1
|
Annecke HTP, Eidelpes R, Feyrer H, Ilgen J, Gürdap CO, Dasgupta R, Petzold K. Optimising in-cell NMR acquisition for nucleic acids. JOURNAL OF BIOMOLECULAR NMR 2024; 78:249-264. [PMID: 39162911 PMCID: PMC11614993 DOI: 10.1007/s10858-024-00448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Understanding the structure and function of nucleic acids in their native environment is crucial to structural biology and one focus of in-cell NMR spectroscopy. Many challenges hamper in-cell NMR in human cell lines, e.g. sample decay through cell death and RNA degradation. The resulting low signal intensities and broad line widths limit the use of more complex NMR experiments, reducing the possible structural and dynamic information that can be extracted. Here, we optimize the detection of imino proton signals, indicators of base-pairing and therefore secondary structure, of a double-stranded DNA oligonucleotide in HeLa cells, using selective excitation. We demonstrate the reproducible quantification of in-cell selective longitudinal relaxation times (selT1), which are reduced compared to the in vitro environment, as a result of interactions with the complex cellular environment. By measuring the intracellular selT1, we optimize the existing proton pulse sequences, and shorten measurement time whilst enhancing the signal gained per unit of time. This exemplifies an advantage of selective excitation over conventional methods like jump-return water suppression for in-cell NMR. Furthermore, important experimental controls are discussed, including intracellular quantification, supernatant control measurements, as well as the processing of lowly concentrated in-cell NMR samples. We expect that robust and fast in-cell NMR experiments of nucleic acids will facilitate the study of structure and dynamics and reveal their functional correlation.
Collapse
Affiliation(s)
- Henry T P Annecke
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Reiner Eidelpes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Hannes Feyrer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Julian Ilgen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Cenk Onur Gürdap
- Department of Women's and Children's Health, Karolinska Institutet, 171 65, Solna, Sweden
- Science for Life Laboratory, 171 65, Solna, Sweden
| | - Rubin Dasgupta
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden.
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
- Science for Life Laboratory, 171 65, Solna, Sweden.
- Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, 752 37, Uppsala, Sweden.
| |
Collapse
|
2
|
Chen X, Zhang X, Chen J, Wang M, Yang Y, An L, Liu Z, Song X, Yao L. Quantification of CH and NH/π-Stacking Interactions in Cells Using Nuclear Magnetic Resonance Spectroscopy. Anal Chem 2024; 96:14354-14362. [PMID: 39177663 DOI: 10.1021/acs.analchem.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
π-Stacking, a type of noncovalent interactions involving aromatic residues, plays an important role in protein folding and function. In this work, an attempt has been made to measure CH/π and NH/π stacking interactions in a protein in Escherichia coli cells using a combined double-mutant cycle and nuclear magnetic resonance spectroscopy method. The results show that the CH/π and NH/π stacking interactions are generally weaker in cells than those in the buffer. The transient intermolecular noncovalent interactions between the protein and the complex cellular environment may compete with and thus weaken the stacking interactions in the protein. The weakening of stacking interactions can enhance the local conformational opening of proteins in E. coli cells. This is evident from the faster rates of amide hydrogen/deuterium exchange observed in cells than in the buffer, for residues that undergo local conformational opening. This study highlights the influence of the cellular environment on π-stacking and the conformational dynamics of proteins.
Collapse
Affiliation(s)
- Xiaoxu Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xueying Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfei Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Mengting Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Liaoyuan An
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Zhijun Liu
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiangfei Song
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Lishan Yao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
3
|
Kwapiszewska K. Physicochemical Perspective of Biological Heterogeneity. ACS PHYSICAL CHEMISTRY AU 2024; 4:314-321. [PMID: 39069985 PMCID: PMC11274282 DOI: 10.1021/acsphyschemau.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 07/30/2024]
Abstract
The vast majority of chemical processes that govern our lives occur within living cells. At the core of every life process, such as gene expression or metabolism, are chemical reactions that follow the fundamental laws of chemical kinetics and thermodynamics. Understanding these reactions and the factors that govern them is particularly important for the life sciences. The physicochemical environment inside cells, which can vary between cells and organisms, significantly impacts various biochemical reactions and increases the extent of population heterogeneity. This paper discusses using physical chemistry approaches for biological studies, including methods for studying reactions inside cells and monitoring their conditions. The potential for development in this field and possible new research areas are highlighted. By applying physical chemistry methodology to biochemistry in vivo, we may gain new insights into biology, potentially leading to new ways of controlling biochemical reactions.
Collapse
Affiliation(s)
- Karina Kwapiszewska
- Institute of Physical Chemistry, Polish
Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
4
|
Paul R, Dutta D, Mukhopadhyay TK, Müller D, Lala B, Datta A, Schwalbe H, Dash J. A non-B DNA binding peptidomimetic channel alters cellular functions. Nat Commun 2024; 15:5275. [PMID: 38902227 PMCID: PMC11190219 DOI: 10.1038/s41467-024-49534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
DNA binding transcription factors possess the ability to interact with lipid membranes to construct ion-permeable pathways. Herein, we present a thiazole-based DNA binding peptide mimic TBP2, which forms transmembrane ion channels, impacting cellular ion concentration and consequently stabilizing G-quadruplex DNA structures. TBP2 self-assembles into nanostructures, e.g., vesicles and nanofibers and facilitates the transportation of Na+ and K+ across lipid membranes with high conductance (~0.6 nS). Moreover, TBP2 exhibits increased fluorescence when incorporated into the membrane or in cellular nuclei. Monomeric TBP2 can enter the lipid membrane and localize to the nuclei of cancer cells. The coordinated process of time-dependent membrane or nuclear localization of TBP2, combined with elevated intracellular cation levels and direct G-quadruplex (G4) interaction, synergistically promotes formation and stability of G4 structures, triggering cancer cell death. This study introduces a platform to mimic and control intricate biological functions, leading to the discovery of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Raj Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Debasish Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Diana Müller
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe, University Frankfurt, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - Binayak Lala
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe, University Frankfurt, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| |
Collapse
|
5
|
Beriashvili D, Zhou J, Liu Y, Folkers GE, Baldus M. Cellular Applications of DNP Solid-State NMR - State of the Art and a Look to the Future. Chemistry 2024; 30:e202400323. [PMID: 38451060 DOI: 10.1002/chem.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Sensitivity enhanced dynamic nuclear polarization solid-state NMR is emerging as a powerful technique for probing the structural properties of conformationally homogenous and heterogenous biomolecular species irrespective of size at atomic resolution within their native environments. Herein we detail advancements that have made acquiring such data, specifically within the confines of intact bacterial and eukaryotic cell a reality and further discuss the type of structural information that can presently be garnered by the technique's exploitation. Subsequently, we discuss bottlenecks that have thus far curbed cellular DNP-ssNMR's broader adoption namely due a lack of sensitivity and spectral resolution. We also explore possible solutions ranging from utilization of new pulse sequences, design of better performing polarizing agents, and application of additional biochemical/ cell biological methodologies.
