1
|
Zhu Y, Chaubey B, Olsen GL, Varani G. Structure of Essential RNA Regulatory Elements in the West Nile Virus 3'-Terminal Stem Loop. J Mol Biol 2024; 436:168767. [PMID: 39214284 PMCID: PMC11563921 DOI: 10.1016/j.jmb.2024.168767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Flaviviruses, such as West Nile and Dengue Virus, pose a significant and growing threat to global health. Central to the flavivirus life cycle are highly structured 5'- and 3'-untranslated regions (UTRs), which harbor conserved cis-acting RNA elements critical for viral replication and host adaptation. Despite their essential roles, detailed molecular insights into these RNA elements have been limited. By employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with SAXS experiments, we determined the three-dimensional structure of the West Nile Virus (WNV) 3'-terminal stem-loop core, a highly conserved element critical for viral genome cyclization and replication. Single nucleotide mutations at several sites within this RNA abolish the ability of the virus to replicate. These critical sites are located within a short 18-nucleotide hairpin stem, a substructure notable for its conformational flexibility, while the adjoining main stem-loop adopts a well-defined extended helix interrupted by three non-Watson-Crick pairs. This study enhances our understanding of several metastable RNA structures that play key roles in regulating the flavivirus lifecycle, and thereby also opens up potential new avenues for the development of antivirals targeting these conserved RNA structures. In particular, the structure we observe suggests that the plastic junction between the small hairpin and the tail of the longer stem-loop could provide a binding pocket for small molecules, for example potentially stabilizing the RNA in a conformation which hinders the conformational rearrangements critical for viral replication.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Bhawna Chaubey
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gregory L Olsen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Tong Y, Childs-Disney JL, Disney MD. Targeting RNA with small molecules, from RNA structures to precision medicines: IUPHAR review: 40. Br J Pharmacol 2024; 181:4152-4173. [PMID: 39224931 DOI: 10.1111/bph.17308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
RNA plays important roles in regulating both health and disease biology in all kingdoms of life. Notably, RNA can form intricate three-dimensional structures, and their biological functions are dependent on these structures. Targeting the structured regions of RNA with small molecules has gained increasing attention over the past decade, because it provides both chemical probes to study fundamental biology processes and lead medicines for diseases with unmet medical needs. Recent advances in RNA structure prediction and determination and RNA biology have accelerated the rational design and development of RNA-targeted small molecules to modulate disease pathology. However, challenges remain in advancing RNA-targeted small molecules towards clinical applications. This review summarizes strategies to study RNA structures, to identify small molecules recognizing these structures, and to augment the functionality of RNA-binding small molecules. We focus on recent advances in developing RNA-targeted small molecules as potential therapeutics in a variety of diseases, encompassing different modes of actions and targeting strategies. Furthermore, we present the current gaps between early-stage discovery of RNA-binding small molecules and their clinical applications, as well as a roadmap to overcome these challenges in the near future.
Collapse
Affiliation(s)
- Yuquan Tong
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
3
|
Qi Q, Liu X, Xiong W, Zhang K, Shen W, Zhang Y, Xu X, Zhong C, Zhang Y, Tian T, Zhou X. Reducing CRISPR-Cas9 off-target effects by optically controlled chemical modifications of guide RNA. Cell Chem Biol 2024; 31:1839-1851.e8. [PMID: 39383877 DOI: 10.1016/j.chembiol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024]
Abstract
A photocatalytic click chemistry approach, offering a significant advancement over conventional methods in RNA function modulation is described. This innovative method, utilizing light-activated small molecules, provides a high level of precision and control in RNA regulation, particularly effective in intricate cellular processes. By applying this strategy to CRISPR-Cas9 gene editing, we demonstrate its effectiveness in enhancing gene editing specificity and markedly reducing off-target effects. Our approach employs a vinyl ether modification in RNA, which activated under visible light with a phenanthrenequinone derivative, creating a CRISPR-OFF switch that precisely regulates CRISPR system activity. This method not only represents an advancement in genomic interventions but also offers broad applications in gene regulation, paving the way for safer and more reliable gene editing in therapeutic genomics.
Collapse
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Kaisong Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuanyuan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xinyan Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Cheng Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China.
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
4
|
Somrit K, Krobthong S, Yingchutrakul Y, Phueakphud N, Wongtrakoongate P, Komyod W. KHDRBS3 facilitates self-renewal and temozolomide resistance of glioblastoma cell lines. Life Sci 2024; 358:123132. [PMID: 39413902 DOI: 10.1016/j.lfs.2024.123132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/22/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Glioblastoma is a deadly tumor which possesses glioblastoma stem cell populations involved in temozolomide (TMZ) resistance. To gain insight into the mechanisms of self-renewing and therapy-resistant cancer stem cells, subcellular proteomics was utilized to identify proteins whose expression is enriched in U251-derived glioblastoma stem-like cells. The KH RNA Binding Domain Containing, Signal Transduction Associated 3, KHDRBS3, was successfully identified as a gene up-regulated in the cancer stem cell population compared with its differentiated derivatives. Depletion of KHDRBS3 by RNA silencing led to a decrease in cell proliferation, neurosphere formation, migration, and expression of genes involved in glioblastoma stemness. Importantly, TMZ sensitivity can be induced by the gene knockdown. Collectively, our results highlight KHDRBS3 as a novel factor associated with self-renewal of glioblastoma stem-like cells and TMZ resistance. As a consequence, targeting KHDRBS3 may help eradicate glioblastoma stem-like cells.
Collapse
Affiliation(s)
- Kanokkuan Somrit
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Waraporn Komyod
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
5
|
Tong Y, Zanon PRA, Yang X, Su X, Childs-Disney JL, Disney MD. Protocol for transcriptome-wide mapping of small-molecule RNA-binding sites in live cells. STAR Protoc 2024; 5:103271. [PMID: 39167492 PMCID: PMC11381869 DOI: 10.1016/j.xpro.2024.103271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Small molecules targeting RNA can be valuable chemical probes and potential therapeutics. The interactions between small molecules, particularly fragments, and RNA, however, can be difficult to detect due to their modest affinities and short residence times. Here, we present a protocol for mapping the molecular fingerprints of small molecules in vitro and throughout the human transcriptome in live cells. We describe steps for compound treatment, cross-linking, RNA extraction, fragmentation, and pull-down. We then detail procedures for RNA sequencing and data analysis. For complete details on the use and execution of this protocol, please refer to Tong et al.1.
Collapse
Affiliation(s)
- Yuquan Tong
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA; The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Patrick R A Zanon
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Xueyi Yang
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA; The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Xiaoxuan Su
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA; The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jessica L Childs-Disney
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA; The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
6
|
Moon MH, Vock IW, Streit AD, Connor LJ, Senkina J, Ellman JA, Simon MD. Disulfide Tethering to Map Small Molecule Binding Sites Transcriptome-wide. ACS Chem Biol 2024; 19:2081-2086. [PMID: 39192734 DOI: 10.1021/acschembio.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We report the development of Tether-seq, a transcriptome-wide screen to probe RNA-small molecule interactions using disulfide tethering. This technique uses s4U metabolic labeling to provide sites for reversible and covalent attachment of small molecule disulfides to the transcriptome. By screening under reducing conditions, we identify interactions that are stabilized by binding over those driven by the reactivity of the RNA sites. When applied to cellular RNA, Tether-seq with a disulfide analogue of risdiplam, an FDA-approved drug that targets RNA to treat spinal muscular atrophy (SMA), revealed a number of potential binding sites, most prominently at a site within the cytochrome C oxidase 1 (COX1) transcript. Structure probing by SHAPE-MaP revealed a structured motif and confirmed binding to the lead molecule. This work demonstrates that these screens have the power to identify binding sites throughout the transcriptome and provide invaluable insight into the thermodynamic properties that define small molecule binding.
Collapse
Affiliation(s)
- Michelle H Moon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design & Discovery, Yale University, New Haven, Connecticut 06511, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Isaac W Vock
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design & Discovery, Yale University, New Haven, Connecticut 06511, United States
| | - Andrew D Streit
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Leah J Connor
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design & Discovery, Yale University, New Haven, Connecticut 06511, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Julia Senkina
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design & Discovery, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
7
|
Heel SV, Breuker K. Investigating the Intramolecular Competition of Different RNA Binding Motifs for Neomycin B by Native Top-Down Mass Spectrometry. Chempluschem 2024; 89:e202400178. [PMID: 38758051 DOI: 10.1002/cplu.202400178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/13/2024] [Indexed: 05/18/2024]
Abstract
The ongoing search for small molecule drugs that target ribonucleic acids (RNA) is complicated by a limited understanding of the principles that govern RNA-small molecule interactions. Here we have used stoichiometry-resolved native top-down mass spectrometry (MS) to study the binding of neomycin B to small model hairpin RNAs, an unstructured RNA, and a viral RNA construct. For 15-22 nt model RNAs with hairpin structure, we found that neomycin B binding to hairpin loops relies on interactions with both the nucleobases and the 2'-OH groups, and that a simple 5' or 3' overhang can introduce an additional binding motif. For a 47 nt RNA construct derived from stem IA of the human immunodeficiency virus 1 (HIV-1) rev response element (RRE) RNA, native top-down MS identified four different binding motifs, of which the purine-rich internal loop showed the highest affinity for neomycin B. Stoichiometry-resolved binding site mapping by native top-down MS allows for a new perspective on binding specificity, and has the potential to reveal unexpected principles of small molecule binding to RNA.
