1
|
Chen X, Zhao MR, Song B, Li G, Yang LM. Diatomic Active Sites Embedded Graphyne as Electrocatalysts for Ammonia Synthesis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39440967 DOI: 10.1021/acsami.4c13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ammonia (NH3) is a vital chemical compound in industry and agriculture, and the electrochemical nitrogen reduction reaction (eNRR) is considered a promising approach for NH3 synthesis. However, the development of eNRR faces the challenge of high overpotential and low Faradaic efficiency. In this work, graphyne (GY) is anchored by 3d, 4d, and 5d dual transition metal atoms to form diatomic catalysts (DACs) and is roundly investigated as an electrocatalyst for eNRR via density functional theory calculations. Due to the protrusion of anchored metal atoms, the active sites of GY are better exposed compared to other substrates, exhibiting higher activity. Through four-step hierarchical high-throughput screening (ΔG*N2 < 0 eV, ΔG*N2 → *N2H < 0.4 eV, ΔG*NH2 → *NH3 < 0.4 eV, and ΔG*N2 < ΔG*H), the number of selected catalysts in each step is 325, 240, 145, and 20, respectively. Considering a series of factors, including stability, initial potential, and selectivity, 13 kinds of eligible catalysts are identified. Optimal eNRR paths studies show that the best catalyst Mn2@GY features no onset potential. For the three catalysts (Mn2@GY, Ir2@GY, and RhOs@GY), the onset potentials of the most favorable eNRR pathways are -0.07, -0.12, and -0.17 V, respectively. The excellent catalytic activity can be credited to the effective charge transfer and orbital interaction between the active site and adsorbed N2. Our work demonstrates the significance of DACs for ammonia synthesis and provides a paradigm for the study of DACs even for other important reactions.
Collapse
Affiliation(s)
- Xiaoting Chen
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Man-Rong Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingyi Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoliang Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Li-Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Zhang S, Yi J, Liu M, Shi L, Chen M, Wu L. High-Density Atomically Dispersed Metals Activate Adjacent Nitrogen/Carbon Sites for Efficient Ammonia Electrosynthesis from Nitrate. ACS NANO 2024; 18:26722-26732. [PMID: 39292647 DOI: 10.1021/acsnano.4c06754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
While electrocatalytic reduction of nitrate to ammonia presents a sustainable solution for addressing both the environmental and energy issues within the nitrogen cycle, it remains a great challenge to achieve high selectivity and activity due to undesired side reactions and sluggish reaction kinetics. Here, we fabricate a series of metal-N-C catalysts that feature hierarchically ordered porous structure and high-density atomically dispersed metals (HD M1/PNC). Specifically, the as-prepared HD Fe1/PNC catalyst achieves an ammonia production rate of 21.55 mol gcat-1 h-1 that is at least 1 order of magnitude enhancement compared with that of the reported metal-N-C catalysts, while maintaining a 92.5% Faradaic efficiency when run at 500 mA cm-2 for 300 h. In addition to abundant active sites, such high performance benefits from the fact that the high-density Fe can more significantly activate the adjacent N/C sites through charge redistribution for improved water adsorption/dissociation, providing sufficient active hydrogen to Fe sites for nitrate ammoniation, compared with the low-density counterpart. This finding deepens the understanding of high-density metal-N-C materials at the atomic scale and may further be used for designing other catalysts.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Jianjian Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Mengdi Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lan Shi
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Hu X, Li X, Su NQ. Exploring Nitrogen Reduction Reaction Mechanisms with Graphyne-Confined Single-Atom Catalysts: A Computational Study Incorporating Electrode Potential and pH. J Phys Chem Lett 2024; 15:9692-9705. [PMID: 39284129 DOI: 10.1021/acs.jpclett.4c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This study reconciles discrepancies between practical electrochemical conditions and theoretical density functional theory (DFT) frameworks, evaluating three graphyne-confined single-atom catalysts (Mo-TEB, Mo@GY, and Mo@GDY). Using both constant charge models in vacuum and constant potential models with continuum implicit solvation, we closely mimic real-world electrochemical environments. Our findings highlight the crucial role of explicitly incorporating electrode potential and pH in the constant potential model, providing enhanced insights into the nitrogen reduction reaction (NRR) mechanisms. Notably, the superior NRR performance of Mo-TEB is attributed to the d-band center's proximity to the Fermi level and enhanced magnetic moments at the atomic center. This research advances our understanding of graphyne-confined single-atom catalysts as effective NRR platforms and underscores the significance of the constant potential model for accurate DFT studies of electrochemical reactions.
Collapse
Affiliation(s)
- Xiuli Hu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Li
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Neil Qiang Su
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Zheng Z, Qi L, Luan X, Zhao S, Xue Y, Li Y. Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne. Nat Commun 2024; 15:7331. [PMID: 39187493 PMCID: PMC11347568 DOI: 10.1038/s41467-024-51687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Controlling the precise growth of atoms is necessary to achieve manipulation of atomic composition and atomic position, regulation of electronic structure, and an understanding of reactions at the atomic level. Herein, we report a facile method for ordered anchoring of zero-valent platinum and manganese atoms with single-atom thickness on graphdiyne under mild conditions. Due to strong and incomplete charge transfer between graphdiyne and metal atoms, the formation of metal clusters and nanoparticles can be inhibited. The size, composition and structure of the bimetallic nanoplates are precisely controlled by the natural structure-limiting effect of graphdiyne. Experimental characterization clearly demonstrates such a fine control process. Electrochemical measurements show that the active site of platinum-manganese interface on graphdiyne guarantees the high catalytic activity and selectivity (~100%) for alkene-to-diol conversion. This work lays a solid foundation for obtaining high-performance nanomaterials by the atomic engineering of active site.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Shuya Zhao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China.
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China.
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Jiang L, Zhao M, Yu Q. Rational design of graphdiyne-based single-atom catalysts for electrochemical CO 2 reduction reaction. RSC Adv 2024; 14:27365-27371. [PMID: 39205931 PMCID: PMC11350510 DOI: 10.1039/d4ra04643a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Graphdiyne (GDY) has achieved great success in the application of two-dimensional carbon materials in recent years due to its excellent electrochemical catalytic capacity. Considering the unique electronic structure of GDY, transition metal (TM1) (TM = Fe, Ru, Os, Co, Rh, Ir) single-atom catalysts (SACs) with isolated loading on GDY were designed for electrochemical CO2 reduction reaction (CO2RR) with density functional theoretical (DFT) calculations. The charge density difference and projected densities of states have been systematically calculated. The mechanism of electrochemical catalysis and the reaction pathway of CO2RR over Os1/GDY catalysts have also been investigated and high catalytic activity was found for the generation of methane. The calculated results provide a theoretical basis for the design of efficient GDY-based SACs for electrochemical CO2RR.
Collapse
Affiliation(s)
- Liyun Jiang
- School of Physics and Telecommunication Engineering, Shaanxi University of Technology Hanzhong 723001 China
| | - Mengdie Zhao
- School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qi Yu
- School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| |
Collapse
|
6
|
Barman N, Kapse S, Thapa R. Electronic Descriptor to Identify the Activity of SACs for E-NRR and Effect of BF 3 as Electrolyte Ion. CHEMSUSCHEM 2024:e202400902. [PMID: 39137119 DOI: 10.1002/cssc.202400902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/16/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Electrochemical nitrogen reduction reaction (e-NRR) is an eco-friendly alternative approach to generate ammonia under ambient conditions, with very low power supply. But, developing of an efficient catalyst by suppressing parallel hydrogen evolution reaction as well as avoiding the catalysts poisoning either by hydrogen or electrolyte ion is an open question. So, in order to screen the single atom catalysts (SACs) for the e-NRR, we proposed a descriptor-based approach using density functional theory (DFT) based calculations. We investigated total 24 different SACs of types TM-Pc, TM-N3C1, TM-N2C2, TM-NC3 and TM-N4, considering transition metal (TM). We have considered mainly BF3 ion to understand the role of electrolyte and extended the study for four more electrolyte ions, Cl, ClO4, SO4, OH. Herein, to predict catalytic activity for a given catalyst we have tested 16 different electronic parameters. Out of those, electronic parameter dxz↓ occupancy, identified as electronic descriptor, is showing an excellent linear correlation with catalytic activity (R2=0.86). Furthermore, the selectivity of e-NRR over HER is defined by using an energy parameter ▵G*H-▵G*NNH. Further, the electronic descriptor (dxz↓ occupancy) can be used to predict promising catalysts for e-NRR, thus reducing the efforts on designing future single atom catalysts (SACs).
