumi S, Nam W. Oxidative versus basic asynchronous hydrogen atom transfer reactions of Mn(III)-hydroxo and Mn(III)-aqua complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00741j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen atom transfer (HAT) of metal-oxygen intermediates such as metal-oxo, -hydroxo and -superoxo species have so far been studied extensively. However, HAT reactions of metal-aqua complexes have yet to be...
Collapse
|
25
|
A mixed-valent high spin (μ-hydroxo)dicobalt(II/III) complex and its end-on type dioxygen adduct: synthesis, geometric and electronic structure studies. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Shmelev MA, Voronina YK, Chekurova SS, Gogoleva NV, Ivanova TM, Lyamina OI, Fatyushina EV, Kiskin MA, Sidorov AA, Eremenko IL. Coordination of Hexahydro-1,3,5-trimethyl-1,3,5-triazine in Cadmium(II) and Cobalt(II) Carboxylate Complexes. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421080078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Mondal P, Ishigami I, Gérard EF, Lim C, Yeh SR, de Visser SP, Wijeratne GB. Proton-coupled electron transfer reactivities of electronically divergent heme superoxide intermediates: a kinetic, thermodynamic, and theoretical study. Chem Sci 2021; 12:8872-8883. [PMID: 34257888 PMCID: PMC8246096 DOI: 10.1039/d1sc01952j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Heme superoxides are one of the most versatile metallo-intermediates in biology, and they mediate a vast variety of oxidation and oxygenation reactions involving O2(g). Overall proton-coupled electron transfer (PCET) processes they facilitate may proceed via several different mechanistic pathways, attributes of which are not yet fully understood. Herein we present a detailed investigation into concerted PCET events of a series of geometrically similar, but electronically disparate synthetic heme superoxide mimics, where unprecedented, PCET feasibility-determining electronic effects of the heme center have been identified. These electronic factors firmly modulate both thermodynamic and kinetic parameters that are central to PCET, as supported by our experimental and theoretical observations. Consistently, the most electron-deficient superoxide adduct shows the strongest driving force for PCET, whereas the most electron-rich system remains unreactive. The pivotal role of these findings in understanding significant heme systems in biology, as well as in alternative energy applications is also discussed.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry, University of Alabama at Birmingham Birmingham AL 35205 USA
| | - Izumi Ishigami
- Department of Physiology and Biophysics, Albert Einstein College of Medicine The Bronx New York 10461 USA
| | - Emilie F Gérard
- Manchester Institute of Biotechnology, Department of Chemical Engineering and Analytical Science, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Chaeeun Lim
- Department of Chemistry, University of Alabama at Birmingham Birmingham AL 35205 USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine The Bronx New York 10461 USA
| | - Sam P de Visser
- Manchester Institute of Biotechnology, Department of Chemical Engineering and Analytical Science, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Gayan B Wijeratne
- Department of Chemistry, University of Alabama at Birmingham Birmingham AL 35205 USA
| |
Collapse
|
28
|
Pladzyk A, Kowalkowska-Zedler D, Ciborska A, Schnepf A, Dołęga A. Complexes of silanethiolate ligands: Synthesis, structure, properties and application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Gordon JB, McGale JP, Siegler MA, Goldberg DP. Proton-Coupled Electron-Transfer Reactivity Controls Iron versus Sulfur Oxidation in Nonheme Iron-Thiolate Complexes. Inorg Chem 2021; 60:6255-6265. [PMID: 33872005 DOI: 10.1021/acs.inorgchem.0c03779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction of the five-coordinate FeII(N4S) complexes, [FeII(iPr3TACN)(abtX)](OTf) (abt = aminobenzenethiolate, X = H, CF3), with a one-electron oxidant and an appropriate base leads to net H atom loss, generating new FeIII(iminobenzenethiolate) complexes that were characterized by single-crystal X-ray diffraction (XRD), as well as UV-vis, EPR, and Mössbauer spectroscopies. The spectroscopic data indicate that the iminobenzenethiolate complexes have S = 3/2 ground states. In the absence of a base, oxidation of the FeII(abt) complexes leads to disulfide formation instead of oxidation at the metal center. Bracketing studies with separated proton-coupled electron-transfer (PCET) reagents show that the FeII(aminobenzenethiolate) and FeIII(iminobenzenethiolate) forms are readily interconvertible by H+/e- transfer and provide a measure of the bond dissociation free energy (BDFE) for the coordinated N-H bond between 64 and 69 kcal mol-1. This work shows that coordination to the iron center causes a dramatic weakening of the N-H bond and that Fe- versus S-oxidation in a nonheme iron complex can be controlled by the protonation state of an ancillary amino donor.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jeremy P McGale
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
30
|
Müller L, Hoof S, Keck M, Herwig C, Limberg C. Enhancing Tris(pyrazolyl)borate-Based Models of Cysteine/Cysteamine Dioxygenases through Steric Effects: Increased Reactivities, Full Product Characterization and Hints to Initial Superoxide Formation. Chemistry 2020; 26:11851-11861. [PMID: 32432367 PMCID: PMC7540079 DOI: 10.1002/chem.202001818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 02/03/2023]
Abstract
The design of biomimetic model complexes for the cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO) is reported, where the 3-His coordination of the iron ion is simulated by three pyrazole donors of a trispyrazolyl borate ligand (Tp) and protected cysteine and cysteamine represent substrate ligands. It is found that the replacement of phenyl groups-attached at the 3-positions of the pyrazole units in a previous model-by mesityl residues has massive consequences, as the latter arrange to a more spacious reaction pocket. Thus, the reaction with O2 proceeds much faster and afterwards the first structural characterization of an iron(II) η2 -O,O-sulfinate product became possible. If one of the three Tp-mesityl groups is placed in the 5-position, an even larger reaction pocket results, which leads to yet faster rates and accumulation of a reaction intermediate at low temperatures, as shown by UV/Vis and Mössbauer spectroscopy. After comparison with the results of investigations on the cobalt analogues this intermediate is tentatively assigned to an iron(III) superoxide species.
