1
|
Wang R, Li L, Guo Y, Rong J, Lv F, Qu X, Hu X. Polypeptide-Based Copper Ionophore for In Situ Glutathione-Triggered Chemodynamic and Chemotherapy. Mol Pharm 2024; 21:5854-5863. [PMID: 39351992 DOI: 10.1021/acs.molpharmaceut.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Intracellular copper ion homeostasis has become an attractive target for cancer therapy. Herein, we report a 2,2'-dipicolylamine (DPA) functionalized polyglutamate derivative (PDHB) which is capable of rapidly forming PDHB-copper complex (PDHB@Cu) due to the strong coordination ability of pendant DPA with Cu2+. High drug loading content of doxorubicin (DOX) (>30 wt %) is realized due to the strong affinity of Cu2+ to DOX, while that is about 10 wt % for PDHB without Cu2+. The obtained PDHB@Cu-DOX can respond to specific endogenous stimuli (pH and glutathione (GSH)), releasing Cu2+ and DOX. The released DOX directly damages the DNA of tumor cells to cause apoptosis, while Cu2+ depletes intracellular GSH and is reduced to Cu+ simultaneously, which reacts with local H2O2 to produce highly toxic ·OH via a Fenton-like reaction, thus realizing synergistic chemodynamics and chemotherapy. This report provides an interesting polymeric ionophore strategy to deliver enough copper ions into cancer cells, which can also easily extend to other metal ions by replacing the ionophore components, thus having a wide application in nanomedicine.
Collapse
Affiliation(s)
- Ruoxue Wang
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Liuxuan Li
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yu Guo
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jianxin Rong
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Furou Lv
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xiuli Hu
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
2
|
Yuan M, Han K, Yang H, Mi L, Huang C, Hu X, He F. Rapid and Green Fabrication of Nanozyme with Geminal CuN 3O Configuration for Efficient Catecholase-Mimicking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401756. [PMID: 38686699 DOI: 10.1002/smll.202401756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Fabrication of nanozyme with catecholase-like catalytic activity faces the great challenge of merging outstanding activity with low cost as well as simple, rapid, and low-energy-consumed production, restricting its industrial applications. Herein, an inexpensive yet robust nanozyme (i.e., DT-Cu) via simple one-step coordination between diaminotriazole (DT) and CuSO4 within 1 h in water at room temperature is constructed. The asymmetric dicopper site with CuN3O configuration for each copper as well as Cu─O bond length of ≈1.83 Å and Cu···Cu distance of ≈3.5 Å in DT-Cu resemble those in catechol oxidase (CO), which ensure its prominent intrinsic activity, outperforming most CO-mimicking nanozymes and artificial homogeneous catalysts. The use of inexpensive DT/CuSO4 in this one-pot strategy endows DT-Cu with only ≈20% cost of natural CO per activity unit. During catalysis, O2 experienced a 4e-dominated reduction process accompanied by the formation of 1O2 and H2O2 intermediates and the product of H2O. Benefiting from the low cost as well as the distinctive structure and superior intrinsic activity, DT-Cu presents potential applications ranging from biocatalysis to analytical detection of biomolecules such as epinephrine and beyond.