Collapse
Affiliation(s)
- Narad Barman
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522240, India
| | - Samadhan Kapse
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522240, India
| | - Ranjit Thapa
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522240, India
- Centre of Computational and Integrative Science, SRM University AP, Amaravati, Andhra Pradesh, 522240, India
| |
Collapse
|
7
|
Fang Y, Yang J, Pan C. The Surface/Interface Modulation of Platinum Group Metal (PGM)-Free Catalysts for VOCs and CO Catalytic Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37379-37389. [PMID: 38981038 DOI: 10.1021/acsami.4c08018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Effective management of volatile organic compounds (VOCs) and carbon monoxide (CO) is critical to human health and the ecological environment. Catalytic oxidation is one of the most promising technologies for achieving efficient VOCs and CO emission control. Platinum group metal (PGM)-free catalysts are recently receiving sustainable attention in catalyzing VOCs and CO removal due to their low cost, superior catalytic activity, and excellent stability, but PGM-free catalysts face challenges in low-temperature catalytic efficiency. In this mini-review, starting with discussing the catalytic mechanism of VOCs and CO oxidation, we summarize the surface/interface modulation strategies of PGM-free catalysts to promote oxygen and VOCs/CO molecule activation for enhanced low-temperature oxidation activity, including oxygen vacancy engineering, heteroatom doping, surface acidity modification, and active interface construction. We highlight the currently remaining challenges and prospects of advanced PGM-free catalyst development for highly efficient VOCs and CO emission control in practical applications.
Collapse
Affiliation(s)
- Yarong Fang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ji Yang
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chuanqi Pan
- Henan Academy of Sciences, Zhengzhou 450046, P. R. China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| |
Collapse
|
8
|
Wang B, Ma J, Yang R, Meng B, Yang X, Zhang Q, Zhang B, Zhuo S. Bridging Nickel-MOF and Copper Single Atoms/Clusters with H-Substituted Graphdiyne for the Tandem Catalysis of Nitrate to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202404819. [PMID: 38728151 DOI: 10.1002/anie.202404819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
Interfacial engineering of synergistic catalysts is one of the keys to achieving multiple proton-coupled electron transfer processes in nitrate-to-ammonia conversion. Herein, by joining ultrathin nickel-based metal-organic framework (denoted Ni-MOF) nanosheets with few-layered hydrogen-substituted graphdiyne-supported copper single atoms and clusters (denoted HsGDY@Cu), a tandem catalyst of Ni-MOFs@HsGDY@Cu with dual-active interfaces was developed for the concerted catalysis of nitrate-to-ammonia. In such a system, the sandwiched HsGDY layer could serve as a bridge to connect the coordinated unsaturated Ni2+ sites with Cu single atoms/clusters in a limited range of 0 to 3.6 nm. From Ni2+ to Cu, via the hydrogen spillover process, the hydrogen radicals (H⋅) generated at the unsaturated Ni2+ sites could migrate across HsGDY to the Cu sites to participate in the transformation of *HNO3 to NH3. From Cu to Ni2+, bypassing the higher reaction energy for *HNO3 formation on the Ni2+ sites, the NO2 - detached from the Cu sites could diffuse onto the unsaturated Ni2+ sites to form NH3 as well. The combined results make this hybrid a tandem catalyst with dual active sites for the catalysis of nitrate-to-ammonia conversion with improved Faradaic efficiency at lower overpotentials.
Collapse
Affiliation(s)
- Biwen Wang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jiahao Ma
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| | - Rong Yang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Bocheng Meng
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiubo Yang
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sifei Zhuo
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| |
Collapse
|
9
|
Iqbal A, Skulason E, Abghoui Y. Electrochemical Nitrogen Reduction to Ammonia at Ambient Condition on the (111) Facets of Transition Metal Carbonitrides. Chemphyschem 2024; 25:e202300991. [PMID: 38568155 DOI: 10.1002/cphc.202300991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/21/2024] [Indexed: 05/15/2024]
Abstract
We conducted Density Functional Theory calculations to investigate a class of materials with the goal of enabling nitrogen activation and electrochemical ammonia production under ambient conditions. The source of protons at the anode could originate from either water splitting or H2, but our specific focus was on the cathode reaction, where nitrogen is reduced into ammonia. We examined the conventional associative mechanism, dissociative mechanism, and Mars-van Krevelen mechanism on the (111) facets of the NaCl-type structure found in early transition metal carbonitrides, including Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, Sc, Y, and W. We explored the catalytic activity by calculating the free energy of all intermediates along the reaction pathway and constructing free energy diagrams to identify the steps that determine the reaction's feasibility. Additionally, we closely examined the potential for catalyst poisoning within the electrochemical environment, considering the bias required to drive the reaction. Furthermore, we assessed the likelihood of catalyst decomposition and the potential for catalyst regeneration among the most intriguing carbonitrides. Our findings revealed that the only carbonitride catalyst considered here exhibiting both activity and stability, capable of self-regeneration and nitrogen-to-ammonia activation, is NbCN with a low potential-determining step energy of 0.58 eV. This material can facilitate ammonia formation via a mixed associative-MvK mechanism. In contrast, other carbonitrides of this crystallographic orientation are likely to undergo decomposition, reverting to their parent metals under operational conditions.
Collapse
Affiliation(s)
- Atef Iqbal
- Science Institute of the University of Iceland
| | - Egill Skulason
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland
| | | |
Collapse
|
10
|
Liu J, Zhang L, Wang K, Jiang C, Zhang C, Wang N. Island-Like Heterogeneous Interface Generating Tandem Toroidal Built-In Electric Field for Efficient Potassium Ions Diffusion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400093. [PMID: 38353062 DOI: 10.1002/smll.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Indexed: 07/19/2024]
Abstract
For large-size potassium accommodation, heterostructure usually suffers severe delamination and exfoliation at the interfaces due to different volume expansion of two-phase during charge/discharge process, resulting in the deconstruction of heterostructures and shortened lifespan of batteries. Here, an innovative strategy is proposed through constructing a microscopic heterostructure system containing copper quantum dots (Cu QDs) highly dispersed in the triphenyl-substituted triazine graphdiyne (TPTG) substrates (TPTG@CuQDs) to solve this problem. The copper quantum dots are uniformly anchored on TPTG substrates, generating a myriad of island-like heterogeneous structures, together with tandem toroidal built-in electric field (BIEF) between every micro heterointerface. The island-like heterostructure endows both benefits of exposed contact interface and robust architecture. Generated tandem toroidal BIEF provides efficient transport pathways with lower energy barriers, reducing the diffusion resistance and facilitating the reaction kinetics of potassium ions. When used as anode, the TPTG@CuQDs exhibit highly reversible capacity and low-capacity degradation (≈0.01% over 5560 cycles at 1 A g-1). Moreover, the TPTG@CuQDs-based full cell delivers an outstanding reversible capacity of ≈110 mAh g-1 over 800 cycles at 1 A g-1. This quantum-scale heterointerface construction strategy offers a new approach toward stable heterostructure design for the application of metal ion batteries.
Collapse
Affiliation(s)
- Jingyi Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Kaihang Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Chao Jiang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Chunfang Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
11
|
Guo Y, Zhang R, Zhang S, Hong H, Li P, Zhao Y, Huang Z, Zhi C. Steering sp-Carbon Content in Graphdiynes for Enhanced Two-Electron Oxygen Reduction to Hydrogen Peroxide. Angew Chem Int Ed Engl 2024; 63:e202401501. [PMID: 38589296 DOI: 10.1002/anie.202401501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 04/07/2024] [Indexed: 04/10/2024]
Abstract
Compared to sp2-hybridized graphene, graphdiynes (GDYs) composed of sp and sp2 carbon are highly promising as efficient catalysts for electrocatalytic oxygen reduction into oxygen peroxide because of the high catalytic reactivity of the electron-rich sp-carbon atoms. The desired catalytic capacity of GDY, such as catalytic selectivity and efficiency, can theoretically be achieved by strategically steering the sp-carbon contents or the topological arrangement of the acetylenic linkages and aromatic bonds. Herein, we successfully tuned the electrocatalytic activity of GDYs by regulating the sp-to-sp2 carbon ratios with different organic monomer precursors. As the active sp-carbon atoms possess electron-sufficient π orbitals, they can donate electrons to the lowest unoccupied molecular orbital (LUMO) orbitals of O2 molecules and initiate subsequent O2 reduction, GDY with the high sp-carbon content of 50 at % exhibits excellent capability of catalyzing O2 reduction into H2O2. It demonstrates exceptional H2O2 selectivity of over 95.0 % and impressive performance in practical H2O2 production, Faraday efficiency (FE) exceeding 99.0 %, and a yield of 83.3 nmol s-1 cm-2. Our work holds significant importance in effectively steering the inherent properties of GDYs by purposefully adjusting the sp-to-sp2 carbon ratio and highlights their immense potential for research and applications in catalysis and other fields.
Collapse
Affiliation(s)
- Ying Guo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Yuwei Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
12
|
He F, Chen X, Xue Y, Li Y. Theoretical Prediction Leads to Synthesize GDY Supported InO x Quantum Dots for CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202318080. [PMID: 38548702 DOI: 10.1002/anie.202318080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Indexed: 04/19/2024]
Abstract
The preparation of formic acid by direct reduction of carbon dioxide is an important basis for the future chemical industry and is of great significance. Due to the serious shortage of highly active and selective electrocatalysts leading to the development of direct reduction of carbon dioxide is limited. Herein the target catalysts with high CO2RR activity and selectivity were identified by integrating DFT calculations and high-throughput screening and by using graphdiyne (GDY) supported metal oxides quantum dots (QDs) as the ideal model. It is theoretically predicted that GDY supported indium oxide QDs (i.e., InOx/GDY) is a new heterostructure electrocatalyst candidate with optimal CO2RR performance. The interfacial electronic strong interactions effectively regulate the surface charge distribution of QDs and affect the adsorption/desorption behavior of HCOO* intermediate during CO2RR to achieve highly efficient CO2 conversion. Based on the predicted composition and structure, we synthesized the advanced catalytic system, and demonstrates superior CO2-to-HCOOH conversion performance. The study presents an effective strategy for rational design of highly efficient heterostructure electrocatalysts to promote green chemical production.
