1
|
Zhao X, Zhang Y, Wang X, Fu Z, Zhong Z, Deng C. Multivalent ionizable lipid-polypeptides for tumor-confined mRNA transfection. Bioact Mater 2025; 46:423-433. [PMID: 39850023 PMCID: PMC11754973 DOI: 10.1016/j.bioactmat.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025] Open
Abstract
mRNA therapeutics is revolutionizing the treatment concepts toward many diseases including cancer. The potential of mRNA is, however, frequently limited by modest control over site of transfection. Here, we have explored a library of multivalent ionizable lipid-polypeptides (MILP) to achieve robust mRNA complexation and tumor-confined transfection. Leveraging the multivalent electrostatic, hydrophobic, and H-bond interactions, MILP efficiently packs both mRNA and plasmid DNA into sub-80 nm nanoparticles that are stable against lyophilization and long-term storage. The best MILP@mRNA complexes afford 8-fold more cellular uptake than SM-102 lipid nanoparticle formulation (SM-102 LNP), efficient endosomal disruption, and high transfection in different cells. Interestingly, MILP@mLuc displays exclusive tumor residence and distribution via multivalency-directed strong affinity and transcytosis, and affords specific protein expression in tumor cells and macrophages at tumor sites following intratumoral injection, in sharp contrast to the indiscriminate distribution and transfection in main organs of SM-102 LNP. Notably, MILP@mIL-12 with specific and efficient cytokine expression generates significant remodeling of tumor immunoenvironments and remarkable antitumor response in subcutaneous Lewis lung carcinoma and 4T1 tumor xenografts. MILP provides a unique strategy to site-specific transfection that may greatly broaden the applications of mRNA.
Collapse
Affiliation(s)
- Xiaofei Zhao
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yueyue Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Xin Wang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Ziming Fu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Nie S, Yang B, Ma R, Zha L, Qin Y, Ou L, Chen X, Li L. Synthetic nanomaterials for spleen-specific mRNA delivery. Biomaterials 2025; 314:122859. [PMID: 39362024 DOI: 10.1016/j.biomaterials.2024.122859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
In recent years, mRNA vaccine has achieved increasing interest owing to its high potency, safety, ease of production, and low-cost manufacturing. Currently approved mRNA vaccines are administered intramuscularly to transfect local antigen-presenting cells (APCs) to initiate low to moderate immune responses. Spleen, the largest secondary lymphoid organ in the body which contains a large number of APCs close to B and T lymphocytes, could be the ideal site for effective initiation of an enhanced immune response. Here, we provide an overview of the recent advances in the development of synthetic materials for spleen-specific mRNA delivery, and lipid nanoparticle-based approaches will be highlighted. We further discuss the main challenges for spleen-specific mRNA delivery to provide a reference for the development of next-generation synthetic nanomaterials with optimal properties.
Collapse
Affiliation(s)
- Shihong Nie
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Beiqi Yang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ruiying Ma
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lili Zha
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yuyang Qin
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Liyuan Ou
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, 138667, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Ling Li
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Yu M, Lin L, Zhou D, Liu S. Interaction design in mRNA delivery systems. J Control Release 2025; 377:413-426. [PMID: 39580076 DOI: 10.1016/j.jconrel.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Following the coronavirus disease 2019 (COVID-19) pandemic, mRNA technology has made significant breakthroughs, emerging as a potential universal platform for combating various diseases. To address the challenges associated with mRNA delivery, such as instability and limited delivery efficacy, continuous advancements in genetic engineering and nanotechnology have led to the exploration and refinement of various mRNA structural modifications and delivery platforms. These achievements have significantly broadened the clinical applications of mRNA therapies. Despite the progress, the understanding of the interactions in mRNA delivery systems remains limited. These interactions are complex and multi-dimensional, occurring between mRNA and vehicles as well as delivery materials and helper ingredients. Resultantly, stability of the mRNA delivery systems and their delivery efficiency can be both significantly affected. This review outlines the current state of mRNA delivery strategies and summarizes the interactions in mRNA delivery systems. The interactions include the electrostatic interactions, hydrophobic interactions, hydrogen bonding, π-π stacking, coordination interactions, and so on. This interaction understanding provides guideline for future design of next-generation mRNA delivery systems, thereby offering new perspectives and strategies for developing diverse mRNA therapeutics.
Collapse
Affiliation(s)
- Mengyao Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shuai Liu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
4
|
Wang H, Cheng Y. Polymers for mRNA Delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70002. [PMID: 39763235 DOI: 10.1002/wnan.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
mRNA delivery has emerged as a transformative approach in biotechnology and medicine, offering a versatile platform for the development of novel therapeutics. Unlike traditional small molecule drugs or protein-based biologics, mRNA therapeutics have the unique ability to direct cells to generate therapeutic proteins, allowing for precise modulation of biological processes. The delivery of mRNA into target cells is a critical step in realizing the therapeutic potential of this technology. In this review, our focus is on the latest advancements in designing functional polymers to achieve efficient mRNA delivery. Biodegradable polymers and low molecular weight polymers in addressing the balance in mRNA binding and release are summarized. Benefiting from the excellent performance of lipid nanoparticles in mRNA delivery, polymer/lipid hybrid nanostructures are also included. Finally, the challenges and future prospects in the development of polymer-based mRNA delivery systems are discussed.
Collapse
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
5
|
Zhang Z, Wang Z. Cellular functions and biomedical applications of circular RNAs. Acta Biochim Biophys Sin (Shanghai) 2024; 57:157-168. [PMID: 39719879 DOI: 10.3724/abbs.2024241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as a large class of stable and conserved RNAs that are derived primarily from back-splicing of pre-mRNAs and expressed in a cell- and tissue-specific fashion. Recent studies have indicated that a subset of circRNAs may undergo translation through cap-independent pathways mediated by internal ribosome entry sites (IRESs), m6A modifications, or IRES-like short elements. Considering the stability and low immunogenicity of circRNAs, in vitro transcribed circRNAs hold great promise in biomedical applications. In this review, we briefly discuss the noncoding and coding functions of circRNAs in cells, as well as the methods for the in vitro synthesis of circRNAs and current advances in the applications of circRNAs in biomedicine.