Collapse
Affiliation(s)
- David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jiaxin Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics, Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics, Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
6
|
Alniss HY, Kemp BM, Holmes E, Hoffmann J, Ploch RM, Ramadan WS, Msallam YA, Al-Jubeh HM, Madkour MM, Celikkaya BC, Scott FJ, El-Awady R, Parkinson JA. Spectroscopic, biochemical and computational studies of bioactive DNA minor groove binders targeting 5'-WGWWCW-3' motif. Bioorg Chem 2024; 148:107414. [PMID: 38733748 DOI: 10.1016/j.bioorg.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Spectroscopic, biochemical, and computational modelling studies have been used to assess the binding capability of a set of minor groove binding (MGB) ligands against the self-complementary DNA sequences 5'-d(CGCACTAGTGCG)-3' and 5'-d(CGCAGTACTGCG)-3'. The ligands were carefully designed to target the DNA response element, 5'-WGWWCW-3', the binding site for several nuclear receptors. Basic 1D 1H NMR spectra of the DNA samples prepared with three MGB ligands show subtle variations suggestive of how each ligand associates with the double helical structure of both DNA sequences. The variations among the investigated ligands were reflected in the line shape and intensity of 1D 1H and 31P-{1H} NMR spectra. Rapid visual inspection of these 1D NMR spectra proves to be beneficial in providing valuable insights on MGB binding molecules. The NMR results were consistent with the findings from both UV DNA denaturation and molecular modelling studies. Both the NMR spectroscopic and computational analyses indicate that the investigated ligands bind to the minor grooves as antiparallel side-by-side dimers in a head-to-tail fashion. Moreover, comparisons with results from biochemical studies offered valuable insights into the mechanism of action, and antitumor activity of MGBs in relation to their structures, essential pre-requisites for future optimization of MGBs as therapeutic agents.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Bryony M Kemp
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Elizabeth Holmes
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Joanna Hoffmann
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Rafal M Ploch
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hadeel M Al-Jubeh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Moustafa M Madkour
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Bekir C Celikkaya
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Fraser J Scott
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Raafat El-Awady
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - John A Parkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK.
| |
Collapse
|
7
|
Yamada T, Sakurabayashi S, Sugiura N, Haneoka H, Nakatani K. NMR analysis of 15N-labeled naphthyridine carbamate dimer (NCD) to contiguous CGG/CGG units in DNA. Chem Commun (Camb) 2024. [PMID: 38415500 DOI: 10.1039/d4cc00544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The structure of the complex formed by naphthyridine carbamate dimer (NCD) binding to CGG repeat sequences in DNA, associated with fragile X syndrome, has been elucidated using 15N-labeled NCD and 1H-15N HSQC. In a fully saturated state, two NCD molecules consistently bind to each CGG/CGG unit, maintaining a 1 : 2 binding stoichiometry.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Regulatory Bioorganic Chemistry, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Shuhei Sakurabayashi
- Department of Regulatory Bioorganic Chemistry, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Noriaki Sugiura
- Department of Regulatory Bioorganic Chemistry, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Hitoshi Haneoka
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
8
|
Luchinat E, Barbieri L, Davis B, Brough PA, Pennestri M, Banci L. Ligand-Based Competition Binding by Real-Time 19F NMR in Human Cells. J Med Chem 2024; 67:1115-1126. [PMID: 38215028 PMCID: PMC10823471 DOI: 10.1021/acs.jmedchem.3c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/14/2024]
Abstract
The development of more effective drugs requires knowledge of their bioavailability and binding efficacy directly in the native cellular environment. In-cell nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for investigating ligand-target interactions directly in living cells. However, the target molecule may be NMR-invisible due to interactions with cellular components, while observing the ligand by 1H NMR is impractical due to the cellular background. Such limitations can be overcome by observing fluorinated ligands by 19F in-cell NMR as they bind to the intracellular target. Here we report a novel approach based on real-time in-cell 19F NMR that allows measuring ligand binding affinities in human cells by competition binding, using a fluorinated compound as a reference. The binding of a set of compounds toward Hsp90α was investigated. In principle, this approach could be applied to other pharmacologically relevant targets, thus aiding the design of more effective compounds in the early stages of drug development.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum—Università di Bologna, Piazza Goidanich 60, Cesena 47521, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine—CIRMMP, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Letizia Barbieri
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine—CIRMMP, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Ben Davis
- Vernalis
Research, Granta Park, Great Abington, Cambridge CB21 6GB, U.K.
| | - Paul A. Brough
- Vernalis
Research, Granta Park, Great Abington, Cambridge CB21 6GB, U.K.
| | - Matteo Pennestri
- Pharmaceutical
Business Unit, Bruker UK Limited, Banner Lane, Coventry CV4 9GH, U.K.
| | - Lucia Banci
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine—CIRMMP, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy
- Centro
di Risonanze Magnetiche—CERM, Università
degli Studi di Firenze, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, Sesto Fiorentino 50019, Italy
| |
Collapse
|
9
|
Eladl O, Yamaoki Y, Kondo K, Nagata T, Katahira M. Complex Formation of an RNA Aptamer with a Part of HIV-1 Tat through Induction of Base Triples in Living Human Cells Proven by In-Cell NMR. Int J Mol Sci 2023; 24:ijms24109069. [PMID: 37240414 DOI: 10.3390/ijms24109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
An RNA aptamer that strongly binds to a target molecule has the potential to be a nucleic acid drug inside living human cells. To investigate and improve this potential, it is critical to elucidate the structure and interaction of RNA aptamers inside living cells. We examined an RNA aptamer for HIV-1 Tat (TA), which had been found to trap Tat and repress its function in living human cells. We first used in vitro NMR to examine the interaction between TA and a part of Tat containing the binding site for trans-activation response element (TAR). It was revealed that two U-A∗U base triples are formed in TA upon binding of Tat. This was assumed to be critical for strong binding. Then, TA in complex with a part of Tat was incorporated into living human cells. The presence of two U-A∗U base triples was also revealed for the complex in living human cells by in-cell NMR. Thus, the activity of TA in living human cells was rationally elucidated by in-cell NMR.
Collapse
Grants
- 20H03192, 20K21477, 21H05519, and 22H05596 to M. K., 17H05878 and 20K06524 to T. N., and 19K16054 and 22K05314 to Y. Y.) Japan Society for the Promotion of Science
- (20fk0410027 and 23fk0410048 to M. K., and 22ak0101097 to T. N.) Japan Agency for Medical Research and Development
- NMRCR-22-05 to T. N. The Collaborative Research Program of the Institute for Protein Research, Osaka University
- to Y.Y The Collaboration Program of the Laboratory for Complex Energy Processes, Institute of Ad-vanced Energy, Kyoto University
- 235181 to O.E Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Omar Eladl
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Yudai Yamaoki
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
| | - Keiko Kondo
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
| | - Masato Katahira
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Kyoto 611-0011, Japan
| |
Collapse
|
10
|
Wang Y, Shi N, He Y, Li Y, Zheng Q. A direct approach toward investigating DNA-ligand interactions via surface-enhanced Raman spectroscopy combined with molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:2153-2160. [PMID: 36562542 DOI: 10.1039/d2cp04566d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small molecules that interfere with DNA replication can trigger genomic instability, which makes these molecules valuable in the search for anticancer drugs. Thus, interactions between DNA and its ligands at the molecular level are of great significance. In the present study, a new method based on surface-enhanced Raman spectroscopy (SERS) combined with molecular dynamics simulations has been proposed for analyzing the interactions between DNA and its ligands. The SERS signals of DNA hairpins (ST: d(CGACCAACGTGTCGCCTGGTCG), AP1: d(CGCACAACGTGTCGCCTGTGCG)), pure argininamide, and their complexes, were obtained, and the characteristic peak sites of the DNA secondary structure and argininamide ligand-binding region were analyzed. Molecular dynamics calculations predicted that argininamide binds to the 8C and 9G bases of AP1 via hydrogen bonding. Our method successfully detected the changes of SERS fingerprint peaks of hydrogen bonds and bases between argininamide and DNA hairpin bases, and their binding sites and action modes were consistent with the predicted results of the molecular dynamics simulations. This SERS technology combined with the molecular dynamics simulation detection platform provides a general analysis tool, with the advantage of effective, rapid, and sensitive detection. This platform can obtain sufficient molecular level conformational information to provide avenues for rapid drug screening and promote progress in several fields, including targeted drug design.