Collapse
Affiliation(s)
- Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Science School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
13
|
Nidhi HV, Koppad VS, Babu AM, Varghese A. Properties, Synthesis and Emerging Applications of Graphdiyne: A Journey Through Recent Advancements. Top Curr Chem (Cham) 2024; 382:19. [PMID: 38762848 DOI: 10.1007/s41061-024-00466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Graphdiyne (GDY) is a new variant of nano-carbon material with excellent chemical, physical and electronic properties. It has attracted wide attention from researchers and industrialists for its extensive role in the fields of optics, electronics, bio-medics and energy. The unique arrangement of sp-sp2 carbon atoms, linear acetylenic linkages, uniform pores and highly conjugated structure offer numerous potentials for further exploration of GDY materials. However, since the material is at its infancy, not much understanding is available regarding its properties, growth mechanism and future applications. Therefore, in this review, readers are guided through a brief discussion on GDY's properties, different synthesis procedures with a special focus on surface functionalization and a list of applications for GDY. The review also critically analyses the advantages and disadvantages of each synthesis route and emphasizes the future scope of the material.
Collapse
Affiliation(s)
- H V Nidhi
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Vinayaka S Koppad
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Ann Mariella Babu
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
14
|
Yuan L, Fang Q, Zhang B. Theoretical exploration of the nitrogen fixation mechanism of two-dimensional dual-metal FeTM@GY (TM = Fe, Mo, Co, and V) electrocatalysts. Dalton Trans 2024; 53:8443-8453. [PMID: 38686440 DOI: 10.1039/d3dt04384c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In contrast to the energy-consuming Haber-Bosch process, ammonia synthesis by electrocatalysis under ambient conditions is an efficient and environmentally friendly method. In this work, through first principles calculations, the potential of four dual-atom FeTM (TM = Fe, Mo, Co, and V) anchored graphyne (FeTM@GY) as efficient nitrogen reduction reaction (NRR) catalysts is systematically investigated. Among them, FeMo@GY is the most promising, with excellent NRR catalytic activity, high ability to suppress the competing hydrogen evolution reaction (HER), and good stability. Moreover, NRR prefers the maximum pathway with the calculated onset potentials of -0.27 V for FeMo@GY. This work not only suggests that FeMo@GY holds great promise as an efficient, low-cost, and stable dual-atom catalyst for NRR but also further provides a guiding idea for the design of efficient NRR catalysts.
Collapse
Affiliation(s)
- Lin Yuan
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
- Engineering Research Center of Flexible Radiation Protection Technology, University of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
- Xi'an Key Laboratory of Nuclear Protection Textile Equipment Technology, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Qinglong Fang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
- Engineering Research Center of Flexible Radiation Protection Technology, University of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
- Xi'an Key Laboratory of Nuclear Protection Textile Equipment Technology, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Baiyu Zhang
- Materials Department, University of California, Santa Barbara, California 93106-5050, USA
| |
Collapse
|
15
|
Guo P, Yin F, Zhang J, Chen B, Ni Z, Shi L, Han M, Wu Z, Li G. Crystal-Phase and Surface-Structure Engineering of Bi 2O 3 for Enhanced Electrochemical N 2 Fixation to NH 3. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17540-17552. [PMID: 38551895 DOI: 10.1021/acsami.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The nitrogen reduction reaction (NRR) for ammonia synthesis is hindered by weak N2 adsorption/activation abilities and the hydrogen evolution reaction (HER). In this study, αBi2O3 (monoclinic) and βBi2O3 (tetragonal) were first synthesized by calcination at different temperatures. Experiments and calculations revealed the effects of Bi2O3 with different crystal phases on N2 adsorption/activation abilities and HER. Then, αBi2O3-x and βBi2O3-x series catalysts with surface oxygen vacancies (OVs) and Bi0 active sites were synthesized through the partial in situ reduction method. The results demonstrate the following: (I) Tetragonal βBi2O3 can better adsorb N2 and cleave the N≡N bond, thereby obtaining a lower NRR rate-limiting energy barrier (*N≡N → *N≡N-H, 0.51 eV). Meanwhile, βBi2O3 can effectively suppress HER by limiting proton adsorption (H+ + e- → *H, 0.54 eV). Therefore, βBi2O3-x series catalysts exhibit higher NH3 yield and FE than αBi2O3-x. Meanwhile, in situ FTIR further confirms that βBi2O3 could better adsorb/activate N2, and the NRR distal mechanism occurs on the Bi2O3 surface. (II) The introduction of NaBH4 promotes the conversion of part of Bi3+ on the Bi2O3 surface into Bi0 and releases OVs. The additional active sites (OVs and Bi0) enhance the overall catalyst's adsorption/activation capacity for N2, further increasing the NH3 yield and FE. Meanwhile, semimetal Bi0 can effectively limit electron accessibility, thereby inhibiting the combination of charges and adsorbed protons, reducing the HER reaction and improving the FE of NRR. Therefore, the introduction of NaBH4 effectively improved the NH3 yield and FE of the αBi2O3-x and βBi2O3-x series catalysts. After optimization, the βBi2O3-0.6 catalyst has the best NRR performance (NH3 yield: 51.36 μg h-1 mg-1cat.; FE: 38.67%), which is superior to the majority of bismuth-based NRR catalysts. This work not only studies the effects of Bi2O3 with different crystal phases on N2 and HER reaction but also effectively regulates the active components of Bi2O3 surface, thereby realizing efficient NRR to NH3 reaction, which provide valuable insights for the rational design of Bi-based NRR electrocatalysts.
Collapse
Affiliation(s)
- Pengju Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fengxiang Yin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, China
| | - Jie Zhang
- Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biaohua Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ziyang Ni
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Liuliu Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Mengyan Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zumai Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guoru Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, China
| |
Collapse
|
16
|
Zhang L, Qi L, Liu J, He F, Wang N, Li Y. Microcrystalline Nanofiber Electrode with Adaptive Intrinsic Structure and Microscopic Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308905. [PMID: 37988690 DOI: 10.1002/smll.202308905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Indexed: 11/23/2023]
Abstract
A strategy of microcrystalline aggregation is proposed to fabricate energy storage electrode with outstanding capacity and stability. Carbon-rich electrode (BDTG) functionalized with benzo[1,2-b:4,5-b']dithiophene units and butadiyne segments are prepared. The linear conjugate chains pack as microcrystalline nanofibers on nanoscale, which further aggregates to form a porous interpenetrating network. The microcrystalline aggregation feature of BDTG exhibit stable structure during long cycling test, revealing the following advantage in structure and property. The stretchable butadiyne linker facilitates reversible adsorption and desorption of Li with the aid of adjacent sulfur heteroatom. The alkyne-alkene transition exhibits intrinsic structural stability of microcrystalline region in BDTG electrodes. Meanwhile, alkynyl groups and sulfur heteroatoms on the surface of BDTG nanofibers participate in the formation of microscopic interface, providing a stable interfacial contact between BDTG electrodes and adjacent electrolyte. As a proof-of-concept, BDTG-based electrode shows high capacity (1430 mAh g-1 at 50 mA g-1) and excellent cycle performance (8000 cycles under 5 A g-1) in half-cell of lithium-ion batteries, and a reversible capacity of 120 mAh g-1 is obtained under the current density of 2 C in full-cell. This work shows microcrystalline aggregation is beneficial to realize adaptive intrinsic structure and interface contact during the charge-discharge process.
Collapse
Affiliation(s)
- Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jingyi Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
17
|
Dong YW, Zhai XJ, Wu Y, Zhou YN, Li YC, Nan J, Wang ST, Chai YM, Dong B. Construction of n-type homogeneous to improve interfacial carrier transfer for enhanced photoelectrocatalytic hydrolysis. J Colloid Interface Sci 2024; 658:258-266. [PMID: 38104408 DOI: 10.1016/j.jcis.2023.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Photoelectrocatalyzed hydrogen production plays an important role in the path to carbon neutrality. The construction of heterojunctions provides an ideal example of an oxygen precipitation reaction. In this work, the performance of the n-n type heterojunction CeBTC@FeBTC/NIF in the photoelectronically coupled catalytic oxygen evolution reaction (OER) reaction is presented. The efficient transfer of carriers between components enhances the catalytic activity. Besides, the construction of heterojunctions optimizes the energy level structure and increases the absorption of light, and the microstructure forms holes with a blackbody effect that also enhances light absorption. Consequently, CeBTC@FeBTC/NIF has excellent photoelectric coupling catalytic properties and requires an overpotential of only 300 mV to drive a current density of 100 mA cm-2 under illumination. More importantly, the n-n heterojunction was found to be effective in enhancing charge and photogenerated electron migration by examining the carrier density of each component and carrier diffusion at the interface.