Collapse
Affiliation(s)
- Sarah Viola Heel
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| |
Collapse
|
8
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
9
|
Panei FP, Gkeka P, Bonomi M. Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN. Nat Commun 2024; 15:5725. [PMID: 38977675 PMCID: PMC11231146 DOI: 10.1038/s41467-024-49638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
The rational targeting of RNA with small molecules is hampered by our still limited understanding of RNA structural and dynamic properties. Most in silico tools for binding site identification rely on static structures and therefore cannot face the challenges posed by the dynamic nature of RNA molecules. Here, we present SHAMAN, a computational technique to identify potential small-molecule binding sites in RNA structural ensembles. SHAMAN enables exploring the conformational landscape of RNA with atomistic molecular dynamics simulations and at the same time identifying RNA pockets in an efficient way with the aid of probes and enhanced-sampling techniques. In our benchmark composed of large, structured riboswitches as well as small, flexible viral RNAs, SHAMAN successfully identifies all the experimentally resolved pockets and ranks them among the most favorite probe hotspots. Overall, SHAMAN sets a solid foundation for future drug design efforts targeting RNA with small molecules, effectively addressing the long-standing challenges in the field.
Collapse
Affiliation(s)
- F P Panei
- Integrated Drug Discovery, Molecular Design Sciences, Sanofi, Vitry-sur-Seine, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant, Paris, France
| | - P Gkeka
- Integrated Drug Discovery, Molecular Design Sciences, Sanofi, Vitry-sur-Seine, France.
| | - M Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France.
| |
Collapse
|
10
|
Verma SK, Witkin KL, Sharman A, Smith MA. Targeting fusion oncoproteins in childhood cancers: challenges and future opportunities for developing therapeutics. J Natl Cancer Inst 2024; 116:1012-1018. [PMID: 38574391 PMCID: PMC11223828 DOI: 10.1093/jnci/djae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024] Open
Abstract
Fusion oncoproteins are associated with childhood cancers and have proven challenging to target, aside from those that include kinases. As part of its efforts for targeting childhood cancers, the National Cancer Institute recently conducted a series on Novel Chemical Approaches for Targeting Fusion Oncoproteins. Key learnings on leading platforms and technologies that can be used to advance the development of molecular therapeutics that target fusion oncoproteins in childhood cancers are described. Recent breakthroughs in medicinal chemistry and chemical biology provide new ground and creative strategies to exploit for the development of targeted agents for improving outcomes against these recalcitrant cancers.
Collapse
Affiliation(s)
- Sharad K Verma
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keren L Witkin
- Division of Cancer Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anu Sharman
- Division of Cancer Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Smith
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Cabané P, Correa C, Bode I, Aguilar R, Elorza AA. Biomarkers in Thyroid Cancer: Emerging Opportunities from Non-Coding RNAs and Mitochondrial Space. Int J Mol Sci 2024; 25:6719. [PMID: 38928426 PMCID: PMC11204084 DOI: 10.3390/ijms25126719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Thyroid cancer diagnosis primarily relies on imaging techniques and cytological analyses. In cases where the diagnosis is uncertain, the quantification of molecular markers has been incorporated after cytological examination. This approach helps physicians to make surgical decisions, estimate cancer aggressiveness, and monitor the response to treatments. Despite the availability of commercial molecular tests, their widespread use has been hindered in our experience due to cost constraints and variability between them. Thus, numerous groups are currently evaluating new molecular markers that ultimately will lead to improved diagnostic certainty, as well as better classification of prognosis and recurrence. In this review, we start reviewing the current preoperative testing methodologies, followed by a comprehensive review of emerging molecular markers. We focus on micro RNAs, long non-coding RNAs, and mitochondrial (mt) signatures, including mtDNA genes and circulating cell-free mtDNA. We envision that a robust set of molecular markers will complement the national and international clinical guides for proper assessment of the disease.
Collapse
Affiliation(s)
- Patricio Cabané
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Correa
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
| | - Ignacio Bode
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| |
Collapse
|
12
|
Prestwood PR, Yang M, Lewis GV, Balaratnam S, Yazdani K, Schneekloth JS. Competitive Microarray Screening Reveals Functional Ligands for the DHX15 RNA G-Quadruplex. ACS Med Chem Lett 2024; 15:814-821. [PMID: 38894923 PMCID: PMC11181508 DOI: 10.1021/acsmedchemlett.3c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 06/21/2024] Open
Abstract
RNAs are increasingly considered valuable therapeutic targets, and the development of methods to identify and validate both RNA targets and ligands is more important than ever. Here, we utilized a bioinformatic approach to identify a hairpin-containing RNA G-quadruplex (rG4) in the 5' untranslated region (5' UTR) of DHX15 mRNA. By using a novel competitive small molecule microarray (SMM) approach, we identified a compound that specifically binds to the DHX15 rG4 (K D = 12.6 ± 1.0 μM). This rG4 directly impacts translation of a DHX15 reporter mRNA in vitro, and binding of our compound (F1) to the structure inhibits translation up to 57% (IC50 = 22.9 ± 3.8 μM). This methodology allowed us to identify and target the mRNA of a cancer-relevant helicase with no known inhibitors. Our target identification method and the novelty of our screening approach make our work informative for future development of novel small molecule cancer therapeutics for RNA targets.
Collapse
Affiliation(s)
- Peri R. Prestwood
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Mo Yang
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Grace V. Lewis
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Sumirtha Balaratnam
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Kamyar Yazdani
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - John S. Schneekloth
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
13
|
Tong Y, Zanon PRA, Yang X, Su X, Childs-Disney JL, Disney MD. Transcriptome-wide mapping of small-molecule RNA-binding sites in live cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596700. [PMID: 38853865 PMCID: PMC11160777 DOI: 10.1101/2024.05.30.596700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Small molecules targeting RNA can be valuable chemical probes and potential therapeutics. The interactions between small molecules, particularly fragments, and RNA, however, can be difficult to detect due to their modest affinities and short residence times. Here, we describe the procedures for mapping the molecular fingerprints of small molecules in vitro and throughout the human transcriptome in live cells, identifying both the targets bound by the small molecule and the sites of binding therein. For complete details on the use and execution of this protocol, please refer to 1.
Collapse
|
14
|
Saw PE, Song E. Advancements in clinical RNA therapeutics: Present developments and prospective outlooks. Cell Rep Med 2024; 5:101555. [PMID: 38744276 PMCID: PMC11148805 DOI: 10.1016/j.xcrm.2024.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
RNA molecules have emerged as promising clinical therapeutics due to their ability to target "undruggable" proteins or molecules with high precision and minimal side effects. Nevertheless, the primary challenge in RNA therapeutics lies in rapid degradation and clearance from systemic circulation, the inability to traverse cell membranes, and the efficient intracellular delivery of bioactive RNA molecules. In this review, we explore the implications of RNAs in diseases and provide a chronological overview of the development of RNA therapeutics. Additionally, we summarize the technological advances in RNA-screening design, encompassing various RNA databases and design platforms. The paper then presents an update on FDA-approved RNA therapeutics and those currently undergoing clinical trials for various diseases, with a specific emphasis on RNA medicine and RNA vaccines.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan 528200, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
15
|
Nagasawa R, Onizuka K, Komatsu KR, Miyashita E, Murase H, Ojima K, Ishikawa S, Ozawa M, Saito H, Nagatsugi F. Large-scale analysis of small molecule-RNA interactions using multiplexed RNA structure libraries. Commun Chem 2024; 7:98. [PMID: 38693284 DOI: 10.1038/s42004-024-01181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The large-scale analysis of small-molecule binding to diverse RNA structures is key to understanding the required interaction properties and selectivity for developing RNA-binding molecules toward RNA-targeted therapies. Here, we report a new system for performing the large-scale analysis of small molecule-RNA interactions using a multiplexed pull-down assay with RNA structure libraries. The system profiled the RNA-binding landscapes of G-clamp and thiazole orange derivatives, which recognizes an unpaired guanine base and are good probes for fluorescent indicator displacement (FID) assays, respectively. We discuss the binding preferences of these molecules based on their large-scale affinity profiles. In addition, we selected combinations of fluorescent indicators and different ranks of RNA based on the information and screened for RNA-binding molecules using FID. RNAs with high- and intermediate-rank RNA provided reliable results. Our system provides fundamental information about small molecule-RNA interactions and facilitates the discovery of novel RNA-binding molecules.
Collapse
Affiliation(s)
- Ryosuke Nagasawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan.
- Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Miyagi, 980-8577, Japan.
| | - Kaoru R Komatsu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Emi Miyashita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Hirotaka Murase
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
| | - Kanna Ojima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan
| | - Shunya Ishikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan
| | - Mamiko Ozawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
| | - Hirohide Saito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan.
| |
Collapse
|
16
|
Liu Y, Goebel GL, Kanis L, Hastürk O, Kemker C, Wu P. Aminothiazolone Inhibitors Disrupt the Protein-RNA Interaction of METTL16 and Modulate the m 6A RNA Modification. JACS AU 2024; 4:1436-1449. [PMID: 38665670 PMCID: PMC11040665 DOI: 10.1021/jacsau.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Targeting RNA-binding and modifying proteins via small molecules to modulate post-transcriptional modifications have emerged as a new frontier for chemical biology and therapeutic research. One such RNA-binding protein that regulates the most prevalent eukaryotic RNA modification, N6-methyladenosine (m6A), is the methyltransferase-like protein 16 (METTL16), which plays an oncogenic role in cancers by cofunctioning with other nucleic acid-binding proteins. To date, no potent small-molecule inhibitor of METTL16 or modulator interfering with the METTL16-RNA interaction has been reported and validated, highlighting the unmet need to develop such small molecules to investigate the METTL16-involved regulatory network. Herein, we described the identification of a series of first-in-class aminothiazolone METTL16 inhibitors via a discovery pipeline that started with a fluorescence-polarization (FP)-based screening. Structural optimization of the initial hit yielded inhibitors, such as compound 45, that showed potent single-digit micromolar inhibition activity against the METTL16-RNA binding. The identified aminothiazolone inhibitors can be useful probes to elucidate the biological function of METTL16 upon perturbation and evaluate the therapeutic potential of METTL16 inhibition via small molecules at the post-transcriptional level.