Collapse
Affiliation(s)
- Zheyu Zhang
- CAS Key Laboratory of Computational Biology, Biomed Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- Shool of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Wu S, Yang Y, Lian X, Zhang F, Hu C, Tsien J, Chen Z, Sun Y, Vaidya A, Kim M, Sung YC, Xiao Y, Bian X, Wang X, Tian Z, Guerrero E, Robinson J, Basak P, Qin T, Siegwart DJ. Isosteric 3D Bicyclo[1.1.1]Pentane (BCP) Core-Based Lipids for mRNA Delivery and CRISPR/Cas Gene Editing. J Am Chem Soc 2024; 146:34733-34742. [PMID: 39655603 PMCID: PMC11717372 DOI: 10.1021/jacs.4c13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Lipid nanoparticles (LNPs) are an essential component of messenger RNA (mRNA) vaccines and genome editing therapeutics. Ionizable amino lipids, which play the most crucial role in enabling mRNA to overcome delivery barriers, have, to date, been restricted to two-dimensional (2D) architectures. Inspired by improved physicochemical properties resulting from the incorporation of three-dimensionality (3D) into small-molecule drugs, we report the creation of 3D ionizable lipid designs through the introduction of bicyclo[1.1.1]pentane (BCP) core motifs. BCP-based lipids enabled efficient in vivo mRNA delivery to the liver and spleen with significantly greater performance over 2D benzene- and cyclohexane-based analogues. Notably, lead BCP-NC2-C12 LNPs mediated ∼90% reduction in the PCSK9 serum protein level via CRISPR/Cas9 gene knockout, outperforming 2D controls and clinically used DLin-MC3-DMA LNPs at the same dose. Here, we introduce BCP-based designs with superior in vivo activity, thereby expanding the chemical scope of ionizable amino lipids from 2D to 3D and offering a promising avenue to improve mRNA and gene editing efficiency for the continued development of genetic medicines.
Collapse
Affiliation(s)
- Shiying Wu
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yangyang Yang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Xizhen Lian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Fangyu Zhang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Zexiang Chen
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yehui Sun
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Amogh Vaidya
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Minjeong Kim
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yun-Chieh Sung
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Yufen Xiao
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Xiaoyan Bian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Xu Wang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Zeru Tian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Erick Guerrero
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Joshua Robinson
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Pratima Basak
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
7
|
Li J, Zhang Y, Yang YG, Sun T. Advancing mRNA Therapeutics: The Role and Future of Nanoparticle Delivery Systems. Mol Pharm 2024; 21:3743-3763. [PMID: 38953708 DOI: 10.1021/acs.molpharmaceut.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The coronavirus (COVID-19) pandemic has underscored the critical role of mRNA-based vaccines as powerful, adaptable, readily manufacturable, and safe methodologies for prophylaxis. mRNA-based treatments are emerging as a hopeful avenue for a plethora of conditions, encompassing infectious diseases, cancer, autoimmune diseases, genetic diseases, and rare disorders. Nonetheless, the in vivo delivery of mRNA faces challenges due to its instability, suboptimal delivery, and potential for triggering undesired immune reactions. In this context, the development of effective drug delivery systems, particularly nanoparticles (NPs), is paramount. Tailored with biophysical and chemical properties and susceptible to surface customization, these NPs have demonstrated enhanced mRNA delivery in vivo and led to the approval of several NPs-based formulations for clinical use. Despite these advancements, the necessity for developing a refined, targeted NP delivery system remains imperative. This review comprehensively surveys the biological, translational, and clinical progress in NPs-mediated mRNA therapeutics for both the prevention and treatment of diverse diseases. By addressing critical factors for enhancing existing methodologies, it aims to inform the future development of precise and efficacious mRNA-based therapeutic interventions.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
- International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
- International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
8
|
Pathan S, Jayakannan M. Zwitterionic Strategy to Stabilize Self-Immolative Polymer Nanoarchitecture under Physiological pH for Drug Delivery In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2304599. [PMID: 38574242 DOI: 10.1002/adhm.202304599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The major bottleneck in using polymer nanovectors for biomedical application, particularly those based on self-immolative poly(amino ester) (PAE), lies in their uncontrolled autodegradation at physiological pH before they can reach the intended target. Here, an elegant triblock-copolymer strategy is designed to stabilize the unstable PAE chains via zwitterionic interactions under physiological pH (pH 7.4) and precisely program their enzyme-responsive biodegradation specifically within the intracellular compartments, ensuring targeted delivery of the cargoes. To achieve this goal, biodegradable polycaprolactone (PCL) platform is chosen, and structure-engineered several di- and triblock architectures to arrive the precise macromolecular geometry. The hydrophobic-PCL core and hydrophilic anionic-PCL block at the periphery shield PAEs against autodegradation, thereby ensuring stability under physiological pH in PBS, FBS, cell culture medium and bloodstream. The clinical anticancer drug doxorubicin and deep-tissue penetrable near-infrared IR-780 biomarker is encapsulated to study their biological actions by in vitro live cancer cells and in vivo bioimaging in live animals. These zwitterions are biocompatible, nonhemolytic, and real-time in vitro live-cell confocal studies have confirmed their internalization and enzymatic biodegradation in the endo-lysosomal compartments to deliver the payload. In vivo bioimaging establishes their prolonged blood circulation for over 72 h, and the biodistribution analysis reveals the accumulation of nanoparticles predominantly in the excretory organs.