Collapse
Affiliation(s)
- Meng Yuan
- School of Material Science and Engineering, University of Jinan, Jinan, 250024, China
| | - Ke Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Li Mi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chaofeng Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832000, China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250024, China
| | - Fei He
- School of Material Science and Engineering, University of Jinan, Jinan, 250024, China
| |
Collapse
|
3
|
Liu Y, Li Y, Wu H, Xu S, Zhang B, Li S, Du R, Jiang M, Chen Z, Lv Y, Wang ZG. Robust Oxidase-Mimetic Supramolecular Nanocatalyst for Lignin Biodegradation. NANO LETTERS 2024; 24:2520-2528. [PMID: 38359360 DOI: 10.1021/acs.nanolett.3c04505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Enzymatic catalysis presents an eco-friendly, energy-efficient method for lignin degradation. However, challenges arise due to the inherent incompatibility between enzymes and native lignin. In this work, we introduce a supramolecular catalyst composed of fluorenyl-modified amino acids and Cu2+, designed based on the aromatic stacking of the fluorenyl group, which can operate in ionic liquid environments suitable for the dissolution of native lignin. Amino acids and halide anions of ionic liquids shape the copper site's coordination sphere, showcasing remarkable catechol oxidase-mimetic activity. The catalyst exhibits thermophilic property, and maintains oxidative activity up to 75 °C, which allows the catalyzed degradation of the as-dissolved native lignin with high efficiency even without assistance of the electron mediator. In contrast, at this condition, the native copper-dependent oxidase completely lost its activity. This catalyst with superior stability and activity offer promise for sustainable lignin valorization through biocatalytic routes compatible with ionic liquid pretreatment, addressing limitations in native enzymes for industrially relevant conditions.
Collapse
Affiliation(s)
- Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yan Li
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shan Li
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruikai Du
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Minquan Jiang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziman Chen
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongqin Lv
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Liaqat M, Kankanamage RNT, Duan H, Shimogawa R, Sun J, Nielsen M, Shaaban E, Zhu Y, Gao P, Rusling JF, Frenkel AI, He J. Single-Atom Cobalt Catalysts Coupled with Peroxidase Biocatalysis for C-H Bond Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40343-40354. [PMID: 37590263 DOI: 10.1021/acsami.3c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
This paper reports a robust strategy to catalyze in situ C-H oxidation by combining cobalt (Co) single-atom catalysts (SACs) and horseradish peroxidase (HRP). Co SACs were synthesized using the complex of Co phthalocyanine with 3-propanol pyridine at the two axial positions as the Co source to tune the coordination environment of Co by the stepwise removal of axial pyridine moieties under thermal annealing. These structural features of Co sites, as confirmed by infrared and X-ray absorption spectroscopy, were strongly correlated to their reactivity. All Co catalysts synthesized below 300 °C were inactive due to the full coordination of Co sites in octahedral geometry. Increasing the calcination temperature led to an improvement in catalytic activity for reducing O2, although molecular Co species with square planar coordination obtained below 600 °C were less selective to reduce O2 to H2O2 through the two-electron pathway. Co SACs obtained at 800 °C showed superior activity in producing H2O2 with a selectivity of 82-85% in a broad potential range. In situ production of H2O2 was further coupled with HRP to drive the selective C-H bond oxidation in 2-naphthol. Our strategy provides new insights into the design of highly effective, stable SACs for selective C-H bond activation when coupled with natural enzymes.
Collapse
Affiliation(s)
- Maham Liaqat
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | | | - Hanyi Duan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ryuichi Shimogawa
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
| | - Jiyu Sun
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Monia Nielsen
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ehab Shaaban
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Yuanyuan Zhu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Puxian Gao
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, Connecticut 06030, United States
- School of Chemistry, National University of Ireland at Galway, Galway H91 TK33, Ireland
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
5
|
Wang J, Lu T, Li Y, Wang J, Spruijt E. Aqueous coordination polymer complexes: From colloidal assemblies to bulk materials. Adv Colloid Interface Sci 2023; 318:102964. [PMID: 37515864 DOI: 10.1016/j.cis.2023.102964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
1-dimensional (1D) coordination polymers refer to the macromolecules that have metal ions incorporated in their pendent groups or main chain through metal-binding ligand groups. They have intrinsic advantages over traditional polymers to regulate the polymer structures and functions owing to the nature of the metal-ligand bond. Consequently, they have great potential for the development of smart and functional structures and materials and therapeutic agents. Water-soluble 1D coordination polymers and assemblies are an important subtype of coordination polymers with distinctive interests for demanding applications in aqueous systems, such as biological and medical applications. This review highlights the recent progress and research achievements in the design and use of water-soluble 1D coordination polymers and assemblies. The overview covers the design and structure control of 1D coordination polymers, their colloidal assemblies, including nanoparticles, nanofibers, micelles and vesicles, and fabricated bulk materials such as membraneless liquid condensates, security ink, hydrogel actuators, and smart fabrics. Finally, we discuss the potential applications of several of these coordination polymeric structures and materials and give an outlook on the field of aqueous coordination polymers.