Collapse
Affiliation(s)
- Yang Liu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Georg L. Goebel
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Laurin Kanis
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Oguz Hastürk
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Claus Kemker
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Peng Wu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| |
Collapse
|
17
|
Levintov L, Vashisth H. Adenine Methylation Enhances the Conformational Flexibility of an RNA Hairpin Tetraloop. J Phys Chem B 2024; 128:3157-3166. [PMID: 38535997 PMCID: PMC11000223 DOI: 10.1021/acs.jpcb.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The N6-methyladenosine modification is one of the most abundant post-transcriptional modifications in ribonucleic acid (RNA) molecules. Using molecular dynamics simulations and alchemical free-energy calculations, we studied the structural and energetic implications of incorporating this modification in an adenine mononucleotide and an RNA hairpin structure. At the mononucleotide level, we found that the syn configuration is more favorable than the anti configuration by 2.05 ± 0.15 kcal/mol. The unfavorable effect of methylation was due to the steric overlap between the methyl group and a nitrogen atom in the purine ring. We then probed the effect of methylation in an RNA hairpin structure containing an AUCG tetraloop, which is recognized by a "reader" protein (YTHDC1) to promote transcriptional silencing of long noncoding RNAs. While methylation had no significant conformational effect on the hairpin stem, the methylated tetraloop showed enhanced conformational flexibility compared to the unmethylated tetraloop. The increased flexibility was associated with the outward flipping of two bases (A6 and U7) which formed stacking interactions with each other and with the C8 and G9 bases in the tetraloop, leading to a conformation similar to that in the RNA/reader protein complex. Therefore, methylation-induced conformational flexibility likely facilitates RNA recognition by the reader protein.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering
and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Harish Vashisth
- Department of Chemical Engineering
and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
18
|
Kaur J, Sharma A, Mundlia P, Sood V, Pandey A, Singh G, Barnwal RP. RNA-Small-Molecule Interaction: Challenging the "Undruggable" Tag. J Med Chem 2024. [PMID: 38498010 DOI: 10.1021/acs.jmedchem.3c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
RNA targeting, specifically with small molecules, is a relatively new and rapidly emerging avenue with the promise to expand the target space in the drug discovery field. From being "disregarded" as an "undruggable" messenger molecule to FDA approval of an RNA-targeting small-molecule drug Risdiplam, a radical change in perspective toward RNA has been observed in the past decade. RNAs serve important regulatory functions beyond canonical protein synthesis, and their dysregulation has been reported in many diseases. A deeper understanding of RNA biology reveals that RNA molecules can adopt a variety of structures, carrying defined binding pockets that can accommodate small-molecule drugs. Due to its functional diversity and structural complexity, RNA can be perceived as a prospective target for therapeutic intervention. This perspective highlights the proof of concept of RNA-small-molecule interactions, exemplified by targeting of various transcripts with functional modulators. The advent of RNA-oriented knowledge would help expedite drug discovery.
Collapse
Affiliation(s)
- Jaskirat Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Poonam Mundlia
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
19
|
Weigert Muñoz A, Zhao W, Sieber SA. Monitoring host-pathogen interactions using chemical proteomics. RSC Chem Biol 2024; 5:73-89. [PMID: 38333198 PMCID: PMC10849124 DOI: 10.1039/d3cb00135k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 02/10/2024] Open
Abstract
With the rapid emergence and the dissemination of microbial resistance to conventional chemotherapy, the shortage of novel antimicrobial drugs has raised a global health threat. As molecular interactions between microbial pathogens and their mammalian hosts are crucial to establish virulence, pathogenicity, and infectivity, a detailed understanding of these interactions has the potential to reveal novel therapeutic targets and treatment strategies. Bidirectional molecular communication between microbes and eukaryotes is essential for both pathogenic and commensal organisms to colonise their host. In particular, several devastating pathogens exploit host signalling to adjust the expression of energetically costly virulent behaviours. Chemical proteomics has emerged as a powerful tool to interrogate the protein interaction partners of small molecules and has been successfully applied to advance host-pathogen communication studies. Here, we present recent significant progress made by this approach and provide a perspective for future studies.
Collapse
Affiliation(s)
- Angela Weigert Muñoz
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 D-85748 Garching Germany
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University Shenzhen 518118 China
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 D-85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Germany
| |
Collapse
|
20
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
21
|
Zhang L, Xiao K, Kong L. A computational method for small molecule-RNA binding sites identification by utilizing position specificity and complex network information. Biosystems 2024; 235:105094. [PMID: 38056591 DOI: 10.1016/j.biosystems.2023.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Some computational methods have been given for small molecule-RNA binding site identification due to that it plays a significant role in revealing biology function researches. However, it is still challenging to design an accurate model, especially for MCC. We designed a feature extraction technology from two aspects (position specificity and complex network information). Specifically, complex network was employed to express the space topological structure and sequence position information for improving prediction effect. Then, the features fused position specificity and complex network information were input into random forest classifier for model construction. The AUC of 88.22%, 77.92% and 81.46% were obtained on three independent datasets (RB19, CS71, RB78). Compared with the existing method, the best MCC were obtained on three datasets, which were 8.19%, 0.59% and 4.35% higher than the state-of-the-art prediction methods, respectively. The outstanding performances show that our method is a powerful tool to identify RNA binding sites, helping to the design RNA-targeting small molecule drugs. The data and resource codes are available at https://github.com/Kangxiaoneuq/PCN_RNAsite.
Collapse
Affiliation(s)
- Lichao Zhang
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, 066000, PR China; Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, 066000, PR China.
| | - Kang Xiao
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, 066000, PR China.
| | - Liang Kong
- Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, 066000, PR China; School of Mathematics and Information Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066000, PR China.
| |
Collapse
|
22
|
Liu H, Jian Y, Hou J, Zeng C, Zhao Y. RNet: a network strategy to predict RNA binding preferences. Brief Bioinform 2023; 25:bbad482. [PMID: 38145947 PMCID: PMC10749790 DOI: 10.1093/bib/bbad482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
Determining the RNA binding preferences remains challenging because of the bottleneck of the binding interactions accompanied by subtle RNA flexibility. Typically, designing RNA inhibitors involves screening thousands of potential candidates for binding. Accurate binding site information can increase the number of successful hits even with few candidates. There are two main issues regarding RNA binding preference: binding site prediction and binding dynamical behavior prediction. Here, we propose one interpretable network-based approach, RNet, to acquire precise binding site and binding dynamical behavior information. RNetsite employs a machine learning-based network decomposition algorithm to predict RNA binding sites by analyzing the local and global network properties. Our research focuses on large RNAs with 3D structures without considering smaller regulatory RNAs, which are too small and dynamic. Our study shows that RNetsite outperforms existing methods, achieving precision values as high as 0.701 on TE18 and 0.788 on RB9 tests. In addition, RNetsite demonstrates remarkable robustness regarding perturbations in RNA structures. We also developed RNetdyn, a distance-based dynamical graph algorithm, to characterize the interface dynamical behavior consequences upon inhibitor binding. The simulation testing of competitive inhibitors indicates that RNetdyn outperforms the traditional method by 30%. The benchmark testing results demonstrate that RNet is highly accurate and robust. Our interpretable network algorithms can assist in predicting RNA binding preferences and accelerating RNA inhibitor design, providing valuable insights to the RNA research community.
Collapse
Affiliation(s)
- Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Yiren Jian
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Jinxuan Hou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
23
|
Meyer SM, Tanaka T, Taghavi A, Baisden JT, Grefe M, Disney MD. Optimization of a Protein-Targeted Medicine into an RNA-Specific Small Molecule. ACS Chem Biol 2023; 18:2336-2342. [PMID: 37870980 PMCID: PMC10825933 DOI: 10.1021/acschembio.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein-targeted small molecule medicines often bind RNAs and affect RNA-mediated pathways in cells. Historically, small molecule engagement and modulation of RNA have not been considered in medicine development; however, RNA should be considered both a potential on- and off-target. Kinase inhibitors have emecrged as common RNA binders with dovitinib, a classic receptor tyrosine kinase (RTK) inhibitor, inhibiting RTKs and the biogenesis of oncogenic microRNA-21 through direct engagement. In this study, we use knowledge of the molecular recognition of both protein and RNA targets by dovitinib to design molecules that specifically inhibit the RNA target but lack activity against canonical protein targets in cells. As it is now becoming apparent that RNA can be both an on- and off-target for small molecule medicines, this study lays a foundation to use design principles to maximize desired compound activity while minimizing off-target effects.