Collapse
Affiliation(s)
- Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| |
Collapse
|
9
|
Li Z, Amaya L, Ee A, Wang SK, Ranjan A, Waymouth RM, Chang HY, Wender PA. Organ- and Cell-Selective Delivery of mRNA In Vivo Using Guanidinylated Serinol Charge-Altering Releasable Transporters. J Am Chem Soc 2024; 146:14785-14798. [PMID: 38743019 DOI: 10.1021/jacs.4c02704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Selective RNA delivery is required for the broad implementation of RNA clinical applications, including prophylactic and therapeutic vaccinations, immunotherapies for cancer, and genome editing. Current polyanion delivery relies heavily on cationic amines, while cationic guanidinium systems have received limited attention due in part to their strong polyanion association, which impedes intracellular polyanion release. Here, we disclose a general solution to this problem in which cationic guanidinium groups are used to form stable RNA complexes upon formulation but at physiological pH undergo a novel charge-neutralization process, resulting in RNA release. This new delivery system consists of guanidinylated serinol moieties incorporated into a charge-altering releasable transporter (GSer-CARTs). Significantly, systematic variations in structure and formulation resulted in GSer-CARTs that exhibit highly selective mRNA delivery to the lung (∼97%) and spleen (∼98%) without targeting ligands. Illustrative of their breadth and translational potential, GSer-CARTs deliver circRNA, providing the basis for a cancer vaccination strategy, which in a murine model resulted in antigen-specific immune responses and effective suppression of established tumors.
Collapse
Affiliation(s)
- Zhijian Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Laura Amaya
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Aloysius Ee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Sean K Wang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, United States
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Alok Ranjan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
10
|
Wang Q, Bu C, Dai Q, Chen J, Zhang R, Zheng X, Ren H, Xin X, Li X. Recent Progress in Nucleic Acid Pulmonary Delivery toward Overcoming Physiological Barriers and Improving Transfection Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309748. [PMID: 38460157 PMCID: PMC11095210 DOI: 10.1002/advs.202309748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary delivery of therapeutic agents has been considered the desirable administration route for local lung disease treatment. As the latest generation of therapeutic agents, nucleic acid has been gradually developed as gene therapy for local diseases such as asthma, chronic obstructive pulmonary diseases, and lung fibrosis. The features of nucleic acid, specific physiological structure, and pathophysiological barriers of the respiratory tract have strongly affected the delivery efficiency and pulmonary bioavailability of nucleic acid, directly related to the treatment outcomes. The development of pharmaceutics and material science provides the potential for highly effective pulmonary medicine delivery. In this review, the key factors and barriers are first introduced that affect the pulmonary delivery and bioavailability of nucleic acids. The advanced inhaled materials for nucleic acid delivery are further summarized. The recent progress of platform designs for improving the pulmonary delivery efficiency of nucleic acids and their therapeutic outcomes have been systematically analyzed, with the application and the perspectives of advanced vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
| | - Chaozhi Bu
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Qihao Dai
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Jinhua Chen
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Ruitao Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xiaomin Zheng
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Hao Ren
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xueming Li
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| |
Collapse
|
11
|
Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release 2024; 369:696-721. [PMID: 38580137 DOI: 10.1016/j.jconrel.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.
Collapse
Affiliation(s)
- Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Estapé Senti M, García Del Valle L, Schiffelers RM. mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond. Adv Drug Deliv Rev 2024; 206:115190. [PMID: 38307296 DOI: 10.1016/j.addr.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
mRNA-based vaccines are emerging as a promising alternative to standard cancer treatments and the conventional vaccines. Moreover, the FDA-approval of three nucleic acid based therapeutics (Onpattro, BNT162b2 and mRNA-1273) has further increased the interest and trust on this type of therapeutics. In order to achieve a significant therapeutic efficacy, the mRNA needs from a drug delivery system. In the last years, several delivery platforms have been explored, being the lipid nanoparticles (LNPs) the most well characterized and studied. A better understanding on how mRNA-based therapeutics operate (both the mRNA itself and the drug delivery system) will help to further improve their efficacy and safety. In this review, we will provide an overview of what mRNA cancer vaccines are and their mode of action and we will highlight the advantages and challenges of the different delivery platforms that are under investigation.
Collapse
Affiliation(s)
- Mariona Estapé Senti
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Lucía García Del Valle
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Raymond M Schiffelers
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Morodo R, Dumas DM, Zhang J, Lui KH, Hurst PJ, Bosio R, Campos LM, Park NH, Waymouth RM, Hedrick JL. Ring-Opening Polymerization of Cyclic Esters and Carbonates with (Thio)urea/Cyclopropenimine Organocatalytic Systems. ACS Macro Lett 2024:181-188. [PMID: 38252690 DOI: 10.1021/acsmacrolett.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Organocatalyzed ring-opening polymerization is a powerful tool for the synthesis of a variety of functional, readily degradable polyesters and polycarbonates. We report the use of (thio)ureas in combination with cyclopropenimine bases as a unique catalyst for the polymerization of cyclic esters and carbonates with a large span of reactivities. Methodologies of exceptionally effective and selective cocatalyst combinations were devised to produce polyesters and polycarbonates with narrow dispersities (Đ = 1.01-1.10). Correlations of the pKa of the various ureas and cyclopropenimine bases revealed the critical importance of matching the pKa of the two cocatalysts to achieve the most efficient polymerization conditions. It was found that promoting strong H-bonding interactions with a noncompetitive organic solvent, such as CH2Cl2, enabled greatly increased polymerization rates. The stereoselective polymerization of rac-lactide afforded stereoblock poly(lactides) that crystallize as stereocomplexes, as confirmed by wide-angle X-ray scattering.
Collapse
Affiliation(s)
- Romain Morodo
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - David M Dumas
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Jia Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Kai H Lui
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Paul J Hurst
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Riccardo Bosio
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Nathaniel H Park
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - James L Hedrick
- IBM Almaden Research Center, San Jose, California 95120, United States
| |
Collapse
|
14
|
Porello I, Bono N, Candiani G, Cellesi F. Advancing nucleic acid delivery through cationic polymer design: non-cationic building blocks from the toolbox. Polym Chem 2024; 15:2800-2826. [DOI: 10.1039/d4py00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The rational integration of non-cationic building blocks into cationic polymers can be devised to enhance the performance of the resulting gene delivery vectors, improving cell targeting behavior, uptake, endosomal escape, toxicity, and transfection efficiency.