Collapse
Affiliation(s)
- Jiahua Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Tiemei Lu
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Evan Spruijt
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Xu S, Wu H, Liu S, Du P, Wang H, Yang H, Xu W, Chen S, Song L, Li J, Shi X, Wang ZG. A supramolecular metalloenzyme possessing robust oxidase-mimetic catalytic function. Nat Commun 2023; 14:4040. [PMID: 37419896 PMCID: PMC10328989 DOI: 10.1038/s41467-023-39779-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Enzymes fold into unique three-dimensional structures to distribute their reactive amino acid residues, but environmental changes can disrupt their essential folding and lead to irreversible activity loss. The de novo synthesis of enzyme-like active sites is challenging due to the difficulty of replicating the spatial arrangement of functional groups. Here, we present a supramolecular mimetic enzyme formed by self-assembling nucleotides with fluorenylmethyloxycarbonyl (Fmoc)-modified amino acids and copper. This catalyst exhibits catalytic functions akin those of copper cluster-dependent oxidases, and catalytic performance surpasses to date-reported artificial complexes. Our experimental and theoretical results reveal the crucial role of periodic arrangement of amino acid components, enabled by fluorenyl stacking, in forming oxidase-mimetic copper clusters. Nucleotides provide coordination atoms that enhance copper activity by facilitating the formation of a copper-peroxide intermediate. The catalyst shows thermophilic behavior, remaining active up to 95 °C in an aqueous environment. These findings may aid the design of advanced biomimetic catalysts and offer insights into primordial redox enzymes.
Collapse
Affiliation(s)
- Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Siyuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peidong Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Jikun Li
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
7
|
Wu H, Xu S, Du P, Liu Y, Li H, Yang H, Wang T, Wang ZG. A nucleotide-copper(II) complex possessing a monooxygenase-like catalytic function. J Mater Chem B 2023. [PMID: 37409588 DOI: 10.1039/d3tb00780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The de novo design of artificial biocatalysts with enzyme-like active sites and catalytic functions has long been an attractive yet challenging goal. In this study, we present a nucleotide-Cu2+ complex, synthesized through a one-pot approach, capable of catalyzing ortho-hydroxylation reactions resembling those of minimalist monooxygenases. Both experimental and theoretical findings demonstrate that the catalyst, in which Cu2+ coordinates with both the nucleobase and phosphate moieties, forms a ternary-complex intermediate with H2O2 and tyramine substrates through multiple weak interactions. The subsequent electron transfer and hydrogen (or proton) transfer steps lead to the ortho-hydroxylation of tyramine, where the single copper center exhibits a similar function to natural dicopper sites. Moreover, Cu2+ bound to nucleotides or oligonucleotides exhibits thermophilic catalytic properties within the temperature range of 25 °C to 75 °C, while native enzymes are fully deactivated above 35 °C. This study may provide insights for the future design of oxidase-mimetic catalysts and serve as a guide for the design of primitive metallocentre-dependent enzymes.