Collapse
Affiliation(s)
- Samantha M. Meyer
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology and The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Toru Tanaka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology and The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Amirhossein Taghavi
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology and The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Jared T. Baisden
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology and The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Maison Grefe
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology and The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Matthew D. Disney
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology and The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| |
Collapse
|
24
|
Fang L, Velema WA, Lee Y, Xiao L, Mohsen MG, Kietrys AM, Kool ET. Pervasive transcriptome interactions of protein-targeted drugs. Nat Chem 2023; 15:1374-1383. [PMID: 37653232 DOI: 10.1038/s41557-023-01309-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/27/2023] [Indexed: 09/02/2023]
Abstract
The off-target toxicity of drugs targeted to proteins imparts substantial health and economic costs. Proteome interaction studies can reveal off-target effects with unintended proteins; however, little attention has been paid to intracellular RNAs as potential off-targets that may contribute to toxicity. To begin to assess this, we developed a reactivity-based RNA profiling methodology and applied it to uncover transcriptome interactions of a set of Food and Drug Administration-approved small-molecule drugs in vivo. We show that these protein-targeted drugs pervasively interact with the human transcriptome and can exert unintended biological effects on RNA functions. In addition, we show that many off-target interactions occur at RNA loci associated with protein binding and structural changes, allowing us to generate hypotheses to infer the biological consequences of RNA off-target binding. The results suggest that rigorous characterization of drugs' transcriptome interactions may help assess target specificity and potentially avoid toxicity and clinical failures.
Collapse
Affiliation(s)
- Linglan Fang
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Willem A Velema
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Yujeong Lee
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Lu Xiao
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Anna M Kietrys
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
25
|
Sun J, Xu M, Ru J, James-Bott A, Xiong D, Wang X, Cribbs AP. Small molecule-mediated targeting of microRNAs for drug discovery: Experiments, computational techniques, and disease implications. Eur J Med Chem 2023; 257:115500. [PMID: 37262996 PMCID: PMC11554572 DOI: 10.1016/j.ejmech.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Small molecules have been providing medical breakthroughs for human diseases for more than a century. Recently, identifying small molecule inhibitors that target microRNAs (miRNAs) has gained importance, despite the challenges posed by labour-intensive screening experiments and the significant efforts required for medicinal chemistry optimization. Numerous experimentally-verified cases have demonstrated the potential of miRNA-targeted small molecule inhibitors for disease treatment. This new approach is grounded in their posttranscriptional regulation of the expression of disease-associated genes. Reversing dysregulated gene expression using this mechanism may help control dysfunctional pathways. Furthermore, the ongoing improvement of algorithms has allowed for the integration of computational strategies built on top of laboratory-based data, facilitating a more precise and rational design and discovery of lead compounds. To complement the use of extensive pharmacogenomics data in prioritising potential drugs, our previous work introduced a computational approach based on only molecular sequences. Moreover, various computational tools for predicting molecular interactions in biological networks using similarity-based inference techniques have been accumulated in established studies. However, there are a limited number of comprehensive reviews covering both computational and experimental drug discovery processes. In this review, we outline a cohesive overview of both biological and computational applications in miRNA-targeted drug discovery, along with their disease implications and clinical significance. Finally, utilizing drug-target interaction (DTIs) data from DrugBank, we showcase the effectiveness of deep learning for obtaining the physicochemical characterization of DTIs.
Collapse
Affiliation(s)
- Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Miaoer Xu
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Jinlong Ru
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| | - Anna James-Bott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
26
|
Borgelt L, Huang F, Hohnen L, Qiu X, Goebel GL, Hommen P, Wu P. Spirocyclic Chromenopyrazole Inhibitors Disrupting the Interaction between the RNA-Binding Protein LIN28 and Let-7. Chembiochem 2023; 24:e202300168. [PMID: 37129525 DOI: 10.1002/cbic.202300168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/03/2023]
Abstract
Small-molecule inhibitors of the RNA-binding and regulating protein LIN28 have the potential to be developed as chemical probes for biological perturbation and as therapeutic candidates. Reported small molecules disrupting the interaction between LIN28 and let-7 miRNA suffer from moderate to weak inhibitory activity and flat structure-activity relationship, which hindered the development of next-generation LIN28 inhibitors that warrant further evaluations. We report herein the identification of new LIN28 inhibitors utilizing a spirocyclization strategy based on a chromenopyrazole scaffold. Representative compounds 2-5 showed potent in vitro inhibitory activity against LIN28-let-7 interaction and single-digit micromolar potency in inhibiting the proliferation of LIN28-expressing JAR cancer cells. The spirocyclic compound 5 incorporated a position that is amenable for functional group appendage and further structural modifications. The binding mode of compound 5 with the LIN28 cold shock domain was rationalized via a molecular docking analysis.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Fubao Huang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Lisa Hohnen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany
| | - Xiaqiu Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Georg L Goebel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Pascal Hommen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 15, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| |
Collapse
|
27
|
Hommen P, Hwang J, Huang F, Borgelt L, Hohnen L, Wu P. Chromenopyrazole-Peptide Conjugates as Small-Molecule Based Inhibitors Disrupting the Protein-RNA Interaction of LIN28-let-7. Chembiochem 2023; 24:e202300376. [PMID: 37224100 DOI: 10.1002/cbic.202300376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Targeting the protein-RNA interaction of LIN28 and let-7 is a promising strategy for the development of novel anticancer therapeutics. However, a limited number of small-molecule inhibitors disrupting the LIN28-let-7 interaction with potent efficacy are available. Herein, we developed a novel LIN28-inhibiting strategy by targeting selective hotspot amino acids at the LIN28-let-7 binding interface with small-molecule-based bifunctional conjugates. Starting from reported small-molecule LIN28 inhibitors, we identified a feasible linker-attachment position after performing a structure-activity relationship exploration based on the LIN28-targeting chromenopyrazoles. In parallel, a virtual alanine scan identified hotspot residues at the protein-RNA binding interface, based on which we designed a set of peptides to enhance the interaction with the identified hotspot residues. Conjugation of the tailor-designed peptides with linker-attached chromenopyrazoles yielded a series of bifunctional small-molecule-peptide conjugates, represented by compound 83 (PH-223), as a new LIN28-targeting chemical modality. Our result demonstrated an unexplored rational design approach using bifunctional conjugates to target protein-RNA interactions.
Collapse
Affiliation(s)
- Pascal Hommen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Jimin Hwang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Fubao Huang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Lisa Hohnen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| |
Collapse
|
28
|
Wicks SL, Morgan BS, Wilson AW, Hargrove AE. Probing Bioactive Chemical Space to Discover RNA-Targeted Small Molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551350. [PMID: 37577658 PMCID: PMC10418101 DOI: 10.1101/2023.07.31.551350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Small molecules have become increasingly recognized as invaluable tools to study RNA structure and function and to develop RNA-targeted therapeutics. To rationally design RNA-targeting ligands, a comprehensive understanding and explicit testing of small molecule properties that govern molecular recognition is crucial. To date, most studies have primarily evaluated properties of small molecules that bind RNA in vitro, with little to no assessment of properties that are distinct to selective and bioactive RNA-targeted ligands. Therefore, we curated an RNA-focused library, termed the Duke RNA-Targeted Library (DRTL), that was biased towards the physicochemical and structural properties of biologically active and non-ribosomal RNA-targeted small molecules. The DRTL represents one of the largest academic RNA-focused small molecule libraries curated to date with more than 800 small molecules. These ligands were selected using computational approaches that measure similarity to known bioactive RNA ligands and that diversify the molecules within this space. We evaluated DRTL binding in vitro to a panel of four RNAs using two optimized fluorescent indicator displacement assays, and we successfully identified multiple small molecule hits, including several novel scaffolds for RNA. The DRTL has and will continue to provide insights into biologically relevant RNA chemical space, such as the identification of additional RNA-privileged scaffolds and validation of RNA-privileged molecular features. Future DRTL screening will focus on expanding both the targets and assays used, and we welcome collaboration from the scientific community. We envision that the DRTL will be a valuable resource for the discovery of RNA-targeted chemical probes and therapeutic leads.