Collapse
Affiliation(s)
- Yi-Wen Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xue-Jun Zhai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yang Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ya-Nan Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yi-Chuan Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Nan
- CNOOC Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin 300131, China
| | - Shu-Tao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
18
|
Wang Z, Song C, Shen H, Ma S, Li G, Li Y. RuO x Quantum Dots Loaded on Graphdiyne for High-Performance Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307786. [PMID: 37924250 DOI: 10.1002/adma.202307786] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Here, a strategy to strengthen d-p orbital hybridization by fabricating π backbonding in the catalyst for efficient lithium polysulfides (LiPSs) conversion is reported. A special interface structure of RuOx quantum dots (QDs) anchored on graphdiyne (GDY) nanoboxes (RuOx QDs/GDY) is prepared to enable strong Ru-to-alkyne π backdonation, which effectively regulates the d-electron structures of Ru centers to promote the d-p orbital hybridization between the catalyst and LiPSs and significantly boosts the catalytic performance of RuOx QDs/GDY. The strong affinity with Li ions and fast Li-ion diffusion of RuOx QDs/GDY also enable ultrastable Li metal anodes. Thus, S@RuOx QDs/GDY cathodes exhibit excellent cycling performance under harsh conditions, and Li@RuOx QDs/GDY anodes show an ultralong cycling life over 8800 h without Li dendrite growth. Lithium-sulfur (Li-S) full cells with S@RuOx QDs/GDY cathodes and Li@RuOx QDs/GDY anodes can deliver an impressive areal capacity of 17.8 mA h cm-2 and good cycling stability under the practical conditions of low negative-to-positive electrode capacity (N/P) ratio (N/P = 1.4), lean electrolyte (E/S = 3 µL mg-1 ), and high S mass loading (15.4 mg cm-2 ).
Collapse
Affiliation(s)
- Zhongqiang Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Congying Song
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Han Shen
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Shaobo Ma
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Guoxing Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
- Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
19
|
Zheng X, Wu H, Gao Y, Chen S, Xue Y, Li Y. Controllable Assembly of Highly Oxidized Cobalt on Graphdiyne Surface for Efficient Conversion of Nitrogen into Nitric Acid. Angew Chem Int Ed Engl 2024; 63:e202316723. [PMID: 38192242 DOI: 10.1002/anie.202316723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
The manufacture of nitric acid (HNO3 ) consumes large amounts of energy and causes serious environmental pollution. Electrochemical synthesis is regarded as a key way to eliminate carbon emissions from the chemicals industry. The selective electrosynthesis of HNO3 from nitrogen was achieved by controllable assembly of cobalt metal on graphdiyne surface using a powerful tool of electrochemistry at ambient conditions. As an advanced material, graphdiyne (GDY) has a large conjugated structure on its surface and is rich in sp-C triple bond skeleton, which can achieve strong interaction with metal atoms, resulting in incomplete charge transfer between graphdiyne and cobalt atoms. The experimental and theoretical calculation results show that the highly oxidized cobalt on graphdiyne (HOCo/GDY) can selectively and efficiently activate and convert the nitrogen into the key intermediate *NO, which promotes the efficient overall conversion performance of nitrogen to nitric acid. Thus, the highest nitric acid yield (192.0 μg h-1 mg-1 ) and Faradaic efficiency (21.5 %) were achieved at low potentials.
Collapse
Affiliation(s)
- Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Zhang L, Li J, Wei G, Yang H, Bai H, Xi G. Exploring the Fate of Copper Ions in the Synthesis of Graphdiyne. Angew Chem Int Ed Engl 2024; 63:e202316936. [PMID: 38179834 DOI: 10.1002/anie.202316936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Copper is a crucial catalyst in the synthesis of graphdiyne (GDY). However, as catalysts, the final fate of the copper ions has hardly been concerned, which are usually treated as impurities. Here, it is observed that after simple washing with water and ethanol, GDY still contains a certain amount of copper ions, and demonstrated that the copper ions are adsorbed at the atomic layers of GDY. Furthermore, we transformed in situ the copper ions into ultrathin Cu nanocrystals, and the obtained Cu/GDY hybrids can be generally converted into a series of metal/GDY hybrid materials, such as Ag/GDY, Au/GDY, Pt/GDY, Pd/GDY, and Rh/GDY. The Cu/GDY hybrids exhibit extraordinary surface enhanced Raman scattering effect and can be applied in pollutant efficient enrichment and detection.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, No. 11, Ronghua South Road, Beijing, 100176, P. R. China
| | - Junfang Li
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, No. 11, Ronghua South Road, Beijing, 100176, P. R. China
| | - Guoying Wei
- College of Materials and Chemistry, China Jiliang University, No. 258, Xueyuan Street, Hangzhou, 310018, P. R. China
| | - Haifeng Yang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, No. 11, Ronghua South Road, Beijing, 100176, P. R. China
| | - Hua Bai
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, No. 11, Ronghua South Road, Beijing, 100176, P. R. China
| | - Guangcheng Xi
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, No. 11, Ronghua South Road, Beijing, 100176, P. R. China
| |
Collapse
|
21
|
Zhao F, Liao G, Liu M, Wang T, Zhao Y, Xu J, Yin X. Precise Preparation of Triarylboron-Based Graphdiyne Analogues for Gas Separation. Angew Chem Int Ed Engl 2023:e202317294. [PMID: 38087842 DOI: 10.1002/anie.202317294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 12/23/2023]
Abstract
A series of triarylboron-based graphdiyne analogues (TAB-GDYs) with tunable pore size were prepared through copper mediated coupling reaction. The elemental composition, chemical bond, morphology of TAB-GDYs were well characterized. The crystallinity was confirmed by selected area electron diffraction (SAED) and stacking modes were studied in combination with high resolution transmission electron microscope (HRTEM) and structure simulation. The absorption and desorption isotherm revealed relatively high specific surface area of these TAB-GDYs up to 788 m2 g-1 for TMTAB-GDY, which decreased as pore size enlarged. TAB-GDYs exhibit certain selectivity for CO2 /N2 (21.9), CO2 /CH4 (5.3), CO2 /H2 (41.8) and C2 H2 /CO2 (2.3). This work has developed a series of boron containing two-dimensional frameworks with clear structures and good stability, and their tunable pore sizes have laid the foundation for future applications in the gas separation field.
Collapse
Affiliation(s)
- Fenggui Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Guanming Liao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Meiyan Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Tao Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| |
Collapse
|
22
|
Sangtam BT, Park H. Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield. MICROMACHINES 2023; 14:2234. [PMID: 38138403 PMCID: PMC10745635 DOI: 10.3390/mi14122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas, the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However, one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles, which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors, measuring techniques, and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions, as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis, facilitating more competent, inexpensive, and feasible green hydrogen production.
Collapse
Affiliation(s)
| | - Hanwook Park
- Department of Biomedical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Republic of Korea;
| |
Collapse
|
23
|
Yin H, Xing X, Zhang W, Li J, Xiong W, Li H. A simple hydrothermal synthesis of an oxygen vacancy-rich MnMoO 4 rod-like material and its highly efficient electrocatalytic nitrogen reduction. Dalton Trans 2023; 52:16670-16679. [PMID: 37916428 DOI: 10.1039/d3dt03018k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalytic nitrogen reduction (NRR) for artificial ammonia synthesis under ambient conditions is considered a promising alternative to the traditional Haber-Bosch process. However, it still faces multiple challenges such as the difficulty of N2 adsorption and activation and limited Faraday efficiency. In this work, a bimetallic oxide MnMoO4 was prepared by a hydrothermal method and low temperature calcination. The influence of the sintering temperature on the microstructure (crystallinity and oxygen vacancies) of the oxide and its NRR properties were systematically explored. The results showed that MnMoO4 sintered at 500 °C had the highest concentration of OVs and showed excellent NRR performance, with the highest NH3 yield (up to 12.28 μg h-1 mgcat-1), high Faraday efficiency (23.04% at -0.30 V vs. RHE), and good stability at -0.40 V vs. RHE, and the catalytic performance was about two times higher than that of Mn2O3 and MoO3. It is also superior to other bimetallic oxide NRR electrocatalysts reported in some cases. In addition, we also explored the ratio between Mn and Mo metals, and the catalytic effect was the best when Mn : Mo = 1 : 1. Due to the synergistic effect between Mn and Mo metals and the large number of OVs present internally, the catalytic activity for the NRR was largely improved. This study suggests that the bimetallic oxide MnMoO4 may be a promising NRR electrocatalyst.
Collapse
Affiliation(s)
- Huhu Yin
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor &Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Xiujing Xing
- Chemistry Department, University of California, Davis 95616, USA
| | - Wei Zhang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor &Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Jin Li
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor &Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Wei Xiong
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor &Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
24
|
Zhang X, Yan L, Su Z. A single transition metal atom anchored on Nb 2C as an electrocatalyst for the nitrogen reduction reaction. NANOSCALE 2023; 15:17508-17515. [PMID: 37869771 DOI: 10.1039/d3nr02491a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Nitrogen (N2) reduction to produce ammonia (NH3) under milder conditions is attractive as NH3 has been widely used in various fields. The electrocatalytic nitrogen reduction reaction (NRR) is considered to be a more moderate and green method for ammonia synthesis. Herein, using density functional theory (DFT) computations, we investigated the potential application of single-atom catalysts (SACs) toward the NRR, in which transition metal (TM, TM = Ti, V, Mn, Fe, Co, Y, Zr, Mo) atoms are supported on Nb2C (TM-Nb2C). Through our screening, Fe-Nb2C is highlighted from 8 candidate systems as the superior SAC for the NRR with a low limiting potential of -0.47 V. Meanwhile, a volcano plot between UL (NRR) and the ICOHP values of the N-H bond in *NH2 is established to determine the optimal ICOHP values that can be used as a simple descriptor of the NRR performance of Fe-Nb2C.