Collapse
Affiliation(s)
- Ilaria Porello
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
15
|
Chen W, Zhu Y, He J, Sun X. Path towards mRNA delivery for cancer immunotherapy from bench to bedside. Theranostics 2024; 14:96-115. [PMID: 38164145 PMCID: PMC10750210 DOI: 10.7150/thno.89247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 01/03/2024] Open
Abstract
Messenger RNA (mRNA) has emerged as a promising therapeutic agent for the prevention and treatment of various diseases. mRNA vaccines, in particular, offer an alternative approach to conventional vaccines, boasting high potency, rapid development capabilities, cost-effectiveness, and safe administration. However, the clinical application of mRNA vaccines is hindered by the challenges of mRNA instability and inefficient in vivo delivery. In recent times, remarkable technological advancements have emerged to address these challenges, utilizing two main approaches: ex vivo transfection of dendritic cells (DCs) with mRNA and direct injection of mRNA-based therapeutics, either with or without a carrier. This review offers a comprehensive overview of major non-viral vectors employed for mRNA vaccine delivery. It showcases notable preclinical and clinical studies in the field of cancer immunotherapy and discusses important considerations for advancing these promising vaccine platforms for broader therapeutic applications. Additionally, we provide insights into future possibilities and the remaining challenges in mRNA delivery technology, emphasizing the significance of ongoing research in mRNA-based therapeutics.
Collapse
Affiliation(s)
- Wenfei Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yining Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Zong Y, Lin Y, Wei T, Cheng Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303261. [PMID: 37196221 DOI: 10.1002/adma.202303261] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy.
Collapse
Affiliation(s)
- Yan Zong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
17
|
Smith S, Rossi Herling B, Zhang C, Beach MA, Teo SLY, Gillies ER, Johnston APR, Such GK. Self-Immolative Polymer Nanoparticles with Precise and Controllable pH-Dependent Degradation. Biomacromolecules 2023; 24:4958-4969. [PMID: 37709729 PMCID: PMC10649787 DOI: 10.1021/acs.biomac.3c00630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Polymer nanoparticles have generated significant interest as delivery systems for therapeutic cargo. Self-immolative polymers (SIPs) are an interesting category of materials for delivery applications, as the characteristic property of end-to-end depolymerization allows for the disintegration of the delivery system, facilitating a more effective release of the cargo and clearance from the body after use. In this work, nanoparticles based on a pH-responsive polymer poly(ethylene glycol)-b-(2-diisopropyl)amino ethyl methacrylate) and a self-immolative polymer poly[N,N-(diisopropylamino)ethyl glyoxylamide-r-N,N-(dibutylamino)ethyl glyoxylamide] (P(DPAEGAm-r-DBAEGAm)) were developed. Four particles were synthesized based on P(DPAEGAm-r-DBAEGAm) polymers with varied diisopropylamino to dibutylamino ratios of 4:1, 2:1, 2:3, and 0:1, termed 4:1, 2:1, 2:3, and 0:1 PGAm particles. The pH of particle disassembly was tuned from pH 7.0 to pH 5.0 by adjusting the ratio of diisopropylamino to dibutylamino substituents on the pendant tertiary amine. The P(DPAEGAm-r-DBAEGAm) polymers were observed to depolymerize (60-80%) below the particle disassembly pH after ∼2 h, compared to <10% at pH 7.4 and maintained reasonable stability at pH 7.4 (20-50% depolymerization) after 1 week. While all particles exhibited the ability to load a peptide cargo, only the 4:1 PGAm particles had higher endosomal escape efficiency (∼4%) compared to the 2:3 or 0:1 PGAm particles (<1%). The 4:1 PGAm particle is a promising candidate for further optimization as an intracellular drug delivery system with rapid and precisely controlled degradation.
Collapse
Affiliation(s)
- Samuel
A. Smith
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bruna Rossi Herling
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Maximilian A. Beach
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Serena L. Y. Teo
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3010, Australia
| | - Elizabeth R. Gillies
- Department
of Chemistry and Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Angus P. R. Johnston
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
18
|
Chen Z, Tian Y, Yang J, Wu F, Liu S, Cao W, Xu W, Hu T, Siegwart DJ, Xiong H. Modular Design of Biodegradable Ionizable Lipids for Improved mRNA Delivery and Precise Cancer Metastasis Delineation In Vivo. J Am Chem Soc 2023; 145:24302-24314. [PMID: 37853662 DOI: 10.1021/jacs.3c09143] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Lipid nanoparticles (LNPs) represent the most clinically advanced nonviral mRNA delivery vehicles; however, the full potential of the LNP platform is greatly hampered by inadequate endosomal escape capability. Herein, we rationally introduce a disulfide bond-bridged ester linker to modularly synthesize a library of 96 linker-degradable ionizable lipids (LDILs) for improved mRNA delivery in vivo. The top-performing LDILs are composed of one 4A3 amino headgroup, four disulfide bond-bridged linkers, and four 10-carbon tail chains, whose unique GSH-responsive cone-shaped architectures endow optimized 4A3-SCC-10 and 4A3-SCC-PH lipids with superior endosomal escape and rapid mRNA release abilities, outperforming their parent lipids 4A3-SC-10/PH without a disulfide bond and control lipids 4A3-SSC-10/PH with a disulfide bond in the tail. Notably, compared to DLin-MC3-DMA via systematic administration, 4A3-SCC-10- and 4A3-SCC-PH-formulated LNPs significantly improved mRNA delivery in livers by 87-fold and 176-fold, respectively. Moreover, 4A3-SCC-PH LNPs enabled the highly efficient gene editing of 99% hepatocytes at a low Cre mRNA dose in tdTomato mice following intravenous administration. Meanwhile, 4A3-SCC-PH LNPs were able to selectively deliver firefly luciferase mRNA and facilitate luciferase expression in tumor cells after intraperitoneal injection, further improving cancer metastasis delineation and surgery via bioluminescence imaging. We envision that the chemistry adopted here can be further extended to develop new biodegradable ionizable lipids for broad applications such as gene editing and cancer immunotherapy.