Collapse
Affiliation(s)
- Sarah L. Wicks
- Department of Chemistry; Duke University; 124 Science Drive; Durham, NC 27708
| | - Brittany S. Morgan
- Department of Chemistry & Biochemistry; University of Notre Dame; 123 McCourtney Hall Notre Dame, IN 46556
| | - Alexander W. Wilson
- Department of Chemistry; Duke University; 124 Science Drive; Durham, NC 27708
| | - Amanda E. Hargrove
- Department of Chemistry; Duke University; 124 Science Drive; Durham, NC 27708
| |
Collapse
|
29
|
Taghavi A, Baisden JT, Childs-Disney JL, Yildirim I, Disney M. Conformational dynamics of RNA G4C2 and G2C4 repeat expansions causing ALS/FTD using NMR and molecular dynamics studies. Nucleic Acids Res 2023; 51:5325-5340. [PMID: 37216594 PMCID: PMC10287959 DOI: 10.1093/nar/gkad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
G4C2 and G2C4 repeat expansions in chromosome 9 open reading frame 72 (C9orf72) are the most common cause of genetically defined amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), or c9ALS/FTD. The gene is bidirectionally transcribed, producing G4C2 repeats [r(G4C2)exp] and G2C4 repeats [r(G2C4)exp]. The c9ALS/FTD repeat expansions are highly structured, and structural studies showed that r(G4C2)exp predominantly folds into a hairpin with a periodic array of 1 × 1 G/G internal loops and a G-quadruplex. A small molecule probe revealed that r(G4C2)exp also adopts a hairpin structure with 2 × 2 GG/GG internal loops. We studied the conformational dynamics adopted by 2 × 2 GG/GG loops using temperature replica exchange molecular dynamics (T-REMD) and further characterized the structure and underlying dynamics using traditional 2D NMR techniques. These studies showed that the loop's closing base pairs influence both structure and dynamics, particularly the configuration adopted around the glycosidic bond. Interestingly, r(G2C4) repeats, which fold into an array of 2 × 2 CC/CC internal loops, are not as dynamic. Collectively, these studies emphasize the unique sensitivity of r(G4C2)exp to small changes in stacking interactions, which is not observed in r(G2C4)exp, providing important considerations for further principles in structure-based drug design.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry, Scripps Research and The Herbert Wertheim UF-Scripps Institute for Biomedical Research & Innovation, 130 Scripps Way, 3A1 Jupiter, FL 33458, USA
| | - Jared T Baisden
- Department of Chemistry, Scripps Research and The Herbert Wertheim UF-Scripps Institute for Biomedical Research & Innovation, 130 Scripps Way, 3A1 Jupiter, FL 33458, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, Scripps Research and The Herbert Wertheim UF-Scripps Institute for Biomedical Research & Innovation, 130 Scripps Way, 3A1 Jupiter, FL 33458, USA
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, Scripps Research and The Herbert Wertheim UF-Scripps Institute for Biomedical Research & Innovation, 130 Scripps Way, 3A1 Jupiter, FL 33458, USA
| |
Collapse
|
30
|
Booth BJ, Nourreddine S, Katrekar D, Savva Y, Bose D, Long TJ, Huss DJ, Mali P. RNA editing: Expanding the potential of RNA therapeutics. Mol Ther 2023; 31:1533-1549. [PMID: 36620962 PMCID: PMC9824937 DOI: 10.1016/j.ymthe.2023.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
RNA therapeutics have had a tremendous impact on medicine, recently exemplified by the rapid development and deployment of mRNA vaccines to combat the COVID-19 pandemic. In addition, RNA-targeting drugs have been developed for diseases with significant unmet medical needs through selective mRNA knockdown or modulation of pre-mRNA splicing. Recently, RNA editing, particularly antisense RNA-guided adenosine deaminase acting on RNA (ADAR)-based programmable A-to-I editing, has emerged as a powerful tool to manipulate RNA to enable correction of disease-causing mutations and modulate gene expression and protein function. Beyond correcting pathogenic mutations, the technology is particularly well suited for therapeutic applications that require a transient pharmacodynamic effect, such as the treatment of acute pain, obesity, viral infection, and inflammation, where it would be undesirable to introduce permanent alterations to the genome. Furthermore, transient modulation of protein function, such as altering the active sites of enzymes or the interface of protein-protein interactions, opens the door to therapeutic avenues ranging from regenerative medicine to oncology. These emerging RNA-editing-based toolsets are poised to broadly impact biotechnology and therapeutic applications. Here, we review the emerging field of therapeutic RNA editing, highlight recent laboratory advancements, and discuss the key challenges on the path to clinical development.
Collapse
Affiliation(s)
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
31
|
Sengul MY, MacKerell AD. Influence of Mg 2+ Distribution on the Stability of Folded States of the Twister Ribozyme Revealed Using Grand Canonical Monte Carlo and Generative Deep Learning Enhanced Sampling. ACS OMEGA 2023; 8:19532-19546. [PMID: 37305323 PMCID: PMC10249389 DOI: 10.1021/acsomega.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
Metal ions, particularly magnesium ions (Mg2+), play a role in stabilizing the tertiary structures of RNA molecules. Theoretical models and experimental techniques show that metal ions can change RNA dynamics and how it transitions through different stages of folding. However, the specific ways in which metal ions contribute to the formation and stabilization of RNA's tertiary structure are not fully understood at the atomic level. Here, we combined oscillating excess chemical potential Grand Canonical Monte Carlo (GCMC) and metadynamics to bias toward the sampling of unfolded states using reaction coordinates generated by machine learning allowing for examination of Mg2+-RNA interactions that contribute to stabilizing folded states of the pseudoknot found in the Twister ribozyme. GCMC is used to sample diverse ion distributions around the RNA with deep learning applied to iteratively generate system-specific reaction coordinates to maximize conformational sampling during metadynamics simulations. Results from 6 μs simulations performed on 9 individual systems indicate that Mg2+ ions play a crucial role in stabilizing the three-dimensional (3D) structure of the RNA by stabilizing specific interactions of phosphate groups or phosphate groups and bases of neighboring nucleotides. While many phosphates are accessible to interactions with Mg2+, it is observed that multiple, specific interactions are required to sample conformations close to the folded state; coordination of Mg2+ at individual specific sites facilitates sampling of folded conformations though unfolding ultimately occurs. It is only when multiple specific interactions occur, including the presence of specific inner-shell cation interactions linking two nucleotides, that conformations close to the folded state are stable. While many of the identified Mg2+ interactions are observed in the X-ray crystal structure of Twister, the present study suggests two new Mg2+ ion sites in the Twister ribozyme that contribute to stabilization. In addition, specific interactions with Mg2+ are observed that destabilize the local RNA structure, a process that may facilitate the folding of RNA into its correct structure.
Collapse
Affiliation(s)
- Mert Y. Sengul
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Maryland, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
32
|
Tong Y, Lee Y, Liu X, Childs-Disney JL, Suresh BM, Benhamou RI, Yang C, Li W, Costales MG, Haniff HS, Sievers S, Abegg D, Wegner T, Paulisch TO, Lekah E, Grefe M, Crynen G, Van Meter M, Wang T, Gibaut QMR, Cleveland JL, Adibekian A, Glorius F, Waldmann H, Disney MD. Programming inactive RNA-binding small molecules into bioactive degraders. Nature 2023; 618:169-179. [PMID: 37225982 PMCID: PMC10232370 DOI: 10.1038/s41586-023-06091-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Target occupancy is often insufficient to elicit biological activity, particularly for RNA, compounded by the longstanding challenges surrounding the molecular recognition of RNA structures by small molecules. Here we studied molecular recognition patterns between a natural-product-inspired small-molecule collection and three-dimensionally folded RNA structures. Mapping these interaction landscapes across the human transcriptome defined structure-activity relationships. Although RNA-binding compounds that bind to functional sites were expected to elicit a biological response, most identified interactions were predicted to be biologically inert as they bind elsewhere. We reasoned that, for such cases, an alternative strategy to modulate RNA biology is to cleave the target through a ribonuclease-targeting chimera, where an RNA-binding molecule is appended to a heterocycle that binds to and locally activates RNase L1. Overlay of the substrate specificity for RNase L with the binding landscape of small molecules revealed many favourable candidate binders that might be bioactive when converted into degraders. We provide a proof of concept, designing selective degraders for the precursor to the disease-associated microRNA-155 (pre-miR-155), JUN mRNA and MYC mRNA. Thus, small-molecule RNA-targeted degradation can be leveraged to convert strong, yet inactive, binding interactions into potent and specific modulators of RNA function.
Collapse
Affiliation(s)
- Yuquan Tong
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Yeongju Lee
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Xiaohui Liu
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Blessy M Suresh
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Raphael I Benhamou
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Chunying Yang
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Weimin Li
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Matthew G Costales
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Hafeez S Haniff
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Tristan Wegner
- Organisch-Chemisches Institut, University of Münster, Münster, Germany
| | | | - Elizabeth Lekah
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Maison Grefe
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Gogce Crynen
- Bioinformatics and Statistics Core, The Scripps Research Institute and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Montina Van Meter
- Histology Core, The Scripps Research Institute and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Tenghui Wang
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Quentin M R Gibaut
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Frank Glorius
- Organisch-Chemisches Institut, University of Münster, Münster, Germany.
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Compound Management and Screening Center, Dortmund, Germany.
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute & The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
33
|
Malbert B, Labaurie V, Dorme C, Paget E. Group I Intron as a Potential Target for Antifungal Compounds: Development of a Trans-Splicing High-Throughput Screening Strategy. Molecules 2023; 28:molecules28114460. [PMID: 37298936 DOI: 10.3390/molecules28114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The search for safe and efficient new antifungal compounds for agriculture has led to more efforts in finding new modes of action. This involves the discovery of new molecular targets, including coding and non-coding RNA. Rarely found in plants and animals but present in fungi, group I introns are of interest as their complex tertiary structure may allow selective targeting using small molecules. In this work, we demonstrate that group I introns present in phytopathogenic fungi have a self-splicing activity in vitro that can be adapted in a high-throughput screening to find new antifungal compounds. Ten candidate introns from different filamentous fungi were tested and one group ID intron found in F. oxysporum showed high self-splicing efficiency in vitro. We designed the Fusarium intron to act as a trans-acting ribozyme and used a fluorescence-based reporter system to monitor its real time splicing activity. Together, these results are opening the way to study the druggability of such introns in crop pathogen and potentially discover small molecules selectively targeting group I introns in future high-throughput screenings.