Collapse
Affiliation(s)
- Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Peidong Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ting Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
8
|
Cai Y, Zhou J, Huang J, Zhou W, Wan Y, Cohen Stuart MA, Wang J. Rational design of polymeric nanozymes with robust catalytic performance via copper-ligand coordination. J Colloid Interface Sci 2023; 645:458-465. [PMID: 37156154 DOI: 10.1016/j.jcis.2023.04.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Incorporating copper (Cu) ions into polymeric particles can be a straightforward strategy for mimicking copper enzymes, but it is challenging to simultaneously control the structure of the nanozyme and of the active sites. In this report, we present a novel bis-ligand (L2) containing bipyridine groups connected by a tetra-ethylene oxide (4EO) spacer. In phosphate buffer the Cu-L2 mixture forms coordination complexes that (at proper composition) can bind polyacrylic acid (PAA) to produce catalytically active polymeric nanoparticles with well-defined structure and size, which we refer to as 'nanozymes'. Manipulating the L2/Cu mixing ratio and using phosphate as a co-binding motif, cooperative copper centres are realized that exhibit promoted oxidation activity. The structure and activity of the so-designed nanozymes remain stable upon increasing temperature and over multiple cycles of application. Increasing ionic strength causes enhanced activity, a response also seen for natural tyrosinase. By means of our rational design we obtain nanozymes with optimized structure and active sites that in several respects outperform natural enzymes. This approach therefore demonstrates a novel strategy for developing functional nanozymes, which may well stimulate the application of this class of catalysts.
Collapse
Affiliation(s)
- Ying Cai
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jianan Huang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Wenjuan Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Yuting Wan
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Li D, Lv Y, Xia H, Huang J, Liu W, Yu J, Jing G, Liu W, Sun Y, Li W. Target-activated multivalent sensing platform for improving the sensitivity and selectivity of Hg2+ detection. Anal Chim Acta 2023; 1256:341123. [PMID: 37037627 DOI: 10.1016/j.aca.2023.341123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
Sensitivity and selectivity are critical parameters to evaluate the performance of sensors. For trace detection, it remains a challenge to design a new sensor that achieves high sensitivity and selectivity simultaneously. Here, we present a target-activated dual Mg2+-dependent DNAzyme (MNAzyme) that served as a simple sensing model to explore the multivalency in improving the analytical sensitivity and selectivity for target detection. Mercury ion (Hg2+), a notorious toxic metal ion, was selected as a model target. In the presence of Hg2+, the thymine-rich regions of the hairpin probe and primer could hybridize to form a stable duplex via the thymine-Hg2+-thymine structure. Then, an intact enzyme sequence was exposed and two separate enzyme fragments were close to each other, generating a dual MNAzyme. Benefiting from the localized high-concentration of the enzyme strand, the dual MNAzyme showed a remarkable improvement in binding stability. The catalytic rate constant of the dual MNAzyme was theoretically 1.60 times higher than that of the monomeric counterpart, and the sensitivity and selectivity had 4.50 and 1.44-fold enhancement, respectively. When the dual MNAzyme was used for sensor applications, the limit of detection was determined to be 0.04 and 0.2 nM via UV-vis spectrophotometer and naked eye, respectively. Meanwhile, the method offered desirable selectivity toward Hg2+ against other metal ions. With the advantages of simple operation, high sensitivity, and desirable selectivity, the developed multivalent sensing platform could be easily expanded in the future for the on-site detection of other low-abundance analytes.
Collapse
Affiliation(s)
- Dongyan Li
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yuxiong Lv
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Huaiyue Xia
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, China
| | - Wenjie Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jianna Yu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Guoxing Jing
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wen Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yingying Sun
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wenshan Li
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
10
|
Engineering synergistic effects of immobilized cooperative catalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Tu K, He J, Chen S, Liu C, Cheng J, He E, Li Y, Zhang L, Zhang H, Cheng Z. An alternating conduction-insulation "molecular fence" model from fluorinated metallopolymers. Chem Commun (Camb) 2022; 58:5383-5386. [PMID: 35412535 DOI: 10.1039/d2cc00826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introducing fluoroalkyl chains into metallopolymers is a prerequisite to studying the self-organization effect of fluoroalkyl chains and their structure-property relationship. In this work, we present a fluorinated metallopolymer to build an alternating conduction-insulation "molecular fence" model synthesized by the coordination of Ru(II) and a bis-terpyridine-end-capped-phenyl (BTP) ligand modified with fluoroalkyl chains. Taking advantage of scanning tunneling microscopy (STM), a well-aligned periodic linear layered structure is observed clearly, which provides the most direct visualization of the self-organization effect of fluoroalkyl chains for the first time. In addition, combining ultraviolet-visible (UV-vis) absorption spectroscopy and theoretical calculations, we find that fluoroalkyl chains demonstrate a septation effect between two adjacent metallopolymer chains and further restrain the occurrence of interchain charge-transfer transition (ICCT) due to their closed packed structure. This "molecular fence" model can provide a novel route for electron conduction in molecular networks and guide potential applications in the materials science field.