Collapse
Affiliation(s)
- Lars Müller
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Santina Hoof
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Matthias Keck
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Christian Herwig
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Christian Limberg
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
31
|
Deng Z, Wu P, Cai Y, Sui Y, Chen Z, Zhang H, Wang B, Xia H. Dioxygen Activation by Internally Aromatic Metallacycle: Crystallographic Structure and Mechanistic Investigations. iScience 2020; 23:101379. [PMID: 32739835 PMCID: PMC7399181 DOI: 10.1016/j.isci.2020.101379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/14/2020] [Accepted: 07/14/2020] [Indexed: 11/19/2022] Open
Abstract
Mononuclear metal-peroxo species are invoked as the key intermediates in metalloenzymatic or synthetic catalysis. However, either transience or sluggishness reactivity of synthetic analogs of metal-peroxo species impedes our understanding of oxygen activation mechanism. Herein, we designed and characterized a dioxygen-derived mononuclear osmium-peroxo complex, in which the peroxo ligand is stabilized by internally aromatic metallacycle. We demonstrate that the osmium-peroxo species shows catalytic activity toward promoterless alcohol dehydrogenations. Furthermore, computational studies provide a new mechanism for the osmium-peroxo-mediated alcohol oxidation, starting with the concerted double-hydrogen transfer and followed by the generation of osmium-oxo species. Interestingly, the internally aromatic metallacycle also plays a vital role in catalysis, which mediates the hydrogen transfer from osmium center to the distal oxygen atom of Os–OOH moiety, thus facilitating the Os–OOH→Os=O conversion. We expect that these insights will advance the development of aromatic metallacycle toward aerobic oxidation catalysis. A dioxygen-derived mononuclear osmium-peroxo complex was characterized The peroxo ligand is stabilized by internally aromatic metallacycle O2 activation involves the reversible aromatization-dearomatization A concerted double-hydrogen transfer mechanism for alcohol dehydrogenation
Collapse
Affiliation(s)
- Zhihong Deng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peng Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yapeng Cai
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanheng Sui
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhixin Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binju Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Haiping Xia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
32
|
Wu YY, Hong JC, Tsai RF, Pan HR, Huang BH, Chiang YW, Lee GH, Cheng MJ, Hsu HF. Ligand-Based Reactivity of Oxygenation and Alkylation in Cobalt Complexes Binding with (Thiolato)phosphine Derivatives. Inorg Chem 2020; 59:4650-4660. [PMID: 32186861 DOI: 10.1021/acs.inorgchem.9b03740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In our efforts to understand the nature of metal thiolates, we have explored the chemistry of cobalt ion supported by (thiolato)phosphine ligand derivatives. Herein, we synthesized and characterized a square-planar CoII complex binding with a bidentate (thiolato)phosphine ligand, Co(PS1″)2 (1) ([PS1″]- = [P(Ph)2(C6H3-3-SiMe3-2-S)]-). The complex activates O2 to form a ligand-based oxygenation product, Co(OPS1″)2 (2) ([OPS1″]- = [PO(Ph)2(C6H3-3-SiMe3-2-S)]-). In addition, an octahedral CoIII complex with a tridentate bis(thiolato)phosphine ligand, [NEt4][Co(PS2*)2] (3) ([PS2*]2- = [P(Ph)(C6H3-3-Ph-2-S)2]2-), was obtained. Compound 3 cleaves the C-Cl bond in dichloromethane via an S-based nucleophilic attack to generate a chloromethyl thioether group. Two isomeric products, [Co(PS2*)(PSSCH2Cl*)] (4 and 4') ([PSSCH2Cl*]- = [P(Ph)(C6H3-3-Ph-2-S)(C6H3-3-Ph-2-SCH2Cl)]-), were isolated and fully characterized. Both transformations, oxygenation of a CoII-bound phosphine donor in 1 and alkylation of a CoIII-bound thiolate in 3, were monitored by spectroscopic methods. These reaction products were isolated and fully characterized. Density functional theory (DFT, the B3LYP functional) calculations were performed to understand the electronic structure of 1 as well as the pathway of its transformation to 2.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jia-Cheng Hong