Collapse
Affiliation(s)
- Bastien Malbert
- Early Discovery, Biochemistry Excellence, Centre de Recherche La Dargoire, Bayer SAS, 69009 Lyon, France
| | - Virginie Labaurie
- Early Discovery, Biochemistry Excellence, Centre de Recherche La Dargoire, Bayer SAS, 69009 Lyon, France
| | - Cécile Dorme
- Early Discovery, Biochemistry Excellence, Centre de Recherche La Dargoire, Bayer SAS, 69009 Lyon, France
| | - Eric Paget
- Early Discovery, Biochemistry Excellence, Centre de Recherche La Dargoire, Bayer SAS, 69009 Lyon, France
| |
Collapse
|
34
|
Nickbarg EB, Spencer KB, Mortison JD, Lee JT. Targeting RNA with small molecules: lessons learned from Xist RNA. RNA (NEW YORK, N.Y.) 2023; 29:463-472. [PMID: 36725318 PMCID: PMC10019374 DOI: 10.1261/rna.079523.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although more than 98% of the human genome is noncoding, nearly all drugs on the market target one of about 700 disease-related proteins. However, an increasing number of diseases are now being attributed to noncoding RNA and the ability to target them would vastly expand the chemical space for drug development. We recently devised a screening strategy based upon affinity-selection mass spectrometry and succeeded in identifying bioactive compounds for the noncoding RNA prototype, Xist. One such compound, termed X1, has drug-like properties and binds specifically to the RepA motif of Xist in vitro and in vivo. Small-angle X-ray scattering analysis reveals that X1 changes the conformation of RepA in solution, thereby explaining the displacement of cognate interacting protein factors (PRC2 and SPEN) and inhibition of X-chromosome inactivation. In this Perspective, we discuss lessons learned from these proof-of-concept experiments and suggest that RNA can be systematically targeted by drug-like compounds to disrupt RNA structure and function.
Collapse
Affiliation(s)
| | | | | | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
35
|
Baron L, Hadjerci J, Thoidingjam L, Plays M, Bucci R, Morris N, Müller S, Sindikubwabo F, Solier S, Cañeque T, Colombeau L, Blouin CM, Lamaze C, Puisieux A, Bono Y, Gaillet C, Laraia L, Vauzeilles B, Taran F, Papot S, Karoyan P, Duval R, Mahuteau-Betzer F, Arimondo P, Cariou K, Guichard G, Micouin L, Ethève-Quelquejeu M, Verga D, Versini A, Gasser G, Tang C, Belmont P, Linkermann A, Bonfio C, Gillingham D, Poulsen T, Di Antonio M, Lopez M, Guianvarc'h D, Thomas C, Masson G, Gautier A, Johannes L, Rodriguez R. PSL Chemical Biology Symposia Third Edition: A Branch of Science in its Explosive Phase. Chembiochem 2023; 24:e202300093. [PMID: 36942862 DOI: 10.1002/cbic.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 03/23/2023]
Abstract
This symposium is the third PSL (Paris Sciences & Lettres) Chemical Biology meeting (2016, 2019, 2023) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette (2013, 2014), under the directorship of Professor Max Malacria, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition was postponed twice for the reasons that we know. This has given us the opportunity to invite additional speakers of great standing. This year, Institut Curie hosted around 300 participants, including 220 on site and over 80 online. The pandemic has had, at least, the virtue of promoting online meetings, which we came to realize is not perfect but has its own merits. In particular, it enables those with restricted time and resources to take part in events and meetings, which can now accommodate unlimited participants. We apologize to all those who could not attend in person this time due to space limitation at Institut Curie.
Collapse
Affiliation(s)
- Leeroy Baron
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Justine Hadjerci
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Leishemba Thoidingjam
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Marina Plays
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Romain Bucci
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Nolwenn Morris
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Sebastian Müller
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Fabien Sindikubwabo
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Stéphanie Solier
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Tatiana Cañeque
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Ludovic Colombeau
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Cedric M Blouin
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Christophe Lamaze
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Alain Puisieux
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Yannick Bono
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Christine Gaillet
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Luca Laraia
- Technical University of Denmark, Department of Chemistry, 2800, Kgs. Lyngby, Denmark
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS UPR 2301, 91198, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, 91191, Gif-sur-Yvette, France
| | - Sébastien Papot
- Université de Poitiers, CNRS UMR 7285, 86073, Poitiers, France
| | - Philippe Karoyan
- PSL Université Paris, Sorbonne Université Ecole Normale Supérieure, CNRS UMR 7203, 75005, Paris, France
| | - Romain Duval
- Faculté de Pharmacie de Paris, Université Paris Cité CNRS UMR 261, 75006, Paris, France
| | | | | | - Kevin Cariou
- PSL Université Paris, Chimie ParisTech, CNRS, Institute of Chemistry and Health Sciences CNRS UMR 8060, 75005, Paris, France
| | - Gilles Guichard
- Université de Bordeaux, CNRS, Bordeaux INP CBMN, UMR 5248, 33600, Pessac, France
| | | | | | - Daniela Verga
- PSL Université Paris, Institut Curie CNRS UMR 9187, INSERM U1196, 91405, Orsay, France
| | - Antoine Versini
- University of Zurich, Department of Chemistry, 8057, Zurich, Switzerland
| | - Gilles Gasser
- PSL Université Paris, Chimie ParisTech, CNRS, Institute of Chemistry and Health Sciences CNRS UMR 8060, 75005, Paris, France
| | - Cong Tang
- Universidade de Lisboa, Instituto de Medicina Molecular João Lobo Antunes, 1649-028, Lisboa, Portugal
| | | | - Andreas Linkermann
- Technische Universität Dresden Department of Internal Medicine 3, 01062, Dresden, Germany
| | - Claudia Bonfio
- Université de Strasbourg, CNRS UMR 7006, 67000, Strasbourg, France
| | | | - Thomas Poulsen
- Aarhus University, Department of Chemistry, 8000, Aarhus C Aarhus, Denmark
| | - Marco Di Antonio
- Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK
| | - Marie Lopez
- Université de Montpellier, CNRS UMR 5247, 34000, Montpellier, France
| | | | - Christophe Thomas
- PSL Université Paris, Chimie ParisTech CNRS UMR 6226, 75005, Paris, France
| | - Géraldine Masson
- Université Paris-Saclay, CNRS UPR 2301, 91198, Gif-sur-Yvette, France
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| | - Ludger Johannes
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Raphaël Rodriguez
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| |
Collapse
|
36
|
Wang W, Deng J, Zhang Y, Li J. A Small-Molecule Probe with a Dual Function of miRNA Inhibition and Target identification. Chemistry 2023; 29:e202202013. [PMID: 36253322 DOI: 10.1002/chem.202202013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/07/2022]
Abstract
By virtue of their key roles in pathologies, miRNAs represent a promising class of therapeutic targets. While high-fidelity small-molecule modulators of miRNAs can be identified via high-throughput screening using cellular reporter systems, their modes of action are elusive due to the lack of proper tools. Here, we report a small-molecule probe, 1 a, that is capable of elucidating its biological target along miRNA inhibition. Derived from norathyriol, a nature product, 1 a possessed a bioorthogonal alkyne moiety for subsequent labeling via copper-catalyzed azide-alkyne cycloaddition chemistry. We demonstrated that 1 a inhibited a panel of different miRNAs by blocking their loading onto argonaute 2 (AGO2), which is the key protein responsible for miRNA function. With the alkyne handle, we successfully identified AGO2 as an intracellular target of 1 a. Therefore, this work presents a novel small-molecule tool for suppressing and probing miRNA regulatory pathways.
Collapse
Affiliation(s)
- Weishan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| | - Jiafang Deng
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
37
|
Discovery and validation of bladder cancer related excreted nucleosides biomarkers by dilution approach in cell culture supernatant and urine using UHPLC-MS/MS. J Proteomics 2023; 270:104737. [PMID: 36174950 DOI: 10.1016/j.jprot.2022.104737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023]
Abstract
The exploration of nucleoside changes in human biofluids has profound potential for cancer diagnosis. Herein, we developed a rapid methodology to quantify 17 nucleosides by UHPLC-MS/MS. Five pairs of isomers were successfully separated within 8 min. The ME was mostly eliminated by sample dilution folds of 1000 for urine and 40 for CCS. The optimized method was firstly applied to screen potential nucleoside biomarkers in CCS by comprising bladder cancer cell lines (5637 and T24) and normal human bladder cell line SV-HUC-1 together with student's t-test and OPLS-DA. Nucleosides with significant differences in the supernatant of urine samples were also uncovered comparing BCa with the non-tumor group, as well as a comparison of BCa recurrence group with the non-recurrence group. By intersecting the differential nucleosides in CCS and urine supernatant, and then further confirmed using validation sets, the combination of m3C and m1A with AUC of 0.775 was considered as a potential biomarker for bladder cancer diagnosis. A panel of m3C, m1A, m1G, and m22G was defined as potential biomarkers for bladder cancer prognosis with an AUC of 0.819. Above all, this method provided a new perspective for diagnosis and recurrence monitoring of bladder cancer. SIGNIFICANCE: The exploration of nucleoside changes in body fluids has profound potential for the diagnosis and elucidation of the pathogenesis of cancer. In this study, we developed a rapid methodology for the simultaneous quantitative determination of 17 nucleosides in the supernatant of cells and urine samples using UHPLC-MS/MS to discover and validate bladder cancer related excreted nucleoside biomarkers. The results of this paper provide a new strategy for diagnosis and postoperative recurrence monitoring of bladder cancer and provide theoretical support for the exploration of its pathogenesis.