Collapse
Affiliation(s)
- Yunpeng Wang
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Na Shi
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| | - Yingying He
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Yang Li
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| |
Collapse
|
11
|
Gerothanassis IP. Ligand-observed in-tube NMR in natural products research: A review on enzymatic biotransformations, protein-ligand interactions, and in-cell NMR spectroscopy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
12
|
Zegers J, Peters M, Albada B. DNA G-quadruplex-stabilizing metal complexes as anticancer drugs. J Biol Inorg Chem 2023; 28:117-138. [PMID: 36456886 PMCID: PMC9981530 DOI: 10.1007/s00775-022-01973-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Guanine quadruplexes (G4s) are important targets for cancer treatments as their stabilization has been associated with a reduction of telomere ends or a lower oncogene expression. Although less abundant than purely organic ligands, metal complexes have shown remarkable abilities to stabilize G4s, and a wide variety of techniques have been used to characterize the interaction between ligands and G4s. However, improper alignment between the large variety of experimental techniques and biological activities can lead to improper identification of top candidates, which hampers progress of this important class of G4 stabilizers. To address this, we first review the different techniques for their strengths and weaknesses to determine the interaction of the complexes with G4s, and provide a checklist to guide future developments towards comparable data. Then, we surveyed 74 metal-based ligands for G4s that have been characterized to the in vitro level. Of these complexes, we assessed which methods were used to characterize their G4-stabilizing capacity, their selectivity for G4s over double-stranded DNA (dsDNA), and how this correlated to bioactivity data. For the biological activity data, we compared activities of the G4-stabilizing metal complexes with that of cisplatin. Lastly, we formulated guidelines for future studies on G4-stabilizing metal complexes to further enable maturation of this field.
Collapse
Affiliation(s)
- Jaccoline Zegers
- grid.4818.50000 0001 0791 5666Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maartje Peters
- grid.4818.50000 0001 0791 5666Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Eladl O, Yamaoki Y, Kondo K, Nagata T, Katahira M. Detection of interaction between an RNA aptamer and its target compound in living human cells using 2D in-cell NMR. Chem Commun (Camb) 2022; 59:102-105. [PMID: 36475447 DOI: 10.1039/d2cc05576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We introduced an isotopically labeled RNA aptamer for HIV-1 Tat prepared by E. coli transcription into HeLa cells. We successfully recorded the first heteronuclear 2D in-cell NMR spectra, which makes it possible to study the interaction of the RNA aptamer with argininamide in living human cells with higher resolution.
Collapse
Affiliation(s)
- Omar Eladl
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan.,Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Shedding light on the base-pair opening dynamics of nucleic acids in living human cells. Nat Commun 2022; 13:7143. [PMID: 36446768 PMCID: PMC9708698 DOI: 10.1038/s41467-022-34822-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
Base-pair opening is a fundamental property of nucleic acids that plays important roles in biological functions. However, studying the base-pair opening dynamics inside living cells has remained challenging. Here, to determine the base-pair opening kinetics inside living human cells, the exchange rate constant ([Formula: see text]) of the imino proton with the proton of solvent water involved in hairpin and G-quadruplex (GQ) structures is determined by the in-cell NMR technique. It is deduced on determination of [Formula: see text] values that at least some G-C base pairs of the hairpin structure and all G-G base-pairs of the GQ structure open more frequently in living human cells than in vitro. It is suggested that interactions with endogenous proteins could be responsible for the increase in frequency of base-pair opening. Our studies demonstrate a difference in dynamics of nucleic acids between in-cell and in vitro conditions.
Collapse
|
15
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
16
|
Indoloquinoline-Mediated Targeted Downregulation of KRAS through Selective Stabilization of the Mid-Promoter G-Quadruplex Structure. Genes (Basel) 2022; 13:genes13081440. [PMID: 36011352 PMCID: PMC9408018 DOI: 10.3390/genes13081440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
KRAS is a well-validated anti-cancer therapeutic target, whose transcriptional downregulation has been demonstrated to be lethal to tumor cells with aberrant KRAS signaling. G-quadruplexes (G4s) are non-canonical nucleic acid structures that mediate central dogmatic events, such as DNA repair, telomere elongation, transcription and splicing events. G4s are attractive drug targets, as they are more globular than B-DNA, enabling more selective gene interactions. Moreover, their genomic prevalence is increased in oncogenic promoters, their formation is increased in human cancers, and they can be modulated with small molecules or targeted nucleic acids. The putative formation of multiple G4s has been described in the literature, but compounds with selectivity among these structures have not yet been able to distinguish between the biological contribution of the predominant structures. Using cell free screening techniques, synthesis of novel indoloquinoline compounds and cellular models of KRAS-dependent cancer cells, we describe compounds that choose between KRAS promoter G4near and G4mid, correlate compound cytotoxic activity with KRAS regulation, and highlight G4mid as the lead molecular non-canonical structure for further targeting efforts.
Collapse
|
17
|
In-cell NMR: From target structure and dynamics to drug screening. Curr Opin Struct Biol 2022; 74:102374. [DOI: 10.1016/j.sbi.2022.102374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
|
18
|
Luchinat E, Cremonini M, Banci L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. Chem Rev 2022; 122:9267-9306. [PMID: 35061391 PMCID: PMC9136931 DOI: 10.1021/acs.chemrev.1c00790] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/12/2022]
Abstract
A detailed knowledge of the complex processes that make cells and organisms alive is fundamental in order to understand diseases and to develop novel drugs and therapeutic treatments. To this aim, biological macromolecules should ideally be characterized at atomic resolution directly within the cellular environment. Among the existing structural techniques, solution NMR stands out as the only one able to investigate at high resolution the structure and dynamic behavior of macromolecules directly in living cells. With the advent of more sensitive NMR hardware and new biotechnological tools, modern in-cell NMR approaches have been established since the early 2000s. At the coming of age of in-cell NMR, we provide a detailed overview of its developments and applications in the 20 years that followed its inception. We review the existing approaches for cell sample preparation and isotopic labeling, the application of in-cell NMR to important biological questions, and the development of NMR bioreactor devices, which greatly increase the lifetime of the cells allowing real-time monitoring of intracellular metabolites and proteins. Finally, we share our thoughts on the future perspectives of the in-cell NMR methodology.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum−Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
20
|
Psaras AM, Valiuska S, Noé V, Ciudad CJ, Brooks TA. Targeting KRAS Regulation with PolyPurine Reverse Hoogsteen Oligonucleotides. Int J Mol Sci 2022; 23:2097. [PMID: 35216221 PMCID: PMC8876201 DOI: 10.3390/ijms23042097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS is a GTPase involved in the proliferation signaling of several growth factors. The KRAS gene is GC-rich, containing regions with known and putative G-quadruplex (G4) forming regions. Within the middle of the G-rich proximal promoter, stabilization of the physiologically active G4mid structure downregulates transcription of KRAS; the function and formation of other G4s within the gene are unknown. Herein we identify three putative G4-forming sequences (G4FS) within the KRAS gene, explore their G4 formation, and develop oligonucleotides targeting these three regions and the G4mid forming sequence. We tested Polypurine Reverse Hoogsteen hairpins (PPRHs) for their effects on KRAS regulation via enhancing G4 formation or displacing G-rich DNA strands, downregulating KRAS transcription and mediating an anti-proliferative effect. Five PPRH were designed, two against the KRAS promoter G4mid and three others against putative G4FS in the distal promoter, intron 1 and exon 5. PPRH binding was confirmed by gel electrophoresis. The effect on KRAS transcription was examined by luciferase, FRET Melt2, qRT-PCR. Cytotoxicity was evaluated in pancreatic and ovarian cancer cells. PPRHs decreased activity of a luciferase construct driven by the KRAS promoter. PPRH selectively suppressed proliferation in KRAS dependent cancer cells. PPRH demonstrated synergistic activity with a KRAS promoter selective G4-stabilizing compound, NSC 317605, in KRAS-dependent pancreatic cells. PPRHs selectively stabilize G4 formation within the KRAS mid promoter region and represent an innovative approach to both G4-stabilization and to KRAS modulation with potential for development into novel therapeutics.