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ruei-Fong Tsai
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hung-Ruei Pan
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Bo-Hua Huang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hua-Fen Hsu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
33
|
Kim H, Rogler PJ, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Heme-Fe III Superoxide, Peroxide and Hydroperoxide Thermodynamic Relationships: Fe III-O 2•- Complex H-Atom Abstraction Reactivity. J Am Chem Soc 2020; 142:3104-3116. [PMID: 31913628 PMCID: PMC7034651 DOI: 10.1021/jacs.9b12571] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Establishing redox and thermodynamic relationships between metal-ion-bound O2 and its reduced (and protonated) derivatives is critically important for a full understanding of (bio)chemical processes involving dioxygen processing. Here, a ferric heme peroxide complex, [(F8)FeIII-(O22-)]- (P) (F8 = tetrakis(2,6-difluorophenyl)porphyrinate), and a superoxide complex, [(F8)FeIII-(O2•-)] (S), are shown to be redox interconvertible. Using Cr(η-C6H6)2, an equilibrium state where S and P are present is established in tetrahydrofuran (THF) at -80 °C, allowing determination of the reduction potential of S as -1.17 V vs Fc+/0. P could be protonated with 2,6-lutidinium triflate, yielding the low-spin ferric hydroperoxide species, [(F8)FeIII-(OOH)] (HP). Partial conversion of HP back to P using a derivatized phosphazene base gave a P/HP equilibrium mixture, leading to the determination of pKa = 28.8 for HP (THF, -80 °C). With the measured reduction potential and pKa, the O-H bond dissociation free energy (BDFE) of hydroperoxide species HP was calculated to be 73.5 kcal/mol, employing the thermodynamic square scheme and Bordwell relationship. This calculated O-H BDFE of HP, in fact, lines up with an experimental demonstration of the oxidizing ability of S via hydrogen atom transfer (HAT) from TEMPO-H (2,2,6,6-tetramethylpiperdine-N-hydroxide, BDFE = 66.5 kcal/mol in THF), forming the hydroperoxide species HP and TEMPO radical. Kinetic studies carried out with TEMPO-H(D) reveal second-order behavior, kH = 0.5, kD = 0.08 M-1 s-1 (THF, -80 °C); thus, the hydrogen/deuterium kinetic isotope effect (KIE) = 6, consistent with H-atom abstraction by S being the rate-determining step. This appears to be the first case where experimentally derived thermodynamics lead to a ferric heme hydroperoxide OO-H BDFE determination, that FeIII-OOH species being formed via HAT reactivity of the partner ferric heme superoxide complex.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Patrick J Rogler
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Savita K Sharma
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Andrew W Schaefer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Kenneth D Karlin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
34
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
35
|
Devi T, Lee YM, Nam W, Fukuzumi S. Tuning Electron-Transfer Reactivity of a Chromium(III)–Superoxo Complex Enabled by Calcium Ion and Other Redox-Inactive Metal Ions. J Am Chem Soc 2019; 142:365-372. [DOI: 10.1021/jacs.9b11014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
36
|
Gordon JB, Vilbert AC, DiMucci IM, MacMillan SN, Lancaster KM, Moënne-Loccoz P, Goldberg DP. Activation of Dioxygen by a Mononuclear Nonheme Iron Complex: Sequential Peroxo, Oxo, and Hydroxo Intermediates. J Am Chem Soc 2019; 141:17533-17547. [PMID: 31647656 DOI: 10.1021/jacs.9b05274] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The activation of dioxygen by FeII(Me3TACN)(S2SiMe2) (1) is reported. Reaction of 1 with O2 at -135 °C in 2-MeTHF generates a thiolate-ligated (peroxo)diiron complex FeIII2(O2)(Me3TACN)2(S2SiMe2)2 (2) that was characterized by UV-vis (λmax = 300, 390, 530, 723 nm), Mössbauer (δ = 0.53, |ΔEQ| = 0.76 mm s-1), resonance Raman (RR) (ν(O-O) = 849 cm-1), and X-ray absorption (XAS) spectroscopies. Complex 2 is distinct from the outer-sphere oxidation product 1ox (UV-vis (λmax = 435, 520, 600 nm), Mössbauer (δ = 0.45, |ΔEQ| = 3.6 mm s-1), and