Collapse
Affiliation(s)
- Xuanyue Zhang
- Institute of Functional Material Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Likai Yan
- Institute of Functional Material Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Zhongmin Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
25
|
Zhang L, Yi W, Li J, Wei G, Xi G, Mao L. Surfactant-free interfacial growth of graphdiyne hollow microspheres and the mechanistic origin of their SERS activity. Nat Commun 2023; 14:6318. [PMID: 37813839 PMCID: PMC10562396 DOI: 10.1038/s41467-023-42038-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
As a two-dimensional carbon allotrope, graphdiyne possesses a direct band gap, excellent charge carrier mobility, and uniformly distributed pores. Here, a surfactant-free growth method is developed to efficiently synthesize graphdiyne hollow microspheres at liquid‒liquid interfaces with a self-supporting structure, which avoids the influence of surfactants on product properties. We demonstrate that pristine graphdiyne hollow microspheres, without any additional functionalization, show a strong surface-enhanced Raman scattering effect with an enhancement factor of 3.7 × 107 and a detection limit of 1 × 10-12 M for rhodamine 6 G, which is approximately 1000 times that of graphene. Experimental measurements and first-principles density functional theory simulations confirm the hypothesis that the surface-enhanced Raman scattering activity can be attributed to an efficiency interfacial charge transfer within the graphdiyne-molecule system.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, P. R. China
| | - Wencai Yi
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Junfang Li
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, P. R. China
| | - Guoying Wei
- School of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Guangcheng Xi
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, P. R. China.
| | - Lanqun Mao
- School of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
26
|
Xing C, Xue Y, Zheng X, Gao Y, Chen S, Li Y. Highly Selective Electrocatalytic Olefin Hydrogenation in Aqueous Solution. Angew Chem Int Ed Engl 2023; 62:e202310722. [PMID: 37642147 DOI: 10.1002/anie.202310722] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
Selective hydrogenation of olefins with water as the hydrogen source at ambient conditions is still a big challenge in the field of catalysis. Herein, the electrocatalytic hydrogenation of purely aliphatic and functionalized olefins was achieved by using graphdiyne based copper oxide quantum dots (Cux O/GDY) as cathodic electrodes and water as the hydrogen source, with high activity and selectivity in aqueous solution at high current density under ambient temperature and pressure. In particular, the sp-/sp2 -hybridized graphdiyne catalyst allows the selective hydrogenation of cis-trans isomeric olefins. The chemical and electronic structure of the GDY results in the incomplete charge transfer between GDY and Cu atoms to optimize the adsorption/desorption of the reaction intermediates and results in high reaction selectivity and activity for hydrogenation reactions.
Collapse
Affiliation(s)
- Chengyu Xing
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Science School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuliang Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
27
|
Wang S, Feng SY, Zhao CC, Zhao TT, Tian Y, Yan LK. Regulating Efficient and Selective Single-atom Catalysts for Electrocatalytic CO 2 Reduction. Chemphyschem 2023; 24:e202300397. [PMID: 37353969 DOI: 10.1002/cphc.202300397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 06/25/2023]
Abstract
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp-sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1 -GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1 -GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2 RR) are significantly improved comparing with the pristine GDY. Among the studied TM1 -GDY, Cu1 -GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL ) is -0.16 V. Mn1 -GDY and Co1 -GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of -0.62 and -0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1 -GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2 RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.
Collapse
Affiliation(s)
- Shuo Wang
- Institute of Functional Materials Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Shao-Yang Feng
- Institute of Functional Materials Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Cong-Cong Zhao
- Institute of Functional Materials Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Ting-Ting Zhao
- Institute of Functional Materials Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yu Tian
- Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, Changchun, 130052, China
| | - Li-Kai Yan
- Institute of Functional Materials Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
28
|
Zhang X, Hui L, Yan D, Li J, Chen X, Wu H, Li Y. Defect Rich Structure Activated 3D Palladium Catalyst for Methanol Oxidation Reaction. Angew Chem Int Ed Engl 2023; 62:e202308968. [PMID: 37581223 DOI: 10.1002/anie.202308968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Controlling the structure and properties of catalysts through atomic arrangement is the source of producing a new generation of advanced catalysts. A highly active and stable catalyst in catalytic reactions strongly depends on an ideal arrangement structure of metal atoms. We demonstrated that the introduction of the defect-rich structures, low coordination number (CN), and tensile strain in three-dimensional (3D) urchin-like palladium nanoparticles through chlorine bonded with sp-C in graphdiyne (Pd-UNs/Cl-GDY) can regulate the arrangement of metal atoms in the palladium nanoparticles to form a special structure. In situ Fourier infrared spectroscopy (FTIR) and theoretical calculation results show that Pd-UNs/Cl-GDY catalyst is beneficial to the oxidation and removal of CO intermediates. The Pd-UNs/Cl-GDY for methanol oxidation reaction (MOR) that display high current density (363.6 mA cm-2 ) and mass activity (3.6 A mgPd -1 ), 12.0 and 10.9 times higher than Pd nanoparticles, respectively. The Pd-UNs/Cl-GDY catalyst also exhibited robust stability with still retained 95 % activity after 2000 cycles. A defects libraries of the face-centered cubic and hexagonal close-packed crystal catalysts (FH-NPs) were synthesized by introducing chlorine in graphdiyne. Such defect-rich structures, low CN, and tensile strain tailoring methods have opened up a new way for the catalytic reaction of MOR.
Collapse
Affiliation(s)
- Xueting Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lan Hui
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dengxin Yan
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052, Gent, Belgium
| | - Jinze Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Hamsa AP, Arulprakasam M, Unni SM. Electrochemical nitrogen fixation on single metal atom catalysts. Chem Commun (Camb) 2023; 59:10689-10710. [PMID: 37584339 DOI: 10.1039/d3cc02229c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The electrochemical reduction of nitrogen (eNRR) offers a promising alternative to the Haber-Bosch (H-B) process for producing ammonia under moderate conditions. However, the inertness of dinitrogen and the competing hydrogen evolution reaction pose significant challenges for eNRR. Thus, developing more efficient electrocatalysts requires a deeper understanding of the underlying mechanistic reactions and electrocatalytic activity. Single atom catalysts, which offer tunable catalytic properties and increased selectivity, have emerged as a promising avenue for eNRR. Carbon and metal-based substrates have proven effective for dispersing highly active single atoms that can enhance eNRR activity. In this review, we explore the use of atomically dispersed single atoms on different substrates for eNRR from both conceptual and experimental perspectives. The review is divided into four sections: the first section describes eNRR mechanistic pathways, the second section focuses on single metal atom catalysts (SMACs) with metal atoms dispersed on carbon substrates for eNRR, the third section covers SMACs with metal atoms dispersed on non-carbon substrates for eNRR, and the final section summarizes the remaining challenges and future scope of eNRR for green ammonia production.
Collapse
Affiliation(s)
- Ashida P Hamsa
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muraliraj Arulprakasam
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
| | - Sreekuttan M Unni
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
Zhao S, Chen Z, Liu H, Qi L, Zheng Z, Luan X, Gao Y, Liu R, Yan J, Bu F, Xue Y, Li Y. Graphdiyne-Based Multiscale Catalysts for Ammonia Synthesis. CHEMSUSCHEM 2023:e202300861. [PMID: 37578808 DOI: 10.1002/cssc.202300861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Graphdiyne, a sp/sp2 -cohybridized two-dimensional all- carbon material, has many unique and fascinating properties of alkyne-rich structures, large π conjugated system, uniform pores, specific unevenly-distributed surface charge, and incomplete charge transfer properties provide promising potential in practical applications including catalysis, energy conversion and storage, intelligent devices, life science, photoelectric, etc. These superior advantages have made graphdiyne one of the hottest research frontiers of chemistry and materials science and produced a series of original and innovative research results in the fundamental and applied research of carbon materials. In recent years, considerable advances have been made toward the development of graphdiyne-based multiscale catalysts for nitrogen fixation and ammonia synthesis at room temperatures and ambient pressures. This review aims to provide a comprehensive update in regard to the synthesis of graphdiyne-based multiscale catalysts and their applications in the synthesis of ammonia. The unique features of graphdiyne are highlighted throughout the review. Finally, it concludes with the discussion of challenges and future perspectives relating to graphdiyne.