Collapse
Affiliation(s)
- Zhaoming Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jieyu Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weijia Xu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Daniel J Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Huang P, Deng H, Wang C, Zhou Y, Chen X. Cellular Trafficking of Nanotechnology-Mediated mRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307822. [PMID: 37929780 DOI: 10.1002/adma.202307822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA)-based therapy has emerged as a powerful, safe, and rapidly scalable therapeutic approach that involves technologies for both mRNA itself and the delivery vehicle. Although there are some unique challenges for different applications of mRNA therapy, a common challenge for all mRNA therapeutics is the transport of mRNA into the target cell cytoplasm for sufficient protein expression. This review is focused on the behaviors at the cellular level of nanotechnology-mediated mRNA delivery systems, which have not been comprehensively reviewed yet. First, the four main therapeutic applications of mRNA are introduced, including immunotherapy, protein replacement therapy, genome editing, and cellular reprogramming. Second, common types of mRNA cargos and mRNA delivery systems are summarized. Third, strategies to enhance mRNA delivery efficiency during the cellular trafficking process are highlighted, including accumulation to the cell, internalization into the cell, endosomal escape, release of mRNA from the nanocarrier, and translation of mRNA into protein. Finally, the challenges and opportunities for the development of nanotechnology-mediated mRNA delivery systems are presented. This review can provide new insights into the future fabrication of mRNA nanocarriers with desirable cellular trafficking performance.
Collapse
Affiliation(s)
- Pei Huang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Changrong Wang
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| |
Collapse
|
20
|
Li Z, Amaya L, Pi R, Wang SK, Ranjan A, Waymouth RM, Blish CA, Chang HY, Wender PA. Charge-altering releasable transporters enhance mRNA delivery in vitro and exhibit in vivo tropism. Nat Commun 2023; 14:6983. [PMID: 37914693 PMCID: PMC10620205 DOI: 10.1038/s41467-023-42672-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
The introduction of more effective and selective mRNA delivery systems is required for the advancement of many emerging biomedical technologies including the development of prophylactic and therapeutic vaccines, immunotherapies for cancer and strategies for genome editing. While polymers and oligomers have served as promising mRNA delivery systems, their efficacy in hard-to-transfect cells such as primary T lymphocytes is often limited as is their cell and organ tropism. To address these problems, considerable attention has been placed on structural screening of various lipid and cation components of mRNA delivery systems. Here, we disclose a class of charge-altering releasable transporters (CARTs) that differ from previous CARTs based on their beta-amido carbonate backbone (bAC) and side chain spacing. These bAC-CARTs exhibit enhanced mRNA transfection in primary T lymphocytes in vitro and enhanced protein expression in vivo with highly selective spleen tropism, supporting their broader therapeutic use as effective polyanionic delivery systems.
Collapse
Affiliation(s)
- Zhijian Li
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Laura Amaya
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruoxi Pi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford, CA, 94305, USA
| | - Sean K Wang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alok Ranjan
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Catherine A Blish
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Paul A Wender
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
21
|
Yuan M, Han Z, Liang Y, Sun Y, He B, Chen W, Li F. mRNA nanodelivery systems: targeting strategies and administration routes. Biomater Res 2023; 27:90. [PMID: 37740246 PMCID: PMC10517595 DOI: 10.1186/s40824-023-00425-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/26/2023] [Indexed: 09/24/2023] Open
Abstract
With the great success of coronavirus disease (COVID-19) messenger ribonucleic acid (mRNA) vaccines, mRNA therapeutics have gained significant momentum for the prevention and treatment of various refractory diseases. To function efficiently in vivo and overcome clinical limitations, mRNA demands safe and stable vectors and a reasonable administration route, bypassing multiple biological barriers and achieving organ-specific targeted delivery of mRNA. Nanoparticle (NP)-based delivery systems representing leading vector approaches ensure the successful intracellular delivery of mRNA to the target organ. In this review, chemical modifications of mRNA and various types of advanced mRNA NPs, including lipid NPs and polymers are summarized. The importance of passive targeting, especially endogenous targeting, and active targeting in mRNA nano-delivery is emphasized, and different cellular endocytic mechanisms are discussed. Most importantly, based on the above content and the physiological structure characteristics of various organs in vivo, the design strategies of mRNA NPs targeting different organs and cells are classified and discussed. Furthermore, the influence of administration routes on targeting design is highlighted. Finally, an outlook on the remaining challenges and future development toward mRNA targeted therapies and precision medicine is provided.
Collapse
Affiliation(s)
- Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
22
|
Ditzler RAJ, King AJ, Towell SE, Ratushnyy M, Zhukhovitskiy AV. Editing of polymer backbones. Nat Rev Chem 2023; 7:600-615. [PMID: 37542179 DOI: 10.1038/s41570-023-00514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/06/2023]
Abstract
Polymers are at the epicentre of modern technological progress and the associated environmental pollution. Considerations of both polymer functionality and lifecycle are crucial in these contexts, and the polymer backbone - the core of a polymer - is at the root of these considerations. Just as the meaning of a sentence can be altered by editing its words, the function and sustainability of a polymer can also be transformed via the chemical modification of its backbone. Yet, polymer modification has primarily been focused on the polymer periphery. In this Review, we focus on the transformations of the polymer backbone by defining some concepts fundamental to this topic (for example, 'polymer backbone' and 'backbone editing') and by collecting and categorizing examples of backbone editing scattered throughout a century's worth of chemical literature, and outline critical directions for further research. In so doing, we lay the foundation for the field of polymer backbone editing and hope to accelerate its development.