EPR (S = 5/2, g = [6.38, 5.53, 1.99])), obtained by one-electron oxidation of 1. Cleavage of the peroxo O-O bond can be initiated either photochemically or thermally to produce a new species assigned as an FeIV(O) complex, FeIV(O)(Me3TACN)(S2SiMe2) (3), which was identified by UV-vis (λmax = 385, 460, 890 nm), Mössbauer (δ = 0.21, |ΔEQ| = 1.57 mm s-1), RR (ν(FeIV═O) = 735 cm-1), and X-ray absorption spectroscopies, as well as reactivity patterns. Reaction of 3 at low temperature with H atom donors gives a new species, FeIII(OH)(Me3TACN)(S2SiMe2) (4). Complex 4 was independently synthesized from 1 by the stoichiometric addition of a one-electron oxidant and a hydroxide source. This work provides a rare example of dioxygen activation at a mononuclear nonheme iron(II) complex that produces both FeIII-O-O-FeIII and FeIV(O) species in the same reaction with O2. It also demonstrates the feasibility of forming Fe/O2 intermediates with strongly donating sulfur ligands while avoiding immediate sulfur oxidation.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Avery C Vilbert
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
37
|
Kumar P, Lindeman SV, Fiedler AT. Cobalt Superoxo and Alkylperoxo Complexes Derived from Reaction of Ring-Cleaving Dioxygenase Models with O 2. J Am Chem Soc 2019; 141:10984-10987. [PMID: 31251607 DOI: 10.1021/jacs.9b05320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The syntheses and O2 reactivities of active-site models of cobalt-substituted ring-cleaving dioxygenases are presented. The pentacoordinate cobalt(II)-aminophenolate complex, [Co(TpMe2)(tBu2APH)], gives rise to two distinct dioxygen adducts at reduced temperatures. The first is a paramagnetic (S = 1/2) cobalt(III)-superoxo species that was characterized with spectroscopic and computational techniques. The identity of the second Co/O2 adduct was elucidated by X-ray crystallography, which revealed an unprecedented cobalt(III)-alkylperoxo structure generated by O2 addition to the metal ion and ligand. These results provide synthetic precedents for proposed intermediates in the catalytic cycles of O2-activating cobalt enzymes.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry , Marquette University , 1414 W. Clybourn Street , Milwaukee , Wisconsin 53233 , United States
| | - Sergey V Lindeman
- Department of Chemistry , Marquette University , 1414 W. Clybourn Street , Milwaukee , Wisconsin 53233 , United States
| | - Adam T Fiedler
- Department of Chemistry , Marquette University , 1414 W. Clybourn Street , Milwaukee , Wisconsin 53233 , United States
| |
Collapse
|
38
|
Yadav V, Gordon JB, Siegler MA, Goldberg DP. Dioxygen-Derived Nonheme Mononuclear Fe III(OH) Complex and Its Reactivity with Carbon Radicals. J Am Chem Soc 2019; 141:10148-10153. [PMID: 31244183 DOI: 10.1021/jacs.9b03329] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new tetradentate, monoanionic, mixed N/O donor ligand (BNPAPh2O-) with second coordination sphere H-bonding groups has been synthesized for stabilization of a terminal FeIII(OH) complex. The complex FeII(BNPAPh2O)(OTf) (1) reacts with O2 to give a mononuclear terminal FeIII(OH) complex, FeIII(OH)(BNPAPh2O)(OTf) (2), both of which were characterized by X-ray diffraction, electrospray ionization mass spectrometry, UV-vis, 1H and 19F nuclear magnetic resonance, 57Fe Mössbauer, and electron paramagnetic resonance spectroscopies. Treatment of 2 with carbon radicals (Ar3C·) gives Ar3COH and the FeII complex 1, in direct analogy with the elusive radical "rebound" process proposed for nonheme iron enzymes.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Jesse B Gordon
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
39
|
Fukuzumi S, Lee YM, Nam W. Structure and reactivity of the first-row d-block metal-superoxo complexes. Dalton Trans 2019; 48:9469-9489. [DOI: 10.1039/c9dt01402k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the structure and reactivity of metal-superoxo complexes covering all ten first-row d-block metals from Sc to Zn.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Technology
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Research Institute for Basic Sciences
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|