Collapse
Affiliation(s)
- Shuya Zhao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Zhaoyang Chen
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Huimin Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yaqi Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Runyu Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Jiayu Yan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Fanle Bu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
31
|
Zheng Z, Qi L, Gao Y, Luan X, Xue Y, He F, Li Y. Ir 0/graphdiyne atomic interface for selective epoxidation. Natl Sci Rev 2023; 10:nwad156. [PMID: 37427022 PMCID: PMC10327882 DOI: 10.1093/nsr/nwad156] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 07/11/2023] Open
Abstract
The development of catalysts that can selectively and efficiently promote the alkene epoxidation at ambient temperatures and pressures is an important promising path to renewable synthesis of various chemical products. Here we report a new type of zerovalent atom catalysts comprised of zerovalent Ir atoms highly dispersed and anchored on graphdiyne (Ir0/GDY) wherein the Ir0 is stabilized by the incomplete charge transfer effect and the confined effect of GDY natural cavity. The Ir0/GDY can selectively and efficiently produce styrene oxides (SO) by electro-oxidizing styrene (ST) in aqueous solutions at ambient temperatures and pressures with high conversion efficiency of ∼100%, high SO selectivity of 85.5%, and high Faradaic efficiency (FE) of 55%. Experimental and density functional theory (DFT) calculation results show that the intrinsic activity and stability due to the incomplete charge transfer between Ir0 and GDY effectively promoted the electron exchange between the catalyst and reactant molecule, and realized the selective epoxidation of ST to SO. Studies of the reaction mechanism demonstrate that Ir0/GDY proceeds a distinctive pathway for highly selective and active alkene-to-epoxide conversion from the traditional processes. This work presents a new example of constructing zerovalent metal atoms within the GDY matrix toward selective electrocatalytic epoxidation.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yaqi Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | | | - Feng He
- Corresponding author. E-mail:
| | | |
Collapse
|
32
|
Zheng X, Chen S, Li J, Wu H, Zhang C, Zhang D, Chen X, Gao Y, He F, Hui L, Liu H, Jiu T, Wang N, Li G, Xu J, Xue Y, Huang C, Chen C, Guo Y, Lu TB, Wang D, Mao L, Zhang J, Zhang Y, Chi L, Guo W, Bu XH, Zhang H, Dai L, Zhao Y, Li Y. Two-Dimensional Carbon Graphdiyne: Advances in Fundamental and Application Research. ACS NANO 2023. [PMID: 37471703 DOI: 10.1021/acsnano.3c03849] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Graphdiyne (GDY), a rising star of carbon allotropes, features a two-dimensional all-carbon network with the cohybridization of sp and sp2 carbon atoms and represents a trend and research direction in the development of carbon materials. The sp/sp2-hybridized structure of GDY endows it with numerous advantages and advancements in controlled growth, assembly, and performance tuning, and many studies have shown that GDY has been a key material for innovation and development in the fields of catalysis, energy, photoelectric conversion, mode conversion and transformation of electronic devices, detectors, life sciences, etc. In the past ten years, the fundamental scientific issues related to GDY have been understood, showing differences from traditional carbon materials in controlled growth, chemical and physical properties and mechanisms, and attracting extensive attention from many scientists. GDY has gradually developed into one of the frontiers of chemistry and materials science, and has entered the rapid development period, producing large numbers of fundamental and applied research achievements in the fundamental and applied research of carbon materials. For the exploration of frontier scientific concepts and phenomena in carbon science research, there is great potential to promote progress in the fields of energy, catalysis, intelligent information, optoelectronics, and life sciences. In this review, the growth, self-assembly method, aggregation structure, chemical modification, and doping of GDY are shown, and the theoretical calculation and simulation and fundamental properties of GDY are also fully introduced. In particular, the applications of GDY and its formed aggregates in catalysis, energy storage, photoelectronic, biomedicine, environmental science, life science, detectors, and material separation are introduced.
Collapse
Affiliation(s)
- Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinze Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Danyan Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lan Hui
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huibiao Liu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tonggang Jiu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Guoxing Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Changshui Huang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300350, P. R. China
| | - Dan Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering and Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano and Soft Materials, Soochow University, Soochow 1215031, P. R. China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control for Aerospace Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
33
|
Ghosh A, Orasugh JT, Ray SS, Chattopadhyay D. Prospects of 2D graphdiynes and their applications in desalination and wastewater remediation. RSC Adv 2023; 13:18568-18604. [PMID: 37346946 PMCID: PMC10281012 DOI: 10.1039/d3ra01370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Water is an indispensable part of human life that affects health and food intake. Water pollution caused by rapid industrialization, agriculture, and other human activities affects humanity. Therefore, researchers are prudent and cautious regarding the use of novel materials and technologies for wastewater remediation. Graphdiyne (GDY), an emerging 2D nanomaterial, shows promise in this direction. Graphdiyne has a highly symmetrical π-conjugated structure consisting of uniformly distributed pores; hence, it is favorable for applications such as oil-water separation and organic-pollutant removal. The acetylenic linkage in GDY can strongly interact with metal ions, rendering GDY applicable to heavy-metal adsorption. In addition, GDY membranes that exhibit 100% salt rejection at certain pressures are potential candidates for wastewater treatment and water reuse via desalination. This review provides deep insights into the structure, properties, and synthesis methods of GDY, owing to which it is a unique, promising material. In the latter half of the article, various applications of GDY in desalination and wastewater treatment have been detailed. Finally, the prospects of these materials have been discussed succinctly.
Collapse
Affiliation(s)
- Adrija Ghosh
- Department of Polymer Science and Technology, University of Calcutta Kolkata-700009 India
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg Doorfontein Johannesburg 2028 South Africa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg Doorfontein Johannesburg 2028 South Africa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta Kolkata-700009 India
- Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta JD-2, Sector-III, Saltlake City Kolkata-700098 WB India
| |
Collapse
|
34
|
Ojelade OA, Zaman SF, Ni BJ. Green ammonia production technologies: A review of practical progress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118348. [PMID: 37320925 DOI: 10.1016/j.jenvman.2023.118348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Opeyemi A Ojelade
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0100, USA
| | - Sharif F Zaman
- Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah, 21589, Saudi Arabia; Catalysis Lab at CHME-KAU, Jeddah, Saudi Arabia
| | - Bing-Jie Ni
- University of Technology Sydney School of Civil and Environmental Engineering, Broadway, New South Wales, Australia.
| |
Collapse
|
35
|
Zhang L, Wang N, Li Y. Design, synthesis, and application of some two-dimensional materials. Chem Sci 2023; 14:5266-5290. [PMID: 37234883 PMCID: PMC10208047 DOI: 10.1039/d3sc00487b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Two-dimensional (2D) materials are widely used as key components in the fields of energy conversion and storage, optoelectronics, catalysis, biomedicine, etc. To meet the practical needs, molecular structure design and aggregation process optimization have been systematically carried out. The intrinsic correlation between preparation methods and the characteristic properties is investigated. This review summarizes the recent research achievements of 2D materials in the aspect of molecular structure modification, aggregation regulation, characteristic properties, and device applications. The design strategies to fabricate functional 2D materials starting from precursor molecules are introduced in detail referring to organic synthetic chemistry and self-assembly technology. It provides important research ideas for the design and synthesis of related materials.
Collapse
Affiliation(s)
- Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| |
Collapse
|
36
|
Yang X, An P, Wang R, Jia J. Tuning the Site-to-Site Interaction of Heteronuclear Diatom Catalysts MoTM/C 2N (TM = 3d Transition Metal) for Electrochemical Ammonia Synthesis. Molecules 2023; 28:molecules28104003. [PMID: 37241745 DOI: 10.3390/molecules28104003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Ammonia (NH3) synthesis is one of the most important catalytic reactions in energy and chemical fertilizer production, which is of great significance to the sustainable development of society and the economy. The electrochemical nitrogen reduction reaction (eNRR), especially when driven by renewable energy, is generally regarded as an energy-efficient and sustainable process to synthesize NH3 in ambient conditions. However, the performance of the electrocatalyst is far below expectations, with the lack of a high-efficiency catalyst being the main obstacle. Herein, by means of comprehensive spin-polarized density functional theory (DFT) computations, the catalytic performance of MoTM/C2N (TM = 3d transition metal) for use in eNRR was systematically evaluated. Among the results, MoFe/C2N can be considered the most promising catalyst due to its having the lowest limiting potential (-0.26 V) and high selectivity in the context of eNRR. Compared with its homonuclear counterparts, MoMo/C2N and FeFe/C2N, MoFe/C2N can balance the first protonation step and the sixth protonation step synergistically, showing outstanding activity regarding eNRR. Our work not only opens a new door to advancing sustainable NH3 production by tailoring the active sites of heteronuclear diatom catalysts but also promotes the design and production of novel low-cost and efficient nanocatalysts.
Collapse
Affiliation(s)
- Xiaoli Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, China
| | - Ping An
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Ruiying Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
37
|
Wang L, Qi L, Zhang Q, Xue B, Zheng Z, Yin P, Xue Y, Yang W, Li Y. Scalable synthesis of soluble crystalline ionic-graphdiyne by controlled ion expansion. Chem Sci 2023; 14:4612-4619. [PMID: 37152260 PMCID: PMC10155916 DOI: 10.1039/d3sc01393f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Graphdiyne (GDY) is a promising material possessing extensive electronic tunability, high π conjugacy, and ordered porosity at a molecular level for the sp/sp2-hybridized periodic structures. Despite these advantages, the preparation of soluble and crystalline graphdiyne is limited by the relatively compact stacking interactions, mostly existing in thick-layer and insoluble solids. Herein, we proposed a strategy of "framework charge-induced intercalation (FCII)" for the synthesis of a soluble (4.3 mg ml-1) and yet interlayer-expanded (∼0.6 Å) crystalline ionic graphdiyne, named as N+-GDY, through regulating the interlayer interactions. The skeleton of such a sample is positively charged, and then the negative ions migrate to the interlayer to expand the space, endowing the N+-GDY with solution processability. The crystal structure of N+-GDY is proved through analysis of HR-TEM images under different axes of observation and theoretical simulations. The resulting N+-GDY possesses high dispersity in organic solvents to produce a pure-solution phase which is conducive to the formation of oriented N+-GDY films, accompanied by exfoliation-nanosheet restacking. The film exhibits a conductivity of 0.014 S m-1, enabling its applications in electronic devices.