Collapse
Affiliation(s)
- Alexandra Maria Psaras
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA;
| | - Simonas Valiuska
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain; (S.V.); (V.N.); (C.J.C.)
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain; (S.V.); (V.N.); (C.J.C.)
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain; (S.V.); (V.N.); (C.J.C.)
| | - Tracy A. Brooks
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA;
| |
Collapse
|
21
|
Structure-dependent of 3-fluorooxindole derivatives interacting with ctDNA: Binding effects and molecular docking approaches. Bioorg Chem 2022; 121:105698. [DOI: 10.1016/j.bioorg.2022.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022]
|
22
|
Yin G, Lv G, Zhang J, Jiang H, Lai T, Yang Y, Ren Y, Wang J, Yi C, Chen H, Huang Y, Xiao C. Early-stage structure-based drug discovery for small GTPases by NMR spectroscopy. Pharmacol Ther 2022; 236:108110. [PMID: 35007659 DOI: 10.1016/j.pharmthera.2022.108110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Small GTPase or Ras superfamily, including Ras, Rho, Rab, Ran and Arf, are fundamental in regulating a wide range of cellular processes such as growth, differentiation, migration and apoptosis. They share structural and functional similarities for binding guanine nucleotides and hydrolyzing GTP. Dysregulations of Ras proteins are involved in the pathophysiology of multiple human diseases, however there is still a stringent need for effective treatments targeting these proteins. For decades, small GTPases were recognized as 'undruggable' targets due to their complex regulatory mechanisms and lack of deep pockets for ligand binding. NMR has been critical in deciphering the structural and dynamic properties of the switch regions that are underpinning molecular switch functions of small GTPases, which pave the way for developing new effective inhibitors. The recent progress of drug or lead molecule development made for small GTPases profoundly delineated how modern NMR techniques reshape the field of drug discovery. In this review, we will summarize the progress of structural and dynamic studies of small GTPases, the NMR techniques developed for structure-based drug screening and their applications in early-stage drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Guohua Lv
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Jerry Zhang
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Lai
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Yushan Yang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yong Ren
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Chenju Yi
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, Zhejiang Province 311215, PR China
| | - Yun Huang
- Howard Hughes Medical Institute, Chevy Chase 20815, MD, USA; Department of Physiology & Biophysics, Weill Cornell Medicine, New York 10065, NY, USA.
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
23
|
Tseng TY, Wang CL, Huang WC, Chang TC. Folding and Unfolding of Exogenous G-Rich Oligonucleotides in Live Cells by Fluorescence Lifetime Imaging Microscopy of o-BMVC Fluorescent Probe. Molecules 2021; 27:molecules27010140. [PMID: 35011378 PMCID: PMC8747072 DOI: 10.3390/molecules27010140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/25/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Guanine-rich oligonucleotides (GROs) can self-associate to form G-quadruplex (G4) structures that have been extensively studied in vitro. To translate the G4 study from in vitro to in live cells, here fluorescence lifetime imaging microscopy (FLIM) of an o-BMVC fluorescent probe is applied to detect G4 structures and to study G4 dynamics in CL1-0 live cells. FLIM images of exogenous GROs show that the exogenous parallel G4 structures that are characterized by the o-BMVC decay times (≥2.4 ns) are detected in the lysosomes of live cells in large quantities, but the exogenous nonparallel G4 structures are hardly detected in the cytoplasm of live cells. In addition, similar results are also observed for the incubation of their single-stranded GROs. In the study of G4 formation by ssHT23 and hairpin WT22, the analyzed binary image can be used to detect very small increases in the number of o-BMVC foci (decay time ≥ 2.4 ns) in the cytoplasm of live cells. However, exogenous ssCMA can form parallel G4 structures that are able to be detected in the lysosomes of live CL1-0 cells in large quantities. Moreover, the photon counts of the o-BMVC signals (decay time ≥ 2.4 ns) that are measured in the FLIM images are used to reveal the transition of the G4 formation of ssCMA and to estimate the unfolding rate of CMA G4s with the addition of anti-CMA into live cells for the first time. Hence, FLIM images of o-BMVC fluorescence hold great promise for the study of G4 dynamics in live cells.
Collapse
|
24
|
Song X, Wang M, Chen X, Zhang X, Yang Y, Liu Z, Yao L. Quantifying Protein Electrostatic Interactions in Cells by Nuclear Magnetic Resonance Spectroscopy. J Am Chem Soc 2021; 143:19606-19613. [PMID: 34766768 DOI: 10.1021/jacs.1c10154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most proteins perform their functions in cells. How the cellular environment modulates protein interactions is an important question. In this work, electrostatic interactions between protein charges were studied using in-cell nuclear magnetic resonance (NMR) spectroscopy. A total of eight charge pairs were introduced in protein GB3. Compared to the charge pair electrostatic interactions in a buffer, five charge pairs in cells displayed no apparent changes whereas three pairs had the interactions weakened by more than 70%. Further investigation suggests that the transfer free energy is responsible for the electrostatic interaction modulation. Both the transfer free energy of the folded state and that of the unfolded state can contribute to the cellular environmental effect on protein electrostatics, although the latter is generally larger (more negative) than the former. Our work highlights the importance of direct in-cell studies of protein interactions and thus protein function.
Collapse
Affiliation(s)
- Xiangfei Song
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,Shandong Energy Institute, Qingdao 266101, China
| | - Mengting Wang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,Shandong Energy Institute, Qingdao 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxu Chen
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,Shandong Energy Institute, Qingdao 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Zhang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,Shandong Energy Institute, Qingdao 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,Shandong Energy Institute, Qingdao 266101, China
| | - Zhijun Liu
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lishan Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
25
|
Luchinat E, Barbieri L, Cremonini M, Pennestri M, Nocentini A, Supuran CT, Banci L. Determination of intracellular protein-ligand binding affinity by competition binding in-cell NMR. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:1270-1281. [PMID: 34605430 PMCID: PMC8489230 DOI: 10.1107/s2059798321009037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023]
Abstract
Structure-based drug development suffers from high attrition rates due to the poor activity of lead compounds in cellular and animal models caused by low cell penetrance, off-target binding or changes in the conformation of the target protein in the cellular environment. The latter two effects cause a change in the apparent binding affinity of the compound, which is indirectly assessed by cellular activity assays. To date, direct measurement of the intracellular binding affinity remains a challenging task. In this work, in-cell NMR spectroscopy was applied to measure intracellular dissociation constants in the nanomolar range by means of protein-observed competition binding experiments. Competition binding curves relative to a reference compound could be retrieved either from a series of independent cell samples or from a single real-time NMR bioreactor run. The method was validated using a set of sulfonamide-based inhibitors of human carbonic anhydrase II with known activity in the subnanomolar to submicromolar range. The intracellular affinities were similar to those obtained in vitro, indicating that these compounds selectively bind to the intracellular target. In principle, the approach can be applied to any soluble intracellular target that gives rise to measurable chemical shift changes upon ligand binding.