Collapse
Affiliation(s)
- Kai Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jing He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Shuaijie Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Cheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Jiannan Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Enjie He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
13
|
Lee YJ, Kim H, Kim Y, Cho KH, Hong S, Nam KT, Kim SH, Choi CH, Seo J. Repurposing a peptide antibiotic as a catalyst: a multicopper–daptomycin complex as a cooperative O–O bond formation and activation catalyst. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A peptide antibiotic, daptomycin, was repurposed to a multicopper catalyst presenting cooperative rate enhancement in O–O bond formation and activation reactions.
Collapse
Affiliation(s)
- Yen Jea Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Kang Hee Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sugyeong Hong
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
14
|
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium‐Ion Binding Mediates the Reversible Interconversion of
Cis
and
Trans
Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Natasha P. Vargo
- Department of Chemistry Brown University 324 Brook Street Providence RI 02912 USA
| | - Jill B. Harland
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Bradley W. Musselman
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Brookhaven National Laboratory PO Box 5000 Upton NY 11973-5000 USA
| | - Jerome R. Robinson
- Department of Chemistry Brown University 324 Brook Street Providence RI 02912 USA
| |
Collapse
|
15
|
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium-Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021; 60:19836-19842. [PMID: 34101958 DOI: 10.1002/anie.202105421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Indexed: 01/27/2023]
Abstract
Coupled dinuclear copper oxygen cores (Cu2 O2 ) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2 transport and substrate oxidation in many organisms. μ-1,2-cis peroxido dicopper cores (C P) have been proposed as key structures in the early stages of O2 binding in these proteins; their reversible isomerization to other Cu2 O2 cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallic C P cores in biological and synthetic systems, the properties and reactivity of C P Cu2 O2 species remain largely unexplored. Herein, we report the reversible interconversion of μ-1,2-trans peroxido (T P) and C P dicopper cores. CaII mediates this process by reversible binding at the Cu2 O2 core, highlighting the unique capability for metal-ion binding events to stabilize novel reactive fragments and control O2 activation in biomimetic systems.
Collapse
Affiliation(s)
- Natasha P Vargo
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Bradley W Musselman
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, PO Box 5000, Upton, NY, 11973-5000, USA
| | - Jerome R Robinson
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA
| |
Collapse
|
16
|
Osawa S, Kitanishi K, Kiuchi M, Shimonaka M, Otsuka H. Accelerated Redox Reaction of Hydrogen Peroxide by Employing Locally Concentrated State of Copper Catalysts on Polymer Chain. Macromol Rapid Commun 2021; 42:e2100274. [PMID: 34292631 DOI: 10.1002/marc.202100274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/13/2021] [Indexed: 12/21/2022]
Abstract
Copper complexes act as catalysts for redox reactions to generate reactive oxygen species that destroy biomolecules and, therefore, are utilized to design drugs including antitumor and antibacterial medicines. Especially, catalytic reaction for hydrogen peroxide decomposition is important because it includes the process for generating highly toxic hydroxyl radical, i.e., Fenton-like reaction. Considering that multicoppers/hydrogen peroxide species are the important intermediates for the redox reaction, herein a polymer having copper complexes in the side chains is designed to facilitate the formation of the intermediates by building locally concentrated state of the copper complexes. The polymer increases their catalytic activities for hydrogen peroxide decomposition and promotes reactive oxygen species' generation, eventually leading to higher antibacterial activity. This reveals the virtue of building a locally concentrated state of catalysts on polymers toward drug design with low amounts of transition metals.