Collapse
Affiliation(s)
- Lingling Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Qinglei Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology Guangzhou 510640 P. R. China
| | - Binghui Xue
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 P. R. China
| | - Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 P. R. China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Wenlong Yang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
- Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
38
|
Yu S, Chen J, Chen C, Zhou M, Shen L, Li B, Lin H. What happens when graphdiyne encounters doping for electrochemical energy conversion and storage. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
39
|
Nitrogen and fluoride co-doped graphdiyne with metal-organic framework (MOF)-derived NiCo 2O 4-Co 3O 4 nanocages as sensing layers for ultra-sensitive pesticide detection. Anal Chim Acta 2023; 1252:341012. [PMID: 36935133 DOI: 10.1016/j.aca.2023.341012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Heteroatom doped graphdiyne (GDY) has been demonstrated to be an effective strategy for achieving outstanding electrochemical properties, including improved electrocatalytic activity, tunable electronic properties and high electronic conductivity, by producing numerous heteroatomic defects as well as active sites. Extensive efforts have been devoted to the issue of single element doping of GDY. Introducing two or more kinds of heteroatoms into GDY materials may create a synergic effect between the co-dopants, thus generating superior electrochemical performance. Nevertheless, little research on multiple elements co-doped GDY, especially in the application of constructing electrochemical biosensor. Herein, nitrogen and fluoride co-doped GDY (N-F-GDY) has been synthesized and employed to combine with NiCo2O4-Co3O4 hollow multishelled nanocages to establish an ultrasensitive electrochemical biosensor for the assay of pesticide residue. The as-prepared electrochemical biosensor possesses a wide linear range of 0.448 pM-44.8 nM for monocrotophos detection and a low detection limit of 0.0166 fM (S/N = 3).
Collapse
|
40
|
Xie S, Pan C, Yao Y, Yu X, Xu Z, Yuan W, Zhang Y, Guo N, Li X, Mao X, Xiao S, Li J, Guo Y. Ultra-high-efficiency capture of lead ions over acetylenic bond-rich graphdiyne adsorbent in aqueous solution. Proc Natl Acad Sci U S A 2023; 120:e2221002120. [PMID: 37036993 PMCID: PMC10120024 DOI: 10.1073/pnas.2221002120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/01/2023] [Indexed: 04/12/2023] Open
Abstract
A satisfactory material with high adsorption capacity is urgently needed to solve the serious problem of environment and human health caused by lead pollution. Herein, hydrogen-substituted graphdiyne (HsGDY) was successfully fabricated and employed to remove lead ions from sewage and lead-containing blood. The as-prepared HsGDY exhibits the highest adsorption capacity of lead among the reported materials with a maximum adsorption capacity of 2,390 mg/g, i.e., ~five times larger than that of graphdiyne (GDY). The distinguished hexagonal hole and stack mode of HsGDY allows the adsorption of more lead via its inner side adsorption mode in one single unit space. In addition, the Pb 6s and H 1s hybridization promotes the strong bonding of lead atom adsorbed at the acetylenic bond of HsGDY, contributing to the high adsorption capacity. HsGDY can be easily regenerated by acid treatment and showed excellent regeneration ability and reliability after six adsorption-regeneration cycles. Langmuir isotherm model, pseudo second order, and density functional theory (DFT) demonstrated that the lead adsorption process in HsGDY is monolayer chemisorption. Furthermore, the HsGDY-based portable filter can handle 1,000 μg/L lead-containing aqueous solution up to 1,000 mL, which is nearly 6.67 times that of commercial activated carbon particles. And, the HsGDY shows good biocompatibility and excellent removal efficiency to 100 μg/L blood lead, which is 1.7 times higher than that of GDY. These findings suggest that HsGDY could be a promising adsorbent for practical lead and other heavy metal removal.
Collapse
Affiliation(s)
- Shuanglei Xie
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan430074, China
| | - Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Yuan Yao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Xianglin Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan430074, China
| | - Ze Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan430074, China
| | - Weidong Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Yi Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
| | - Ning Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing100081, China
| | - Shengqiang Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei430082, China
| |
Collapse
|
41
|
Zhang L, Li J, Yi W, Wei G, Yin M, Xi G. Synthesis of Graphdiyne Hollow Spheres and Multiwalled Nanotubes and Applications in Water Purification and Raman Sensing. NANO LETTERS 2023; 23:3023-3029. [PMID: 36996421 DOI: 10.1021/acs.nanolett.3c00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Controlling the structure of graphdiyne (GDY) is crucial for the discovery of new properties and the development of new applications. Herein, the microemulsion synthesis of GDY hollow spheres (HSs) and multiwalled nanotubes composed of ultrathin nanosheets is reported for the first time. The formation of an oil-in-water (O/W) microemulsion is found to be a key factor controlling the growth of GDY. These GDY HSs have fully exposed surfaces because of the avoidance of overlapping between nanosheets, thereby showing an ultrahigh specific surface area of 1246 m2 g-1 and potential applications in the fields of water purification and Raman sensing.
Collapse
Affiliation(s)
- Lu Zhang
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Junfang Li
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Wencai Yi
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Guoying Wei
- School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, P. R. China
| | - Meng Yin
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Guangcheng Xi
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| |
Collapse
|
42
|
Ma J, Zhang Y, Wang B, Jiang Z, Zhang Q, Zhuo S. Interfacial Engineering of Bimetallic Ni/Co-MOFs with H-Substituted Graphdiyne for Ammonia Electrosynthesis from Nitrate. ACS NANO 2023; 17:6687-6697. [PMID: 36930780 DOI: 10.1021/acsnano.2c12491] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical synthesis of ammonia is highly dependent on the coupling reaction between nitrate and water, for which an electrocatalyst with a multifunctional interface is anticipated to promote the deoxygenation and hydrogenation of nitrate with water. Herein, by engineering the surface of bimetallic Ni/Co-MOFs (NiCoBDC) with hydrogen-substituted graphdiyne (HsGDY), a hybrid nanoarray of NiCoBDC@HsGDY with a multifunctional interface has been achieved toward scale-up of the nitrate-to-ammonia conversion. On the one hand, a partial electron transfers from Ni2+ to the coordinatively unsaturated Co2+ on the surface of NiCoBDC, which not only promotes the deoxygenation of *NO3 on Co2+ but also activates the water-dissociation to *H on Ni2+. On the other hand, the conformal coated HsGDY facilitates both electrons and NO3- ions gathering on the interface between NiCoBDC and HsGDY, which moves forward the rate-determining step from the deoxygenation of *NO3 to the hydrogenation of *N with both *H on Ni2+ and *H2O on Co2+. As a result, such a NiCoBDC@HsGDY nanoarray delivers high NH3 yield rates with Faradaic efficiency above 90% over both wide potential and pH windows. When assembled into a galvanic Zn-NO3- battery, a power density of 3.66 mW cm-2 is achieved, suggesting its potential in the area of aqueous Zn-based batteries.
Collapse
Affiliation(s)
- Jiahao Ma
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, People's Republic of China
| | - Yuting Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Biwen Wang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Zixin Jiang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Sifei Zhuo
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, People's Republic of China
| |
Collapse
|
43
|
Zhao X, He D, Xia BY, Sun Y, You B. Ambient Electrosynthesis toward Single-Atom Sites for Electrocatalytic Green Hydrogen Cycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210703. [PMID: 36799551 DOI: 10.1002/adma.202210703] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 06/18/2023]
Abstract
With the ultimate atomic utilization, well-defined configuration of active sites and unique electronic properties, catalysts with single-atom sites (SASs) exhibit appealing performance for electrocatalytic green hydrogen generation from water splitting and further utilization via hydrogen-oxygen fuel cells, such that a vast majority of synthetic strategies toward SAS-based catalysts (SASCs) are exploited. In particular, room-temperature electrosynthesis under atmospheric pressure offers a novel, safe, and effective route to access SASs. Herein, the recent progress in ambient electrosynthesis toward SASs for electrocatalytic sustainable hydrogen generation and utilization, and future opportunities are discussed. A systematic summary is started on three kinds of ambient electrochemically synthetic routes for SASs, including electrochemical etching (ECE), direct electrodeposition (DED), and electrochemical leaching-redeposition (ELR), associated with advanced characterization techniques. Next, their electrocatalytic applications for hydrogen energy conversion including hydrogen evolution reaction, oxygen evolution reaction, overall water splitting, and oxygen reduction reaction are reviewed. Finally, a brief conclusion and remarks on future challenges regarding further development of ambient electrosynthesis of high-performance and cost-effective SASCs for many other electrocatalytic applications are presented.