Collapse
|
38
|
Kasprzak WK, Shapiro BA. Application of Molecular Dynamics to Expand Docking Program's Exploratory Capabilities and to Evaluate Its Predictions. Methods Mol Biol 2023; 2568:75-101. [PMID: 36227563 DOI: 10.1007/978-1-0716-2687-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recognition of the growing importance of RNA as a target for therapeutic or diagnostic ligands brings the importance of computational predictions of docking poses to such receptors to the forefront. Most docking programs have been optimized for protein targets, based on a relatively rich pool of known docked protein structures. Unfortunately, despite progress, numbers of known docked RNA complexes are low and the accuracy of the computational predictions trained on those inadequate samples lags behind that achieved for proteins. Compared to proteins, RNA structures generally have fewer docking pockets, have less diverse electrostatic surfaces, and are more flexible, raising the possibility of producing only transiently available good docking targets. We are presenting a docking prediction protocol that adds molecular dynamics simulations before and after the actual docking in order to explore the conformational space of the target RNA and then to reevaluate the stability of the predicted RNA-ligand complex. In this way we are attempting to overcome important limitations of the docking programs: the rigid (fully or mostly) target structure and imperfect nature of the docking scoring functions.
Collapse
Affiliation(s)
- Wojciech K Kasprzak
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bruce A Shapiro
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
39
|
Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10807. [PMID: 36601439 PMCID: PMC9808746 DOI: 10.3389/adar.2022.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although noncoding RNAs (ncRNAs) have been shown to regulate maladaptive neuroadaptations that drive compulsive drug use, ncRNA-targeting therapeutics for substance use disorder (SUD) have yet to be clinically tested. Recent advances in RNA-based drugs have improved many therapeutic issues related to immune response, specificity, and delivery, leading to multiple successful clinical trials for other diseases. As the need for safe and effective treatments for SUD continues to grow, novel nucleic acid-based therapeutics represent an appealing approach to target ncRNA mechanisms in SUD. Here, we review ncRNA processes implicated in SUD, discuss recent therapeutic approaches for targeting ncRNAs, and highlight potential opportunities and challenges of ncRNA-targeting therapeutics for SUD.
Collapse
Affiliation(s)
- Seyed Afshin Seyednejad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| | - Gregory C. Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| |
Collapse
|
40
|
Xiong Y, Zhong Y, Yim H, Yang X, Park KS, Xie L, Poulikakos PI, Han X, Xiong Y, Chen X, Liu J, Jin J. Bridged Proteolysis Targeting Chimera (PROTAC) Enables Degradation of Undruggable Targets. J Am Chem Soc 2022; 144:22622-22632. [PMID: 36448571 PMCID: PMC9772293 DOI: 10.1021/jacs.2c09255] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Proteolysis Targeting Chimeras (PROTACs) are attractive therapeutic modalities for degrading disease-causing proteins. While many PROTACs have been developed for numerous protein targets, current small-molecule PROTAC approaches cannot target undruggable proteins that do not have small-molecule binders. Here, we present a novel PROTAC approach, termed bridged PROTAC, which utilizes a small-molecule binder of the target protein's binding partner to recruit the protein complex into close proximity with an E3 ubiquitin ligase to target undruggable proteins. Applying this bridged PROTAC strategy, we discovered MS28, the first-in-class degrader of cyclin D1, which lacks a small-molecule binder. MS28 effectively degrades cyclin D1, with faster degradation kinetics and superior degradation efficiency than CDK4/6, through recruiting the CDK4/6-cyclin D1 complex to the von Hippel-Lindau E3 ligase. MS28 also suppressed the proliferation of cancer cells more effectively than CDK4/6 inhibitors and degraders. Altogether, the bridged PROTAC strategy could provide a generalizable platform for targeting undruggable proteins.
Collapse
Affiliation(s)
- Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yue Zhong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xiaobao Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xiaoran Han
- Cullgen Inc., San Diego, California 92130, United States
| | - Yue Xiong
- Cullgen Inc., San Diego, California 92130, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
41
|
Pavan M, Bassani D, Sturlese M, Moro S. Investigating RNA-protein recognition mechanisms through supervised molecular dynamics (SuMD) simulations. NAR Genom Bioinform 2022; 4:lqac088. [PMID: 36458023 PMCID: PMC9706429 DOI: 10.1093/nargab/lqac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Ribonucleic acid (RNA) plays a key regulatory role within the cell, cooperating with proteins to control the genome expression and several biological processes. Due to its characteristic structural features, this polymer can mold itself into different three-dimensional structures able to recognize target biomolecules with high affinity and specificity, thereby attracting the interest of drug developers and medicinal chemists. One successful example of the exploitation of RNA's structural and functional peculiarities is represented by aptamers, a class of therapeutic and diagnostic tools that can recognize and tightly bind several pharmaceutically relevant targets, ranging from small molecules to proteins, making use of the available structural and conformational freedom to maximize the complementarity with their interacting counterparts. In this scientific work, we present the first application of Supervised Molecular Dynamics (SuMD), an enhanced sampling Molecular Dynamics-based method for the study of receptor-ligand association processes in the nanoseconds timescale, to the study of recognition pathways between RNA aptamers and proteins, elucidating the main advantages and limitations of the technique while discussing its possible role in the rational design of RNA-based therapeutics.
Collapse
Affiliation(s)
- Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- To whom correspondence should be addressed. Tel: +39 0498275704; Fax: +39 0498275366;
| |
Collapse
|
42
|
Suresh BM, Akahori Y, Taghavi A, Crynen G, Gibaut QMR, Li Y, Disney MD. Low-Molecular Weight Small Molecules Can Potently Bind RNA and Affect Oncogenic Pathways in Cells. J Am Chem Soc 2022; 144:20815-20824. [PMID: 36322830 PMCID: PMC9930674 DOI: 10.1021/jacs.2c08770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
RNA is challenging to target with bioactive small molecules, particularly those of low molecular weight that bind with sufficient affinity and specificity. In this report, we developed a platform to address this challenge, affording a novel bioactive interaction. An RNA-focused small-molecule fragment collection (n = 2500) was constructed by analyzing features in all publicly reported compounds that bind RNA, the largest collection of RNA-focused fragments to date. The RNA-binding landscape for each fragment was studied by using a library-versus-library selection with an RNA library displaying a discrete structural element, probing over 12.8 million interactions, the greatest number of interactions between fragments and biomolecules probed experimentally. Mining of this dataset across the human transcriptome defined a drug-like fragment that potently and specifically targeted the microRNA-372 hairpin precursor, inhibiting its processing into the mature, functional microRNA and alleviating invasive and proliferative oncogenic phenotypes in gastric cancer cells. Importantly, this fragment has favorable properties, including an affinity for the RNA target of 300 ± 130 nM, a molecular weight of 273 Da, and quantitative estimate of drug-likeness (QED) score of 0.8. (For comparison, the mean QED of oral medicines is 0.6 ± 0.2). Thus, these studies demonstrate that a low-molecular weight, fragment-like compound can specifically and potently modulate RNA targets.
Collapse
Affiliation(s)
- Blessy M. Suresh
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yoshihiro Akahori
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Amirhossein Taghavi
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Gogce Crynen
- Bioinformatics and Statistics Core, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Quentin M. R. Gibaut
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yue Li
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| |
Collapse
|
43
|
Andrews RJ, Rouse WB, O’Leary CA, Booher NJ, Moss WN. ScanFold 2.0: a rapid approach for identifying potential structured RNA targets in genomes and transcriptomes. PeerJ 2022; 10:e14361. [PMID: 36389431 PMCID: PMC9651051 DOI: 10.7717/peerj.14361] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
A major limiting factor in target discovery for both basic research and therapeutic intervention is the identification of structural and/or functional RNA elements in genomes and transcriptomes. This was the impetus for the original ScanFold algorithm, which provides maps of local RNA structural stability, evidence of sequence-ordered (potentially evolved) structure, and unique model structures comprised of recurring base pairs with the greatest structural bias. A key step in quantifying this propensity for ordered structure is the prediction of secondary structural stability for randomized sequences which, in the original implementation of ScanFold, is explicitly evaluated. This slow process has limited the rapid identification of ordered structures in large genomes/transcriptomes, which we seek to overcome in this current work introducing ScanFold 2.0. In this revised version of ScanFold, we no longer explicitly evaluate randomized sequence folding energy, but rather estimate it using a machine learning approach. For high randomization numbers, this can increase prediction speeds over 100-fold compared to ScanFold 1.0, allowing for the analysis of large sequences, as well as the use of additional folding algorithms that may be computationally expensive. In the testing of ScanFold 2.0, we re-evaluate the Zika, HIV, and SARS-CoV-2 genomes and compare both the consistency of results and the time of each run to ScanFold 1.0. We also re-evaluate the SARS-CoV-2 genome to assess the quality of ScanFold 2.0 predictions vs several biochemical structure probing datasets and compare the results to those of the original ScanFold program.