Collapse
Affiliation(s)
- Enrico Luchinat
- CERM - Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Letizia Barbieri
- CERM - Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- CERM - Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Pennestri
- Pharmaceutical Business Unit, Bruker UK Limited, Banner Lane, Coventry CV4 9GH, United Kingdom
| | - Alessio Nocentini
- Dipartimento Neurofarba, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- CERM - Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
26
|
Sakamoto T, Yamaoki Y, Nagata T, Katahira M. Detection of parallel and antiparallel DNA triplex structures in living human cells using in-cell NMR. Chem Commun (Camb) 2021; 57:6364-6367. [PMID: 34137388 DOI: 10.1039/d1cc01761f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We introduced oligodeoxynucleotides (ODNs) that form parallel and antiparallel triplex structures in vitro into living human cells and recorded their in-cell NMR spectra. Observation of landmark signals for triplex structures proved for the first time that parallel and antiparallel triplex structures are formed in living human cells.
Collapse
Affiliation(s)
- Tomoki Sakamoto
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
27
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:769. [PMID: 34451866 PMCID: PMC8401999 DOI: 10.3390/ph14080769] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilmar F. Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 33607 Pessac, France;
| | - Eurico J. Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
28
|
Zare-Feizabadi N, Amiri-Tehranizadeh Z, Sharifi-Rad A, Mokaberi P, Nosrati N, Hashemzadeh F, Rahimi HR, Saberi MR, Chamani J. Determining the Interaction Behavior of Calf Thymus DNA with Anastrozole in the Presence of Histone H1: Spectroscopies and Cell Viability of MCF-7 Cell Line Investigations. DNA Cell Biol 2021; 40:1039-1051. [PMID: 34165362 DOI: 10.1089/dna.2021.0052] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The interaction of calf thymus DNA (ct DNA) with anastrozole, which is acknowledged as an antineoplastic drug, has been enquired into in the absence and presence of histone H1, through the means of absorbance, fluorescence, circular dichroism spectroscopy, viscosity, thermal melting, and molecular modeling techniques. In addition, the effects of anastrozole on MCF 7 cell line have been thoroughly investigated. Fluorescence spectroscopy results have indicated that quenching mechanism of ct DNA-anastrozole are known as static quenching procedures, since the Stern-Volmer quenching constant (KSV) seems to face a decrease as the temperature is enhanced; this is a significant evidence for intercalative binding mode of anastrozole with ct DNA. Regarding the ternary system in the presence of H1, the constant of Stern-Volmer quenching was increased as the temperature was heightened. The thermodynamic parameters suggested that the binding could be characterized as exothermic by negative and positive enthalpy and entropy changes in both binary and ternary systems, respectively. It is vital to mention that hydrogen bonds and hydrophobic contributions play significant roles in anastrozole association to ct DNA in the absence and presence of H1. In accordance to the absorption spectroscopy and melting temperature curve outcomes, the binding mode of anastrozole with ct DNA in absence and presence of H1 was indicative of intercalative and nonintercalative bindings, respectively. The viscosity results as binary and ternary systems, which have been elucidated from a sensitive viscometer, have confirmed the fluorescence spectroscopy determinations. The intercalation of anastrozole to ct DNA seemed to be significantly related to an induced reduction in MCF-7 cell proliferation. The molecular modeling results have suggested that anastrozole could bind to H1 in ct DNA-H1 complex in ternary systems, which supports the conclusions that have been obtained from experimental data.
Collapse
Affiliation(s)
- Najmeh Zare-Feizabadi
- Department of Biology, Faculty of Sciences, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Sharifi-Rad
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Neyshabur Branch, Neyshabur, Iran
| | - Parisa Mokaberi
- Department of Biology, Faculty of Sciences, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Niknaz Nosrati
- Department of Biology, Faculty of Sciences, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Fatemeh Hashemzadeh
- Department of Biology, Faculty of Sciences, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences. Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| |
Collapse
|
29
|
Krafčík D, Ištvánková E, Džatko Š, Víšková P, Foldynová-Trantírková S, Trantírek L. Towards Profiling of the G-Quadruplex Targeting Drugs in the Living Human Cells Using NMR Spectroscopy. Int J Mol Sci 2021; 22:6042. [PMID: 34205000 PMCID: PMC8199861 DOI: 10.3390/ijms22116042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, the 1H-detected in-cell NMR spectroscopy has emerged as a unique tool allowing the characterization of interactions between nucleic acid-based targets and drug-like molecules in living human cells. Here, we assess the application potential of 1H and 19F-detected in-cell NMR spectroscopy to profile drugs/ligands targeting DNA G-quadruplexes, arguably the most studied class of anti-cancer drugs targeting nucleic acids. We show that the extension of the original in-cell NMR approach is not straightforward. The severe signal broadening and overlap of 1H in-cell NMR spectra of polymorphic G-quadruplexes and their complexes complicate their quantitative interpretation. Nevertheless, the 1H in-cell NMR can be used to identify drugs that, despite strong interaction in vitro, lose their ability to bind G-quadruplexes in the native environment. The in-cell NMR approach is adjusted to a recently developed 3,5-bis(trifluoromethyl)phenyl probe to monitor the intracellular interaction with ligands using 19F-detected in-cell NMR. The probe allows dissecting polymorphic mixture in terms of number and relative populations of individual G-quadruplex species, including ligand-bound and unbound forms in vitro and in cellulo. Despite the probe's discussed limitations, the 19F-detected in-cell NMR appears to be a promising strategy to profile G-quadruplex-ligand interactions in the complex environment of living cells.
Collapse
Affiliation(s)
- Daniel Krafčík
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Šimon Džatko
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | | | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
| |
Collapse
|
30
|
Živković ML, Gajarský M, Beková K, Stadlbauer P, Vicherek L, Petrová M, Fiala R, Rosenberg I, Šponer J, Plavec J, Trantírek L. Insight into formation propensity of pseudocircular DNA G-hairpins. Nucleic Acids Res 2021; 49:2317-2332. [PMID: 33524154 PMCID: PMC7913771 DOI: 10.1093/nar/gkab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
We recently showed that Saccharomyces cerevisiae telomeric DNA can fold into an unprecedented pseudocircular G-hairpin (PGH) structure. However, the formation of PGHs in the context of extended sequences, which is a prerequisite for their function in vivo and their applications in biotechnology, has not been elucidated. Here, we show that despite its ‘circular’ nature, PGHs tolerate single-stranded (ss) protrusions. High-resolution NMR structure of a novel member of PGH family reveals the atomistic details on a junction between ssDNA and PGH unit. Identification of new sequences capable of folding into one of the two forms of PGH helped in defining minimal sequence requirements for their formation. Our time-resolved NMR data indicate a possibility that PGHs fold via a complex kinetic partitioning mechanism and suggests the existence of K+ ion-dependent PGH folding intermediates. The data not only provide an explanation of cation-type-dependent formation of PGHs, but also explain the unusually large hysteresis between PGH melting and annealing noted in our previous study. Our findings have important implications for DNA biology and nanotechnology. Overrepresentation of sequences able to form PGHs in the evolutionary-conserved regions of the human genome implies their functionally important biological role(s).