Collapse
Affiliation(s)
- Xin Zhao
- School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
44
|
Liu S, Wang M, Ji H, Zhang L, Ni J, Li N, Qian T, Yan C, Lu J. Solvent-in-Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211730. [PMID: 36646430 DOI: 10.1002/adma.202211730] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic nitrogen reduction reaction (PNRR) is emerging as a sustainable ammonia synthesis approach to meet global carbon neutrality. Porous framework materials with well-designed structures have great opportunities in PNRR; however, they suffer from unsatisfactory activity in the conventional gas-in-solvent system (GIS), owing to the hindrance of nitrogen utilization and strong competing hydrogen evolution caused by overwhelming solvent. In this study, porous framework materials are combined with a novel "solvent-in-gas" system, which can bring their superiority into full play. This system enables photocatalysts to directly operate in a gas-dominated environment with a limited proton source uniformly suspended in it, achieving the accumulation of high-concentrated nitrogen within porous framework while efficiently restricting the solvent-photocatalyst contact. An over eightfold increase in ammonia production rate (1820.7 µmol g-1 h-1 ) compared with the conventional GIS and an apparent quantum efficiency as high as ≈0.5% at 400 nm are achieved. This system-level strategy further finds applicability in photocatalytic CO2 reduction, featuring it as a staple for photosynthetic methodology.
Collapse
Affiliation(s)
- Sisi Liu
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mengfan Wang
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haoqing Ji
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lifang Zhang
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Jiajie Ni
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Najun Li
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tao Qian
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Chenglin Yan
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
45
|
Yang L, Li J, Yin M, Kong Q, Xi G. Ultrathin Graphdiyne Nanowires with Diameters below 3 nm: Synthesis, Photoelectric Effect, and Enhanced Raman Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300996. [PMID: 36974579 DOI: 10.1002/smll.202300996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Due to the intrinsic layered structure, graphdiyne (GDY) strongly tends to form 2D materials, therefore, most of the current research are based on GDY 2D structures. Up to now, the synthesis of its ultrathin nanowires with a high aspect ratio has not been reported. Here, the ultrathin GDY nanowires with diameters below 3 nm are reported for the first time by a two-phase interface synthesis method, which has excellent crystallinity and an aspect ratio of more than 2500. Evidence shows that the GDY ultrathin nanowires are formed by the oriented-attachment mechanism of nanoparticles. The GDY ultrathin nanowires exhibit a significant quantum confinement effect, enhanced photoelectric effect, and promising applications in surface-enhanced Raman sensing.
Collapse
Affiliation(s)
- Linchangqing Yang
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Junfang Li
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Meng Yin
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Qingkong Kong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guangcheng Xi
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| |
Collapse
|
46
|
Zhang L, Zhou H, Yang X, Zhang S, Zhang H, Yang X, Su X, Zhang J, Lin Z. Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Atomically Dispersed Sn Protuberance. Angew Chem Int Ed Engl 2023; 62:e202217473. [PMID: 36738169 DOI: 10.1002/anie.202217473] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Atomically dispersed metal catalysts show potential advantages in N2 reduction reaction (NRR) due to their excellent activity and efficient metal utilization. Unfortunately, the reported catalysts usually exhibit unsatisfactory NRR activity due to their poor N2 adsorption and activation. Herein, we report a novel Sn atomically dispersed protuberance (ADP) by coordination with substrate C and O to induce positive charge accumulation on Sn site for improving its N2 adsorption, activation and NRR performance. The extended X-ray absorption fine structure (EXAFS) spectra confirmed the local coordination structure of the Sn ADPs. NRR activity was significantly promoted via Sn ADPs, exhibiting a remarkable NH3 yield (RNH3 ) of 28.3 μg h-1 mgcat -1 (7447 μg h-1 mgSn -1 ) at -0.3 V. Furthermore, the enhanced N2 Hx intermediates was verified by in situ experiments, yielding consistent results with DFT calculation. This work opens a new avenue to regulate the activity and selectivity of N2 fixation.
Collapse
Affiliation(s)
- Lijuan Zhang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China.,SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Hanfeng Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xiaoju Yang
- School of Chemistry and Chemical Engineering, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shengbo Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences (China)
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences (China)
| | - Xuan Yang
- School of Chemistry and Chemical Engineering, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jiangwei Zhang
- Science Center of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Zhang Lin
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| |
Collapse
|
47
|
Abstract
Graphdiyne, a sp- and sp2-hybridized 2D π-conjugated carbon material with well-dispersed pores and unique electronic properties, was well investigated and applied in catalysis, electronics, optics, and energy storage and conversion. Graphdiyne fragments with conjugation in 2D can provide in-depth insights for understanding the intrinsic structure-property relationships of graphdiyne. Herein, an atomic precise wheel-shaped nanographdiyne composed of six dehydrobenzo [18] annulenes ([18]DBAs, the smallest macrocyclic unit of graphdiyne), was realized through the sixfold intramolecular Eglinton coupling in the hexabutadiyne precursors obtained by the sixfold Cadiot-Chodkiewicz cross-coupling of hexaethynylbenzene. Its planar structure was revealed by X-ray crystallographic analysis. The full cross-conjugation of the six 18π electron circuits yields the π-electron conjugation along the giant π core. This work provides a realizable method for the synthesis of future graphdiyne fragments with different functional groups and/or heteroatom doping, as well as the study of the unique electronic/photophysical properties and aggregation behavior of graphdiyne.
Collapse
Affiliation(s)
- Guilin Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingyi He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
48
|
Fu Z, Wu M, Li Q, Ling C, Wang J. A simple descriptor for the nitrogen reduction reaction over single atom catalysts. MATERIALS HORIZONS 2023; 10:852-858. [PMID: 36598029 DOI: 10.1039/d2mh01197b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The performance of supported catalysts is largely decided by metal-support interactions, which is of great significance for the rational design of catalysts. However, how to quantify the structure-activity relationship of supported catalysts remains a great challenge. In this work, taking MoS2 and WS2 supported single atom catalysts (SACs) as prototypes, a simple descriptor, namely, effective d electron number (labeled as Φ), is constructed to quantitatively describe the effect of metal-support interaction on the nitrogen reduction reaction (NRR) activity. This descriptor merely consists of intrinsic properties of the catalyst (including the number of d electrons, electronegativity of the metal atoms and generalized electronegativity of the substrate atoms) and can accurately predict the limiting potential (UL) for the NRR, with no need for any density functional theory calculations. Moreover, this descriptor possesses superb expansibility that can be applied to other materials, including other metal dichalcogenide (MoSe2, MoTe2, WSe2, WTe2 and NbS2) and even MXene (V2CO2, Ti2CO2 and Nb2CO2)-supported SACs. On this basis, a fast screening of excellent NRR catalysts among these systems is performed and three promising NRR catalysts (i.e. Mo@WTe2, Mo@V2CO2 and Re@NbS2) are successfully selected with UL as low as -0.32, -0.24 and -0.31 V, respectively. This work offers new opportunities for advancing the rapid discovery of high-efficiency NRR catalysts, and the design principle is expected to be widely applicable to other catalytic systems and beyond.
Collapse
Affiliation(s)
- Zhanzhao Fu
- School of Physics, Southeast University, Nanjing, 211189, China.
| | - Mingliang Wu
- School of Physics, Southeast University, Nanjing, 211189, China.
| | - Qiang Li
- School of Physics, Southeast University, Nanjing, 211189, China.
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing, 211189, China.
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
49
|
Dual-atom Co-Fe catalysts for oxygen reduction reaction. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
50
|
Yang X, Mukherjee S, O'Carroll T, Hou Y, Singh MR, Gauthier JA, Wu G. Achievements, Challenges, and Perspectives on Nitrogen Electrochemistry for Carbon-Neutral Energy Technologies. Angew Chem Int Ed Engl 2023; 62:e202215938. [PMID: 36507657 DOI: 10.1002/anie.202215938] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Unrestrained anthropogenic activities have severely disrupted the global natural nitrogen cycle, causing numerous energy and environmental issues. Electrocatalytic nitrogen transformation is a feasible and promising strategy for achieving a sustainable nitrogen economy. Synergistically combining multiple nitrogen reactions can realize efficient renewable energy storage and conversion, restore the global nitrogen balance, and remediate environmental crises. Here, we provide a unique aspect to discuss the intriguing nitrogen electrochemistry by linking three essential nitrogen-containing compounds (i.e., N2 , NH3 , and NO3 - ) and integrating four essential electrochemical reactions, i.e., the nitrogen reduction reaction (N2 RR), nitrogen oxidation reaction (N2 OR), nitrate reduction reaction (NO3 RR), and ammonia oxidation reaction (NH3 OR). This minireview also summarizes the acquired knowledge of rational catalyst design and underlying reaction mechanisms for these interlinked nitrogen reactions. We further underscore the associated clean energy technologies and a sustainable nitrogen-based economy.
Collapse
Affiliation(s)
- Xiaoxuan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shreya Mukherjee
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Thomas O'Carroll
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Institute of Zhejiang University - Quzhou, Quzhou, Zhejiang, 324000, China.,Donghai Laboratory, Zhoushan, 316021, China
| | - Meenesh R Singh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA
| | - Joseph A Gauthier
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|