Collapse
Affiliation(s)
- Rachael A J Ditzler
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew J King
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sydney E Towell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maxim Ratushnyy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
23
|
Lu J, Atochina-Vasserman EN, Maurya DS, Shalihin MI, Zhang D, Chenna SS, Adamson J, Liu M, Shah HUR, Shah H, Xiao Q, Queeley B, Ona NA, Reagan EK, Ni H, Sahoo D, Peterca M, Weissman D, Percec V. Screening Libraries to Discover Molecular Design Principles for the Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers Derived from Plant Phenolic Acids. Pharmaceutics 2023; 15:1572. [PMID: 37376020 DOI: 10.3390/pharmaceutics15061572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.
Collapse
Affiliation(s)
- Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Muhammad Irhash Shalihin
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Srijay S Chenna
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Habib Ur Rehman Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Honey Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Bryn Queeley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Nathan A Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
24
|
Mandal R, Ghosh A, Rout NK, Prasad M, Hazra B, Sar S, Das S, Datta A, Tarafdar PK. Self-assembled prebiotic amphiphile-mixture exhibits tunable catalytic properties. Org Biomol Chem 2023; 21:4473-4481. [PMID: 37194351 DOI: 10.1039/d3ob00606a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protocellular surface formation via the self-assembly of amphiphiles, and catalysis by simple peptides/proto-RNA are two important pillars in the evolution of protocells. To hunt for prebiotic self-assembly-supported catalytic reactions, we thought that amino-acid-based amphiphiles might play an important role. In this paper, we investigate the formation of histidine-based and serine-based amphiphiles under mild prebiotic conditions from amino acid : fatty alcohol and amino acid : fatty acid mixtures. The histidine-based amphiphiles were able to catalyze hydrolytic reactions at the self-assembled surface (with a rate increase of ∼1000-fold), and the catalytic ability can be tuned by linkage of the fatty carbon part to histidine (N-acylated vs. O-acylated). Moreover, the presence of cationic serine-based amphiphiles on the surface enhances the catalytic efficiency by another ∼2-fold, whereas the presence of anionic aspartic acid-based amphiphiles reduces the catalytic activity. Ester partitioning into the surface, reactivity, and the accumulation of liberated fatty acid explain the substrate selectivity of the catalytic surface, where the hexyl esters were found to be more hydrolytic than other fatty acyl esters. Di-methylation of the -NH2 of OLH increases the catalytic efficacy by a further ∼2-fold, whereas trimethylation reduces the catalytic ability. The self-assembly, charge-charge repulsion, and the H-bonding to the ester carbonyl are likely to be responsible for the superior (∼2500-fold higher rate than the pre-micellar OLH) catalytic efficiency of O-lauryl dimethyl histidine (OLDMH). Thus, prebiotic amino-acid-based surfaces served as an efficient catalyst that exhibits regulation of catalytic function, substrate selectivity, and further adaptability to perform bio-catalysis.
Collapse
Affiliation(s)
- Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Anupam Ghosh
- Indian Association for the Cultivation of Science, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Nilesh K Rout
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Sanu Sar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Ayan Datta
- Indian Association for the Cultivation of Science, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| |
Collapse
|
25
|
Blake TR, Haabeth OAW, Sallets A, McClellan RL, Del Castillo TJ, Vilches-Moure JG, Ho WC, Wender PA, Levy R, Waymouth RM. Lysine-Derived Charge-Altering Releasable Transporters: Targeted Delivery of mRNA and siRNA to the Lungs. Bioconjug Chem 2023:10.1021/acs.bioconjchem.3c00019. [PMID: 36996808 PMCID: PMC10601965 DOI: 10.1021/acs.bioconjchem.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Targeted delivery of nucleic acid therapeutics to the lungs could transform treatment options for pulmonary disease. We have previously developed oligomeric charge-altering releasable transporters (CARTs) for in vivo mRNA transfection and demonstrated their efficacy for use in mRNA-based cancer vaccination and local immunomodulatory therapies against murine tumors. While our previously reported glycine-based CART-mRNA complexes (G-CARTs/mRNA) show selective protein expression in the spleen (mouse, >99%), here, we report a new lysine-derived CART-mRNA complex (K-CART/mRNA) that, without additives or targeting ligands, shows selective protein expression in the lungs (mouse, >90%) following systemic IV administration. We further show that by delivering siRNA using the K-CART, we can significantly decrease expression of a lung-localized reporter protein. Blood chemistry and organ pathology studies demonstrate that K-CARTs are safe and well-tolerated. We report on the new step economical, organocatalytic synthesis (two steps) of functionalized polyesters and oligo-carbonate-co-α-aminoester K-CARTs from simple amino acid and lipid-based monomers. The ability to direct protein expression selectively in the spleen or lungs by simple, modular changes to the CART structure opens fundamentally new opportunities in research and gene therapy.
Collapse
Affiliation(s)
- Timothy R Blake
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ole A W Haabeth
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Adrienne Sallets
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Rebecca L McClellan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Trevor J Del Castillo
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University, Stanford, California 94305, United States
| | - Wilson C Ho
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Ronald Levy
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
26
|
Plank M, Frieß FV, Bitsch CV, Pieschel J, Reitenbach J, Gallei M. Modular Synthesis of Functional Block Copolymers by Thiol–Maleimide “Click” Chemistry for Porous Membrane Formation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Martina Plank
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Florian Volker Frieß
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Carina Vera Bitsch
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Jens Pieschel
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Julija Reitenbach
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|
27
|
Xian H, Zhang Y, Yu C, Wang Y. Nanobiotechnology-Enabled mRNA Stabilization. Pharmaceutics 2023; 15:pharmaceutics15020620. [PMID: 36839942 PMCID: PMC9965532 DOI: 10.3390/pharmaceutics15020620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
mRNA technology has attracted enormous interest due to its great therapeutic potential. Strategies that can stabilize fragile mRNA molecules are crucial for their widespread applications. There are numerous reviews on mRNA delivery, but few focus on the underlying causes of mRNA instability and how to tackle the instability issues. Herein, the recent progress in nanobiotechnology-enabled strategies for stabilizing mRNA and better delivery is reviewed. First, factors that destabilize mRNA are introduced. Second, nanobiotechnology-enabled strategies to stabilize mRNA molecules are reviewed, including molecular and nanotechnology approaches. The impact of formulation processing on mRNA stability and shelf-life, including freezing and lyophilization, are also briefly discussed. Lastly, our perspectives on challenges and future directions are presented. This review may provide useful guidelines for understanding the structure-function relationship and the rational design of nanobiotechnology for mRNA stability enhancement and mRNA technology development.