Collapse
Affiliation(s)
- Martina Lenarčič Živković
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic.,Slovenian NMR Centre, National Institute of Chemistry, Ljubljana SI-1000, Slovenia
| | - Martin Gajarský
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Kateřina Beková
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Lukáš Vicherek
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Magdalena Petrová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radovan Fiala
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Ivan Rosenberg
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Šponer
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic.,Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana SI-1000, Slovenia.,EN-FIST Centre of Excellence, Ljubljana SI-1001, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
31
|
Broft P, Dzatko S, Krafcikova M, Wacker A, Hänsel‐Hertsch R, Dötsch V, Trantirek L, Schwalbe H. In-Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells. Angew Chem Int Ed Engl 2021; 60:865-872. [PMID: 32975353 PMCID: PMC7839747 DOI: 10.1002/anie.202007184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Indexed: 12/14/2022]
Abstract
We report here the in-cell NMR-spectroscopic observation of the binding of the cognate ligand 2'-deoxyguanosine to the aptamer domain of the bacterial 2'-deoxyguanosine-sensing riboswitch in eukaryotic cells, namely Xenopus laevis oocytes and in human HeLa cells. The riboswitch is sufficiently stable in both cell types to allow for detection of binding of the ligand to the riboswitch. Most importantly, we show that the binding mode established by in vitro characterization of this prokaryotic riboswitch is maintained in eukaryotic cellular environment. Our data also bring important methodological insights: Thus far, in-cell NMR studies on RNA in mammalian cells have been limited to investigations of short (<15 nt) RNA fragments that were extensively modified by protecting groups to limit their degradation in the intracellular space. Here, we show that the in-cell NMR setup can be adjusted for characterization of much larger (≈70 nt) functional and chemically non-modified RNA.
Collapse
Affiliation(s)
- P. Broft
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute for Organic Chemistry and Chemical BiologyGoethe UniversityMax-von-Laue-Str. 760438Frankfurt/M.Germany
| | - S. Dzatko
- National Centre for Biomolecular ResearchMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- Central European Institute of Technology (CEITEC)Masaryk UniversityKamenice 753/5625 00BrnoCzech Republic
| | - M. Krafcikova
- National Centre for Biomolecular ResearchMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 135612 65BrnoCzech Republic
| | - A. Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute for Organic Chemistry and Chemical BiologyGoethe UniversityMax-von-Laue-Str. 760438Frankfurt/M.Germany
| | - Robert Hänsel‐Hertsch
- Present address: Center for Molecular Medicine CologneRobert-Koch-Str. 2150931CologneGermany
| | - Volker Dötsch
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute of Biophysical ChemistryGoethe UniversityMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - L. Trantirek
- Central European Institute of Technology (CEITEC)Masaryk UniversityKamenice 753/5625 00BrnoCzech Republic
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute for Organic Chemistry and Chemical BiologyGoethe UniversityMax-von-Laue-Str. 760438Frankfurt/M.Germany
| |
Collapse
|
32
|
Collauto A, Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Sören Bülow
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Dnyaneshwar B. Gophane
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Subham Saha
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Lukas S. Stelzl
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
- Institute for Biophysics Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Snorri T. Sigurdsson
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| |
Collapse
|
33
|
Collauto A, von Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell*. Angew Chem Int Ed Engl 2020; 59:23025-23029. [PMID: 32804430 PMCID: PMC7756485 DOI: 10.1002/anie.202009800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 11/15/2022]
Abstract
The structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus laevis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells. We recapitulate this compaction in a densely crowded protein solution. Atomic-resolution molecular dynamics simulations of dsRNA semi-quantitatively capture the compaction, and identify non-specific electrostatic interactions between proteins and dsRNA as a possible driver of this effect.
Collapse
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| | - Sören von Bülow
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Dnyaneshwar B. Gophane
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Subham Saha
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Lukas S. Stelzl
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Gerhard Hummer
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
- Institute for BiophysicsGoethe University FrankfurtMax-von-Laue-Str. 960438Frankfurt am MainGermany
| | - Snorri T. Sigurdsson
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| |
Collapse
|
34
|
Tan DJY, Winnerdy FR, Lim KW, Phan AT. Coexistence of two quadruplex-duplex hybrids in the PIM1 gene. Nucleic Acids Res 2020; 48:11162-11171. [PMID: 32976598 PMCID: PMC7641742 DOI: 10.1093/nar/gkaa752] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
The triple-negative breast cancer (TNBC), a subtype of breast cancer which lacks of targeted therapies, exhibits a poor prognosis. It was shown recently that the PIM1 oncogene is highly related to the proliferation of TNBC cells. A quadruplex-duplex hybrid (QDH) forming sequence was recently found to exist near the transcription start site of PIM1. This structure could be an attractive target for regulation of the PIM1 gene expression and thus the treatment of TNBC. Here, we present the solution structures of two QDHs that could coexist in the human PIM1 gene. Form 1 is a three-G-tetrad-layered (3+1) G-quadruplex containing a propeller loop, a lateral loop and a stem-loop made up of three G•C Watson-Crick base pairs. On the other hand, Form 2 is an anti-parallel G-quadruplex comprising two G-tetrads and a G•C•G•C tetrad; the structure has three lateral loops with the middle stem-loop made up of two Watson-Crick G•C base pairs. These structures provide valuable information for the design of G-quadruplex-specific ligands for PIM1 transcription regulation.
Collapse
Affiliation(s)
- Derrick J Y Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
35
|
Broft P, Dzatko S, Krafcikova M, Wacker A, Hänsel‐Hertsch R, Dötsch V, Trantirek L, Schwalbe H. In‐Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- P. Broft
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M. Germany
| | - S. Dzatko
- National Centre for Biomolecular Research Masaryk University Kamenice 5 625 00 Brno Czech Republic
- Central European Institute of Technology (CEITEC) Masaryk University Kamenice 753/5 625 00 Brno Czech Republic
| | - M. Krafcikova
- National Centre for Biomolecular Research Masaryk University Kamenice 5 625 00 Brno Czech Republic
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 612 65 Brno Czech Republic
| | - A. Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M. Germany
| | - Robert Hänsel‐Hertsch
- Present address: Center for Molecular Medicine Cologne Robert-Koch-Str. 21 50931 Cologne Germany
| | - Volker Dötsch
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute of Biophysical Chemistry Goethe University Max-von-Laue-Str. 9 60438 Frankfurt/M. Germany
| | - L. Trantirek
- Central European Institute of Technology (CEITEC) Masaryk University Kamenice 753/5 625 00 Brno Czech Republic
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M. Germany
| |
Collapse
|
36
|
Ngoc Nguyen TQ, Lim KW, Phan AT. Duplex formation in a G-quadruplex bulge. Nucleic Acids Res 2020; 48:10567-10575. [PMID: 32960213 PMCID: PMC7544226 DOI: 10.1093/nar/gkaa738] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Beyond the consensus definition of G-quadruplex-forming motifs with tracts of continuous guanines, G-quadruplexes harboring bulges in the G-tetrad core are prevalent in the human genome. Here, we study the incorporation of a duplex hairpin within a bulge of a G-quadruplex. The NMR solution structure of a G-quadruplex containing a duplex bulge was resolved, revealing the structural details of the junction between the duplex bulge and the G-quadruplex. Unexpectedly, instead of an orthogonal connection the duplex stem was observed to stack below the G-quadruplex forming a unique quadruplex–duplex junction. Breaking up of the immediate base pair step at the junction, coupled with a narrowing of the duplex groove within the context of the bulge, led to a progressive transition between the quadruplex and duplex segments. This study revealed that a duplex bulge can be formed at various positions of a G-quadruplex scaffold. In contrast to a non-structured bulge, the stability of a G-quadruplex slightly increases with an increase in the duplex bulge size. A G-quadruplex structure containing a duplex bulge of up to 33 nt in size was shown to form, which was much larger than the previously reported 7-nt bulge. With G-quadruplexes containing duplex bulges representing new structural motifs with potential biological significance, our findings would broaden the definition of potential G-quadruplex-forming sequences.