Collapse
Affiliation(s)
- Shigehito Osawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kenichi Kitanishi
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Maho Kiuchi
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Motoyuki Shimonaka
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.,Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Hidenori Otsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.,Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.,Water Frontier Science and Technology Research Center, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
17
|
Jana RD, Das A, Paine TK. Enhancing Chemo- and Stereoselectivity in C-H Bond Oxygenation with H 2O 2 by Nonheme High-Spin Iron Catalysts: The Role of Lewis Acid and Multimetal Centers. Inorg Chem 2021; 60:5969-5979. [PMID: 33784082 DOI: 10.1021/acs.inorgchem.1c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spin states of iron often direct the selectivity in oxidation catalysis by iron complexes using hydrogen peroxide (H2O2) on an oxidant. While low-spin iron(III) hydroperoxides display stereoselective C-H bond hydroxylation, the reactions are nonstereoselective with high-spin iron(II) catalysts. The catalytic studies with a series of high-spin iron(II) complexes of N4 ligands with H2O2 and Sc3+ reported here reveal that the Lewis acid promotes catalytic C-H bond hydroxylation with high chemo- and stereoselectivity. This reactivity pattern is observed with iron(II) complexes containing two cis-labile sites. The enhanced selectivity for C-H bond hydroxylation catalyzed by the high-spin iron(II) complexes in the presence of Sc3+ parallels that of the low-spin iron catalysts. Furthermore, the introduction of multimetal centers enhances the activity and selectivity of the iron catalyst. The study provides insights into the development of peroxide-dependent bioinspired catalysts for the selective oxygenation of C-H bonds without the restriction of using iron complexes of strong-field ligands.
Collapse
Affiliation(s)
- Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
18
|
Jin L, Thanneeru S, Cintron D, He J. Bioinspired Design of Hybrid Polymer Catalysts with Multicopper Sites for Oxygen Reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202001333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lei Jin
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
| | | | - Daniel Cintron
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
| | - Jie He
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
- Polymer Program Institute of Materials Science University of Connecticut Storrs CT 06269 USA
| |
Collapse
|
19
|
Liu S, Du P, Sun H, Yu HY, Wang ZG. Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03753] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siyuan Liu
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Peidong Du
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hai-Yin Yu
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Li Z, Li Y, Zhao Y, Wang H, Zhang Y, Song B, Li X, Lu S, Hao XQ, Hla SW, Tu Y, Li X. Synthesis of Metallopolymers and Direct Visualization of the Single Polymer Chain. J Am Chem Soc 2020; 142:6196-6205. [PMID: 32150680 PMCID: PMC7375330 DOI: 10.1021/jacs.0c00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During the past few decades, the study of the single polymer chain has attracted considerable attention with the goal of exploring the structure-property relationship of polymers. It still, however, remains challenging due to the variability and low atomic resolution of the amorphous single polymer chain. Here, we demonstrated a new strategy to visualize the single metallopolymer chain with a hexameric or trimeric supramolecule as a repeat unit, in which Ru(II) with strong coordination and Fe(II) with weak coordination were combined together in a stepwise manner. With the help of ultrahigh-vacuum, low-temperature scanning tunneling microscopy (UHV-LT-STM) and scanning tunneling spectroscopy (STS), we were able to directly visualize both Ru(II) and Fe(II), which act as staining reagents on the repeat units, thus providing detailed structural information for the single polymer chain. As such, the direct visualization of the single random polymer chain is realized to enhance the characterization of polymers at the single-molecule level.