Collapse
|
28
|
Lee S, Nasr S, Rasheed S, Liu Y, Hartwig O, Kaya C, Boese A, Koch M, Herrmann J, Müller R, Loretz B, Buhler E, Hirsch AKH, Lehr CM. Proteoid biodynamers for safe mRNA transfection via pH-responsive nanorods enabling endosomal escape. J Control Release 2023; 353:915-929. [PMID: 36521693 DOI: 10.1016/j.jconrel.2022.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The recent success of mRNA vaccines using lipid-based vectors highlights the importance of strategies for nucleotide delivery under the pandemic situation. Although current mRNA delivery is focused on lipid-based vectors, still they need to be optimized for increasing stability, targeting, and efficiency, and for reducing toxicity. In this regard, other vector systems featuring smart strategies such as pH-responsive degradability and endosomal escape ability hold the potential to overcome the current limitations. Here, we report pH-responsive polymeric nanorods made of amino acid-derivatives connected by dynamic covalent bonds called proteoid-biodynamers, as mRNA vectors. They show excellent biocompatibility due to the biodegradation, and outstanding transfection. The biodynamers of Lys, His, and Arg or monomer mixtures thereof were shown to form nanocomplexes with mRNA. They outperformed conventional transfection agents three times regarding transfection efficacy in three human cell lines, with 82-98% transfection in living cells. Also, we confirmed that the biodynamers disrupted the endosomes up to 10-fold more in number than the conventional vectors. We discuss here their outstanding performance with a thorough analysis of their nanorod structure changes in endosomal microenvironments.
Collapse
Affiliation(s)
- Sangeun Lee
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| | - Sarah Nasr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), Braunschweig, Germany
| | - Yun Liu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Cansu Kaya
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Annette Boese
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), Braunschweig, Germany; Helmholtz International Lab - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Eric Buhler
- Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Helmholtz International Lab - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
29
|
Huang P, Jiang L, Pan H, Ding L, Zhou B, Zhao M, Zou J, Li B, Qi M, Deng H, Zhou Y, Chen X. An Integrated Polymeric mRNA Vaccine without Inflammation Side Effects for Cellular Immunity Mediated Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207471. [PMID: 36326183 DOI: 10.1002/adma.202207471] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Among the few available mRNA delivery vehicles, lipid nanoparticles (LNPs) are the most clinically advanced but they require cumbersome four components and suffer from inflammation-related side effects that should be minimized for safety. Yet, a certain level of proinflammatory responses and innate immune activation are required to evoke T-cell immunity for mRNA cancer vaccination. To address these issues and develop potent yet low-inflammatory mRNA cancer vaccine vectors, a series of alternating copolymers "PHTA" featured with ortho-hydroxy tertiary amine (HTA) repeating units for mRNA delivery is synthesized, which can play triple roles of condensing mRNA, enhancing the polymeric nanoparticle (PNP) stability, and prolonging circulation time. Unlike LNPs exhibiting high levels of inflammation, the PHTA-based PNPs show negligible inflammatory side effects in vivo. Importantly, the top candidate PHTA-C18 enables successful mRNA cancer vaccine delivery in vivo and leads to a robust CD8+ T cell mediated antitumor cellular immunity. Such PHTA-based integrated PNP provides a potential approach for establishing mRNA cancer vaccines with good inflammatory safety profiles.
Collapse
Affiliation(s)
- Pei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Lingsheng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingwen Ding
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Bo Zhou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Benhao Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Meiwei Qi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
30
|
Dilliard SA, Siegwart DJ. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. NATURE REVIEWS. MATERIALS 2023; 8:282-300. [PMID: 36691401 PMCID: PMC9850348 DOI: 10.1038/s41578-022-00529-7] [Citation(s) in RCA: 188] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 05/03/2023]
Abstract
Genetic drugs based on nucleic acid biomolecules are a rapidly emerging class of medicines that directly reprogramme the central dogma of biology to prevent and treat disease. However, multiple biological barriers normally impede the intracellular delivery of nucleic acids, necessitating the use of a delivery system. Lipid and polymer nanoparticles represent leading approaches for the clinical translation of genetic drugs. These systems circumnavigate biological barriers and facilitate the intracellular delivery of nucleic acids in the correct cells of the target organ using passive, active and endogenous targeting mechanisms. In this Review, we highlight the constituent materials of these advanced nanoparticles, their nucleic acid cargoes and how they journey through the body. We discuss targeting principles for liver delivery, as it is the organ most successfully targeted by intravenously administered nanoparticles to date, followed by the expansion of these concepts to extrahepatic (non-liver) delivery. Ultimately, this Review connects emerging materials and biological insights playing key roles in targeting specific organs and cells in vivo.
Collapse
Affiliation(s)
- Sean A. Dilliard
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX USA
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Daniel J. Siegwart
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX USA
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
31
|
Lipophilic poly(glycolide) blocks in morpholin-2-one-based CARTs for plasmid DNA delivery: Polymer regioregularity, sequence of lipophilic/polyamine blocks, and nanoparticle stability as factors of transfection efficiency. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Abstract
Messenger RNA (mRNA) is an emerging class of therapeutic agent for the prevention and treatment of a wide range of diseases. The recent success of the two highly efficacious mRNA vaccines produced by Moderna and Pfizer-BioNTech to protect against COVID-19 highlights the huge potential of mRNA technology for revolutionizing life science and medical research. Challenges related to mRNA stability and immunogenicity, as well as in vivo delivery and the ability to cross multiple biological barriers, have been largely addressed by recent progress in mRNA engineering and delivery. In this Review, we present the latest advances and innovations in the growing field of mRNA nanomedicine, in the context of ongoing clinical translation and future directions to improve clinical efficacy.