Collapse
Affiliation(s)
- Thi Quynh Ngoc Nguyen
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
37
|
Luchinat E, Barbieri L, Cremonini M, Nocentini A, Supuran CT, Banci L. Intracellular Binding/Unbinding Kinetics of Approved Drugs to Carbonic Anhydrase II Observed by in-Cell NMR. ACS Chem Biol 2020; 15:2792-2800. [PMID: 32955851 PMCID: PMC7735671 DOI: 10.1021/acschembio.0c00590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Candidate
drugs rationally designed in vitro often
fail due to low efficacy in vivo caused by low tissue
availability or because of unwanted side effects. To overcome the
limitations of in vitro rational drug design, the
binding of candidate drugs to their target needs to be evaluated in
the cellular context. Here, we applied in-cell NMR to investigate
the binding of a set of approved drugs to the isoform II of carbonic
anhydrase (CA) in living human cells. Some compounds were originally
developed toward other targets and were later found to inhibit CAs.
We observed strikingly different dose- and time-dependent binding,
wherein some drugs exhibited a more complex behavior than others.
Specifically, some compounds were shown to gradually unbind from intracellular
CA II, even in the presence of free compound in the external medium,
therefore preventing the quantitative formation of a stable protein–ligand
complex. Such observations could be correlated to the known off-target
binding activity of these compounds, suggesting that this approach
could provide information on the pharmacokinetic profiles of lead
candidates at the early stages of multitarget drug design.
Collapse
Affiliation(s)
- Enrico Luchinat
- CERM − Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase − CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Letizia Barbieri
- CERM − Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, Sesto Fiorentino, Italy
| | - Matteo Cremonini
- CERM − Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Alessio Nocentini
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- CERM − Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi sacconi 6, 50019 Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
38
|
Emwas AH, Szczepski K, Poulson BG, Chandra K, McKay RT, Dhahri M, Alahmari F, Jaremko L, Lachowicz JI, Jaremko M. NMR as a "Gold Standard" Method in Drug Design and Discovery. Molecules 2020; 25:E4597. [PMID: 33050240 PMCID: PMC7594251 DOI: 10.3390/molecules25204597] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Studying disease models at the molecular level is vital for drug development in order to improve treatment and prevent a wide range of human pathologies. Microbial infections are still a major challenge because pathogens rapidly and continually evolve developing drug resistance. Cancer cells also change genetically, and current therapeutic techniques may be (or may become) ineffective in many cases. The pathology of many neurological diseases remains an enigma, and the exact etiology and underlying mechanisms are still largely unknown. Viral infections spread and develop much more quickly than does the corresponding research needed to prevent and combat these infections; the present and most relevant outbreak of SARS-CoV-2, which originated in Wuhan, China, illustrates the critical and immediate need to improve drug design and development techniques. Modern day drug discovery is a time-consuming, expensive process. Each new drug takes in excess of 10 years to develop and costs on average more than a billion US dollars. This demonstrates the need of a complete redesign or novel strategies. Nuclear Magnetic Resonance (NMR) has played a critical role in drug discovery ever since its introduction several decades ago. In just three decades, NMR has become a "gold standard" platform technology in medical and pharmacology studies. In this review, we present the major applications of NMR spectroscopy in medical drug discovery and development. The basic concepts, theories, and applications of the most commonly used NMR techniques are presented. We also summarize the advantages and limitations of the primary NMR methods in drug development.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kacper Szczepski
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Benjamin Gabriel Poulson
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Kousik Chandra
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Ryan T. McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada;
| | - Manel Dhahri
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Fatimah Alahmari
- Nanomedicine Department, Institute for Research and Medical, Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia;
| | - Lukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| |
Collapse
|
39
|
Deprey K, Batistatou N, Kritzer JA. A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics. Nucleic Acids Res 2020; 48:7623-7639. [PMID: 32644123 PMCID: PMC7430645 DOI: 10.1093/nar/gkaa576] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
RNA therapeutics are a promising strategy to treat genetic diseases caused by the overexpression or aberrant splicing of a specific protein. The field has seen major strides in the clinical efficacy of this class of molecules, largely due to chemical modifications and delivery strategies that improve nuclease resistance and enhance cell penetration. However, a major obstacle in the development of RNA therapeutics continues to be the imprecise, difficult, and often problematic nature of most methods used to measure cell penetration. Here, we review these methods and clearly distinguish between those that measure total cellular uptake of RNA therapeutics, which includes both productive and non-productive uptake, and those that measure cytosolic/nuclear penetration, which represents only productive uptake. We critically analyze the benefits and drawbacks of each method. Finally, we use key examples to illustrate how, despite rigorous experimentation and proper controls, our understanding of the mechanism of gymnotic uptake of RNA therapeutics remains limited by the methods commonly used to analyze RNA delivery.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Nefeli Batistatou
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| |
Collapse
|
40
|
Luchinat E, Barbieri L, Campbell TF, Banci L. Real-Time Quantitative In-Cell NMR: Ligand Binding and Protein Oxidation Monitored in Human Cells Using Multivariate Curve Resolution. Anal Chem 2020; 92:9997-10006. [PMID: 32551584 PMCID: PMC7735651 DOI: 10.1021/acs.analchem.0c01677] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
In-cell NMR can investigate
protein conformational changes at atomic
resolution, such as those changes induced by drug binding or chemical
modifications, directly in living human cells, and therefore has great
potential in the context of drug development as it can provide an
early assessment of drug potency. NMR bioreactors can greatly improve
the cell sample stability over time and, more importantly, allow for
recording in-cell NMR data in real time to monitor the evolution of
intracellular processes, thus providing unique insights into the kinetics
of drug-target interactions. However, current implementations are
limited by low cell viability at >24 h times, the reduced sensitivity
compared to “static” experiments and the lack of protocols
for automated and quantitative analysis of large amounts of data.
Here, we report an improved bioreactor design which maintains human
cells alive and metabolically active for up to 72 h, and a semiautomated
workflow for quantitative analysis of real-time in-cell NMR data relying
on Multivariate Curve Resolution. We apply this setup to monitor protein–ligand
interactions and protein oxidation in real time. High-quality concentration
profiles can be obtained from noisy 1D and 2D NMR data with high temporal
resolution, allowing further analysis by fitting with kinetic models.
This unique approach can therefore be applied to investigate complex
kinetic behaviors of macromolecules in a cellular setting, and could
be extended in principle to any real-time NMR application in live
cells.