Collapse
Affiliation(s)
- Zhikai Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yiming Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yiming Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Heng Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yuan Zhang
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Bo Song
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaohong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuai Lu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Saw-Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yingfeng Tu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
21
|
Archer WR, Fiorito A, Heinz-Kunert SL, MacNicol PL, Winn SA, Schulz MD. Synthesis and Rare-Earth-Element Chelation Properties of Linear Poly(ethylenimine methylenephosphonate). Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- William R. Archer
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Agustin Fiorito
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sherrie L. Heinz-Kunert
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Piper L. MacNicol
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha A. Winn
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
22
|
Wei Z, Thanneeru S, Margaret Rodriguez E, Weng G, He J. Adaptable Eu-containing polymeric films with dynamic control of mechanical properties in response to moisture. SOFT MATTER 2020; 16:2276-2284. [PMID: 32040125 DOI: 10.1039/c9sm02440a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-healing polymers often have a trade-off between healing efficiency and mechanical stiffness. Stiff polymers that sacrifice their chain mobility are slow to repair upon mechanical failure. We herein report adaptable polymer films with dynamically moisture-controlled mechanical and optical properties, therefore having tunable self-healing efficiency. The design of the polymer film is based on the coordination of europium (Eu) with dipicolylamine (DPA)-containing random copolymers of poly(n-butyl acrylate-co-2-hydroxy-3-dipicolylamino methacrylate) (P(nBA-co-GMADPA)). The Eu-DPA complexation results in the formation of mechanically robust polymer films. The coordination of Eu-DPA has proven to be moisture-switchable given the preferential coordination of lanthanide metals to O over N, using nuclear magnetic resonance and fluorescence spectroscopy. Water competing with DPA to bind Eu3+ ions can weaken the cross-linking networks formed by Eu-DPA coordination, leading to the increase of chain mobility. The in situ dynamic mechanical analysis and ex situ rheological studies confirm that the viscofluid and the elastic solid states of Eu-polymers are switchable by moisture. Water speeds up the self-healing of the polymer film by roughly 100 times; while it can be removed after healing to recover the original mechanical stiffness of polymers.
Collapse
Affiliation(s)
- Zichao Wei
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Srinivas Thanneeru
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| | | | - Gengsheng Weng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA. and School of Material Science and Chemical Engineering, Ningbo Key Laboratory of Specialty Polymers, Ningbo University, Ningbo 315211, China.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA. and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
23
|
He F, Zheng Y, Fan H, Ma D, Chen Q, Wei T, Wu W, Wu D, Hu X. Oxidase-Inspired Selective 2e/4e Reduction of Oxygen on Electron-Deficient Cu. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4833-4842. [PMID: 31914316 DOI: 10.1021/acsami.9b20920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development of low-cost and efficient (electro)catalysts with tunable 2e/4e oxygen reduction reaction (ORR) selectivity toward energy conversion, biomimetic catalysis, and biosensing has attracted growing interest. Herein, we reported that carbon nanohybrids with O- or N-coordinated Cu (Cu-OC or Cu-NC) showed superior activity for 2e and 4e electrocatalytic ORR with selectivities of 84.0% and 97.2%, respectively. Experimental evidence demonstrated that the strong electron-rich O-doped carbon in Cu-OC donated electrons to Cu2+, weakening the binding strength of H2O2 at Cu-O centers and facilitating the 2e ORR pathway for selective production of H2O2. However, the poor electron-donor ability of the N-doped carbon in Cu-NC made Cu-N sites more electron deficient due to the reduced electron transfer from N-doped carbon to Cu2+, promoting 4e ORR by enhancing adsorption of O2 and the ORR intermediates. The high 4e ORR activity of Cu-NC rendered its potential for application in a Zn-air battery and oxidase-mimicking activity for 3,3',5,5'-tetramethylbenzidine (TMB) and ascorbic acid (AA) oxidation. The maximal velocity (Vmax) of TMB and AA oxidation over Cu-NC was higher than some natural oxidases and noble-metal-based artificial enzymes. The lower activation energy for AA oxidation over Cu-NC resulted in a 263-fold higher oxidative rate than TMB, further prompting nonenzymatic sensing of AA by the competitive oxidation strategy.