Collapse
Affiliation(s)
- Ryan J. Andrews
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Warren B. Rouse
- The Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States
| | - Collin A. O’Leary
- The Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States
| | - Nicholas J. Booher
- Infrastructure and Research IT Services, Iowa State University, Ames, IA, United States
| | - Walter N. Moss
- The Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
44
|
Chaudhry T, Coxon CR, Ross K. Trading places: Peptide and small molecule alternatives to oligonucleotide-based modulation of microRNA expression. Drug Discov Today 2022; 27:103337. [PMID: 35995360 DOI: 10.1016/j.drudis.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
It is well established that microRNA (miRNA) dysregulation is involved in the development and progression of various diseases, especially cancer. Emerging evidence suggests that small molecule and peptide agents can interfere with miRNA disease pathways. Despite this, very little is known about structural features that drive drug-miRNA interactions and subsequent inhibition. In this review, we highlight the advances made in the development of small molecule and peptide inhibitors of miRNA processing. Specifically, we attempt to draw attention to peptide features that may be critical for interaction with the miRNA secondary structure to regulate miRNA expression. We hope that this review will help to establish peptides as exciting miRNA expression modulators and will contribute towards the development of the first miRNA-targeting peptide therapy.
Collapse
Affiliation(s)
- Talhat Chaudhry
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK; Institute for Health Research, Liverpool John Moores University, Liverpool, UK
| | - Christopher R Coxon
- EaStChem School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH14 4AS, UK
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK; Institute for Health Research, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
45
|
Borišek J, Aupič J, Magistrato A. Establishing the catalytic and regulatory mechanism of
RNA
‐based machineries. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jure Borišek
- Theory Department National Institute of Chemistry Ljubljana Slovenia
| | | | | |
Collapse
|
46
|
Childs-Disney JL, Yang X, Gibaut QMR, Tong Y, Batey RT, Disney MD. Targeting RNA structures with small molecules. Nat Rev Drug Discov 2022; 21:736-762. [PMID: 35941229 PMCID: PMC9360655 DOI: 10.1038/s41573-022-00521-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
RNA adopts 3D structures that confer varied functional roles in human biology and dysfunction in disease. Approaches to therapeutically target RNA structures with small molecules are being actively pursued, aided by key advances in the field including the development of computational tools that predict evolutionarily conserved RNA structures, as well as strategies that expand mode of action and facilitate interactions with cellular machinery. Existing RNA-targeted small molecules use a range of mechanisms including directing splicing - by acting as molecular glues with cellular proteins (such as branaplam and the FDA-approved risdiplam), inhibition of translation of undruggable proteins and deactivation of functional structures in noncoding RNAs. Here, we describe strategies to identify, validate and optimize small molecules that target the functional transcriptome, laying out a roadmap to advance these agents into the next decade.
Collapse
Affiliation(s)
| | - Xueyi Yang
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | | | - Yuquan Tong
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| | | |
Collapse
|
47
|
Kognole AA, Hazel A, MacKerell AD. SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules. J Chem Theory Comput 2022; 18:5672-5691. [PMID: 35913731 PMCID: PMC9474704 DOI: 10.1021/acs.jctc.2c00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA molecules can act as potential drug targets in different diseases, as their dysregulated expression or misfolding can alter various cellular processes. Noncoding RNAs account for ∼70% of the human genome, and these molecules can have complex tertiary structures that present a great opportunity for targeting by small molecules. In the present study, the site identification by ligand competitive saturation (SILCS) computational approach is extended to target RNA, termed SILCS-RNA. Extensions to the method include an enhanced oscillating excess chemical potential protocol for the grand canonical Monte Carlo calculations and individual simulations of the neutral and charged solutes from which the SILCS functional group affinity maps (FragMaps) are calculated for subsequent binding site identification and docking calculations. The method is developed and evaluated against seven RNA targets and their reported small molecule ligands. SILCS-RNA provides a detailed characterization of the functional group affinity pattern in the small molecule binding sites, recapitulating the types of functional groups present in the ligands. The developed method is also shown to be useful for identification of new potential binding sites and identifying ligand moieties that contribute to binding, granular information that can facilitate ligand design. However, limitations in the method are evident including the ability to map the regions of binding sites occupied by ligand phosphate moieties and to fully account for the wide range of conformational heterogeneity in RNA associated with binding of different small molecules, emphasizing inherent challenges associated with applying computer-aided drug design methods to RNA. While limitations are present, the current study indicates how the SILCS-RNA approach may enhance drug discovery efforts targeting RNAs with small molecules.
Collapse
Affiliation(s)
- Abhishek A Kognole
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Anthony Hazel
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
48
|
Panei FP, Torchet R, Ménager H, Gkeka P, Bonomi M. HARIBOSS: a curated database of RNA-small molecules structures to aid rational drug design. Bioinformatics 2022; 38:4185-4193. [PMID: 35799352 DOI: 10.1093/bioinformatics/btac483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION RNA molecules are implicated in numerous fundamental biological processes and many human pathologies, such as cancer, neurodegenerative disorders, muscular diseases and bacterial infections. Modulating the mode of action of disease-implicated RNA molecules can lead to the discovery of new therapeutical agents and even address pathologies linked to 'undruggable' protein targets. This modulation can be achieved by direct targeting of RNA with small molecules. As of today, only a few RNA-targeting small molecules are used clinically. One of the main obstacles that have hampered the development of a rational drug design protocol to target RNA with small molecules is the lack of a comprehensive understanding of the molecular mechanisms at the basis of RNA-small molecule (RNA-SM) recognition. RESULTS Here, we present Harnessing RIBOnucleic acid-Small molecule Structures (HARIBOSS), a curated collection of RNA-SM structures determined by X-ray crystallography, nuclear magnetic resonance spectroscopy and cryo-electron microscopy. HARIBOSS facilitates the exploration of drug-like compounds known to bind RNA, the analysis of ligands and pockets properties and ultimately the development of in silico strategies to identify RNA-targeting small molecules. AVAILABILITY AND IMPLEMENTATION HARIBOSS can be explored via a web interface available at http://hariboss.pasteur.cloud. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- F P Panei
- Sanofi, R&D, Data & In Silico Sciences, 91385 Chilly Mazarin, France.,Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France.,Ecole Doctorale Complexité du Vivant, Sorbonne Université, 75005 Paris, France
| | - R Torchet
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - H Ménager
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - P Gkeka
- Sanofi, R&D, Data & In Silico Sciences, 91385 Chilly Mazarin, France
| | - M Bonomi
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
| |
Collapse
|
49
|
Rouse WB, O'Leary CA, Booher NJ, Moss WN. Expansion of the RNAStructuromeDB to include secondary structural data spanning the human protein-coding transcriptome. Sci Rep 2022; 12:14515. [PMID: 36008510 PMCID: PMC9403969 DOI: 10.1038/s41598-022-18699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
RNA plays vital functional roles in almost every component of biology, and these functional roles are often influenced by its folding into secondary and tertiary structures. An important role of RNA secondary structure is in maintaining proper gene regulation; therefore, making accurate predictions of the structures involved in these processes is important. In this study, we have expanded on our previous work that led to the creation of the RNAStructuromeDB. Unlike this previous study that analyzed the human genome at low resolution, we have now scanned the protein-coding human transcriptome at high (single nt) resolution. This provides more robust structure predictions for over 100,000 isoforms of known protein-coding genes. Notably, we also utilize the motif identification tool, ScanFold, to model structures with high propensity for ordered/evolved stability. All data have been uploaded to the RNAStructuromeDB, allowing for easy searching of transcripts, visualization of data tracks (via the Integrative Genomics Viewer or IGV), and download of ScanFold data—including unique highly-ordered motifs. Herein, we provide an example analysis of MAT2A to demonstrate the utility of ScanFold at finding known and novel secondary structures, highlighting regions of potential functionality, and guiding generation of functional hypotheses through use of the data.
Collapse
Affiliation(s)
- Warren B Rouse
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Collin A O'Leary
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Nicholas J Booher
- Infrastructure and Research IT Services, Iowa State University, Ames, IA, 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
50
|
Tong Y, Gibaut QMR, Rouse W, Childs-Disney JL, Suresh BM, Abegg D, Choudhary S, Akahori Y, Adibekian A, Moss WN, Disney MD. Transcriptome-Wide Mapping of Small-Molecule RNA-Binding Sites in Cells Informs an Isoform-Specific Degrader of QSOX1 mRNA. J Am Chem Soc 2022; 144:11620-11625. [PMID: 35737519 PMCID: PMC9594100 DOI: 10.1021/jacs.2c01929] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The interactions between cellular RNAs in MDA-MB-231 triple negative breast cancer cells and a panel of small molecules appended with a diazirine cross-linking moiety and an alkyne tag were probed transcriptome-wide in live cells. The alkyne tag allows for facile pull-down of cellular RNAs bound by each small molecule, and the enrichment of each RNA target defines the compound's molecular footprint. Among the 34 chemically diverse small molecules studied, six bound and enriched cellular RNAs. The most highly enriched interaction occurs between the novel RNA-binding compound F1 and a structured region in the 5' untranslated region of quiescin sulfhydryl oxidase 1 isoform a (QSOX1-a), not present in isoform b. Additional studies show that F1 specifically bound RNA over DNA and protein; that is, we studied the entire DNA, RNA, and protein interactome. This interaction was used to design a ribonuclease targeting chimera (RIBOTAC) to locally recruit Ribonuclease L to degrade QSOX1 mRNA in an isoform-specific manner, as QSOX1-a, but not QSOX1-b, mRNA and protein levels were reduced. The RIBOTAC alleviated QSOX1-mediated phenotypes in cancer cells. This approach can be broadly applied to discover ligands that bind RNA in cells, which could be bioactive themselves or augmented with functionality such as targeted degradation.
Collapse
Affiliation(s)
- Yuquan Tong
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Quentin M R Gibaut
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Warren Rouse
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Blessy M Suresh
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Shruti Choudhary
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yoshihiro Akahori
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|