Collapse
Affiliation(s)
- Enrico Luchinat
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy.,Center for Colloids and Surface Science - CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Letizia Barbieri
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy.,Interuniversity Consortium for Magnetic Resonance of Metalloproteins - CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Timothy F Campbell
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Lucia Banci
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| |
Collapse
|
41
|
Sontakke VA, Srivatsan SG. A dual-app nucleoside probe reports G-quadruplex formation and ligand binding in the long terminal repeat of HIV-1 proviral genome. Bioorg Med Chem Lett 2020; 30:127345. [PMID: 32631544 DOI: 10.1016/j.bmcl.2020.127345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
We have developed a dual-app nucleoside analog, 5-selenophene-modified 2'-deoxyuridine (SedU), to probe the structure and ligand-binding properties of a G-rich segment present in the long terminal repeat (LTR) of the HIV-1 proviral DNA promoter region. The nucleoside probe is made of an environment-responsive fluorophore and X-ray crystallography phasing label (Se atom). SedU incorporated into LTR-IV sequence, fluorescently reports the formation of G-quadruplex (GQ) structure without affecting the native fold. Further, using the environment sensitivity of the probe, a fluorescence assay was designed to estimate the binding affinity of small molecule ligands to the GQ motif. An added feature of this probe system is that it would enable direct correlation of structure and recognition properties in solution and atomic level by using a combination of fluorescence and X-ray crystallography techniques.
Collapse
Affiliation(s)
- Vyankat A Sontakke
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India.
| |
Collapse
|
42
|
Yamaoki Y, Nagata T, Sakamoto T, Katahira M. Observation of nucleic acids inside living human cells by in-cell NMR spectroscopy. Biophys Physicobiol 2020; 17:36-41. [PMID: 33110737 PMCID: PMC7550250 DOI: 10.2142/biophysico.bsj-2020006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
The intracellular environment is highly crowded with biomacromolecules such as proteins and nucleic acids. Under such conditions, the structural and biophysical features of nucleic acids have been thought to be different from those in vitro. To obtain high-resolution structural information on nucleic acids in living cells, the in-cell NMR method is a unique tool. Following the first in-cell NMR measurement of nucleic acids in 2009, several interesting insights were obtained using Xenopus laevis oocytes. However, the in-cell NMR spectrum of nucleic acids in living human cells was not reported until two years ago due to the technical challenges of delivering exogenous nucleic acids. We reported the first in-cell NMR spectra of nucleic acids in living human cells in 2018, where we applied a pore-forming toxic protein, streptolysin O. The in-cell NMR measurements demonstrated that the hairpin structures of nucleic acids can be detected in living human cells. In this review article, we summarize our recent work and discuss the future prospects of the in-cell NMR technique for nucleic acids.
Collapse
Affiliation(s)
- Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.,Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoki Sakamoto
- Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.,Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
43
|
Recent progress of in-cell NMR of nucleic acids in living human cells. Biophys Rev 2020; 12:411-417. [PMID: 32144741 DOI: 10.1007/s12551-020-00664-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
The inside of living cells is highly crowded with biological macromolecules. It has long been considered that the properties of nucleic acids and proteins, such as their structures, dynamics, interactions, and enzymatic activities, in intracellular environments are different from those under in vitro dilute conditions. In-cell NMR is a robust and powerful method used in the direct measurement of those properties in living cells. However, until 2 years ago, in-cell NMR was limited to Xenopus laevis oocytes due to technical challenges of incorporating exogenous nucleic acids. In the last 2 years, in-cell NMR spectra of nucleic acid introduced into living human cells have been reported. By use of the in-cell NMR spectra of nucleic acids in living human cells, the formation of hairpin structures with Watson-Crick base pairs, and i-motif and G-quadruplex structures with non-Watson-Crick base pairs was demonstrated. Others investigated the mRNA-antisense drug interactions and DNA-small compound interactions. In this article, we review these studies to underscore the potential of in-cell NMR for addressing the structures, dynamics, and interactions of nucleic acids in living human cells.
Collapse
|
44
|
Luchinat E, Barbieri L, Cremonini M, Nocentini A, Supuran CT, Banci L. Drug Screening in Human Cells by NMR Spectroscopy Allows the Early Assessment of Drug Potency. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Enrico Luchinat
- CERM—Magnetic Resonance CenterUniversità degli Studi di Firenze via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche “Mario Serio”Università degli Studi di Firenze Viale Morgagni 50 50134 Florence Italy
| | - Letizia Barbieri
- CERM—Magnetic Resonance CenterUniversità degli Studi di Firenze via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Consorzio Interuniversitario Risonanze Magnetiche di, Metalloproteine Via Luigi Sacconi 6 Sesto Fiorentino Italy
| | - Matteo Cremonini
- CERM—Magnetic Resonance CenterUniversità degli Studi di Firenze via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
| | - Alessio Nocentini
- Dipartimento NeurofarbaSezione di Scienze FarmaceuticheUniversità degli Studi di Firenze Via Ugo Schiff 6 50019 Sesto Fiorentino Italy
| | - Claudiu T. Supuran
- Dipartimento NeurofarbaSezione di Scienze FarmaceuticheUniversità degli Studi di Firenze Via Ugo Schiff 6 50019 Sesto Fiorentino Italy
- Dipartimento di ChimicaUniversità degli Studi di Firenze Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Lucia Banci
- CERM—Magnetic Resonance CenterUniversità degli Studi di Firenze via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Dipartimento di ChimicaUniversità degli Studi di Firenze Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
45
|
Luchinat E, Barbieri L, Cremonini M, Nocentini A, Supuran CT, Banci L. Drug Screening in Human Cells by NMR Spectroscopy Allows the Early Assessment of Drug Potency. Angew Chem Int Ed Engl 2020; 59:6535-6539. [PMID: 32022355 PMCID: PMC7187179 DOI: 10.1002/anie.201913436] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Structure-based drug development is often hampered by the lack of in vivo activity of promising compounds screened in vitro, due to low membrane permeability or poor intracellular binding selectivity. Herein, we show that ligand screening can be performed in living human cells by "intracellular protein-observed" NMR spectroscopy, without requiring enzymatic activity measurements or other cellular assays. Quantitative binding information is obtained by fast, inexpensive 1 H NMR experiments, providing intracellular dose- and time-dependent ligand binding curves, from which kinetic and thermodynamic parameters linked to cell permeability and binding affinity and selectivity are obtained. The approach was applied to carbonic anhydrase and, in principle, can be extended to any NMR-observable intracellular target. The results obtained are directly related to the potency of candidate drugs, that is, the required dose. The application of this approach at an early stage of the drug design pipeline could greatly increase the low success rate of modern drug development.
Collapse
Affiliation(s)
- Enrico Luchinat
- CERM-Magnetic Resonance Center, Università degli Studi di Firenze, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.,Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Viale Morgagni 50, 50134, Florence, Italy
| | - Letizia Barbieri
- CERM-Magnetic Resonance Center, Università degli Studi di Firenze, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metalloproteine, Via Luigi Sacconi 6, Sesto Fiorentino, Italy
| | - Matteo Cremonini
- CERM-Magnetic Resonance Center, Università degli Studi di Firenze, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Alessio Nocentini
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.,Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lucia Banci
- CERM-Magnetic Resonance Center, Università degli Studi di Firenze, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.,Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
46
|
Meeting report: Seventh International Meeting on Quadruplex Nucleic Acids (Changchun, P.R. China, September 6–9, 2019). Biochimie 2020; 168:100-109. [DOI: 10.1016/j.biochi.2019.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
|