Collapse
Affiliation(s)
- Fei He
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Yan Zheng
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Huailin Fan
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Delong Ma
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Qifeng Chen
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Tao Wei
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Weibing Wu
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Xun Hu
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| |
Collapse
|
24
|
Sun C, Lin H, Gong X, Yang Z, Mo Y, Chen X, Gao J. DOTA-Branched Organic Frameworks as Giant and Potent Metal Chelators. J Am Chem Soc 2019; 142:198-206. [PMID: 31823608 DOI: 10.1021/jacs.9b09269] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multinuclear complexes as metallo-agents for clinical use have caught extensive attention. In this paper, using 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as both a functioning unit and a constructing junction, we build a series of DOTA-branched organic frameworks with multiple chelating holes by organizing DOTA layer by layer. These giant chelators are well characterized, which reveals their nanosized and soft structures. Further experiments demonstrate that they could efficiently hold abundant metal ions with much higher kinetic stabilities than the conventional small DOTA chelator. Their corresponding polynuclear complexes containing Gd3+, Tb3+, or both show superior imaging properties, excellent feasibility for peripheral modification, and unusual kinetic stability. This work can be easily extended to the fabrication of diverse homomultinuclear complexes and core/shell heteromultinuclear complexes with multifunctional properties. We expect that this new type of giant molecules and the ligand-branching strategy would open up a new avenue for the design and construction of next-generation polymetallic agents with high performance and stabilities for biomedical applications.
Collapse
Affiliation(s)
- Chengjie Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xuanqing Gong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Zhaoxuan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Yan Mo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
25
|
Zhang L, Wei Z, Thanneeru S, Meng M, Kruzyk M, Ung G, Liu B, He J. A Polymer Solution To Prevent Nanoclustering and Improve the Selectivity of Metal Nanoparticles for Electrocatalytic CO
2
Reduction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory of New Power Batteries Collaborative Innovation Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
| | - Zichao Wei
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
| | | | - Michael Meng
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
| | - Megan Kruzyk
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
| | - Gaël Ung
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries Collaborative Innovation Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jie He
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
- Polymer Program Institute of Materials Science University of Connecticut Storrs CT 06269 USA
| |
Collapse
|
26
|
Zhang L, Wei Z, Thanneeru S, Meng M, Kruzyk M, Ung G, Liu B, He J. A Polymer Solution To Prevent Nanoclustering and Improve the Selectivity of Metal Nanoparticles for Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2019; 58:15834-15840. [PMID: 31468668 DOI: 10.1002/anie.201909069] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 01/26/2023]
Abstract
The stability of metal nanocatalysts for electrocatalytic CO2 reduction is of key importance for practical application. We report the use of two polymeric N-heterocyclic carbenes (NHC) (polydentate and monodentate) to stabilize metal nanocatalysts (Au and Pd) for efficient CO2 electroreduction. Compared with other conventional ligands including thiols and amines, metal-carbene bonds that are stable under reductive potentials prevent the nanoclustering of nanoparticles. Au nanocatalysts modified by polymeric NHC ligands show an activity retention of 86 % after CO2 reduction at -0.9 V for 11 h, while it is less than 10 % for unmodified Au. We demonstrate that the hydrophobicity of polymer ligands and the enriched surface electron density of metal NPs through σ-donation of NHCs substantially improve the selectivity for CO2 reduction over proton.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory of New Power Batteries, Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.,Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Zichao Wei
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Srinivas Thanneeru
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Michael Meng
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Megan Kruzyk
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Gaël Ung
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA.,Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
27
|
Cao H, Qin Y, Zhuo C, Wang X, Wang F. Homogeneous Metallic Oligomer Catalyst with Multisite Intramolecular Cooperativity for the Synthesis of CO2-Based Polymers. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02741] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Han Cao
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yusheng Qin
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chunwei Zhuo
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|