Collapse
|
33
|
Huang S, Hao XY, Li YJ, Wu JY, Xiang DX, Luo S. Nonviral delivery systems for antisense oligonucleotide therapeutics. Biomater Res 2022; 26:49. [PMID: 36180936 PMCID: PMC9523189 DOI: 10.1186/s40824-022-00292-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells. We believe that as new ASO drugs develop, the exploration for corresponding nonviral vectors is inevitable. Intensive development of nonviral vectors with improved delivery strategies based on specific targets can continue to expand the value of ASO therapeutic approaches. Here, we provide an overview of current nonviral delivery strategies, including ASOs modifications, action mechanisms, and multi-carrier methods, which aim to address the irreplaceable role of nonviral vectors in the progressive development of ASOs delivery.
Collapse
Affiliation(s)
- Si Huang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Yan Hao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yong-Jiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China. .,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China. .,Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
34
|
Zhou L, Emenuga M, Kumar S, Lamantia Z, Figueiredo M, Emrick T. Designing Synthetic Polymers for Nucleic Acid Complexation and Delivery: From Polyplexes to Micelleplexes to Triggered Degradation. Biomacromolecules 2022; 23:4029-4040. [PMID: 36125365 DOI: 10.1021/acs.biomac.2c00767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene delivery as a therapeutic tool continues to advance toward impacting human health, with several gene therapy products receiving FDA approval over the past 5 years. Despite this important progress, the safety and efficacy of gene therapy methodology requires further improvement to ensure that nucleic acid therapeutics reach the desired targets while minimizing adverse effects. Synthetic polymers offer several enticing features as nucleic acid delivery vectors due to their versatile functionalities and architectures and the ability of synthetic chemists to rapidly build large libraries of polymeric candidates equipped for DNA/RNA complexation and transport. Current synthetic designs are pursuing challenging objectives that seek to improve transfection efficiency and, at the same time, mitigate cytotoxicity. This Perspective will describe recent work in polymer-based gene complexation and delivery vectors in which cationic polyelectrolytes are modified synthetically by introduction of additional components─including hydrophobic, hydrophilic, and fluorinated units─as well as embedding of degradable linkages within the macromolecular structure. As will be seen, recent advances employing these emerging design strategies are promising with respect to their excellent biocompatibility and transfection capability, suggesting continued promise of synthetic polymer gene delivery vectors going forward.
Collapse
Affiliation(s)
- Le Zhou
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Miracle Emenuga
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Shreya Kumar
- Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Zachary Lamantia
- Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Marxa Figueiredo
- Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Todd Emrick
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
35
|
Testa S, Haabeth OAW, Blake TR, Del Castillo TJ, Czerwinski DK, Rajapaksa R, Wender PA, Waymouth RM, Levy R. Fingolimod-Conjugated Charge-Altering Releasable Transporters Efficiently and Specifically Deliver mRNA to Lymphocytes In Vivo and In Vitro. Biomacromolecules 2022; 23:2976-2988. [PMID: 35748182 PMCID: PMC10199726 DOI: 10.1021/acs.biomac.2c00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charge-altering releasable transporters (CARTs) are a class of oligonucleotide delivery vehicles shown to be effective for delivery of messenger RNA (mRNA) both in vitro and in vivo. Here, we exploited the chemical versatility of the CART synthesis to generate CARTs containing the small-molecule drug fingolimod (FTY720) as a strategy to increase mRNA delivery and expression in lymphocytes through a specific ligand-receptor interaction. Fingolimod is an FDA-approved small-molecule drug that, upon in vivo phosphorylation, binds to the sphingosine-1-phosphate receptor 1 (S1P1), which is highly expressed on lymphocytes. Compared to its non-fingolimod-conjugated analogue, the fingolimod-conjugated CART achieved superior transfection of activated human and murine T and B lymphocytes in vitro. The higher transfection of the fingolimod-conjugated CARTs was lost when cells were exposed to a free fingolimod before transfection. In vivo, the fingolimod-conjugated CART showed increased mRNA delivery to marginal zone B cells and NK cells in the spleen, relative to CARTs lacking fingolimod. Moreover, fingolimod-CART-mediated mRNA delivery induces peripheral blood T-cell depletion similar to free fingolimod. Thus, we show that functionalization of CARTs with a pharmacologically validated small molecule can increase transfection of a cellular population of interest while conferring some of the targeting properties of the conjugated small molecule to the CARTs.
Collapse
Affiliation(s)
- Stefano Testa
- Stanford Cancer Institute, Division of Oncology, Department of Medicine, Stanford University, Stanford, California 94305, United States
| | - Ole A W Haabeth
- Stanford Cancer Institute, Division of Oncology, Department of Medicine, Stanford University, Stanford, California 94305, United States
| | - Timothy R Blake
- Stanford Cancer Institute, Division of Oncology, Department of Medicine, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Trevor J Del Castillo
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Debra K Czerwinski
- Stanford Cancer Institute, Division of Oncology, Department of Medicine, Stanford University, Stanford, California 94305, United States
| | - Ranjani Rajapaksa
- Stanford Cancer Institute, Division of Oncology, Department of Medicine, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ronald Levy
- Stanford Cancer Institute, Division of Oncology, Department of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
36
|
Pomeisl K, Vaňkátová P, Hamplová V. Enantioselective HPLC of aryl-substituted oxazolines as an efficient tool for determination of chiral purity of serine medicinal components. J Sep Sci 2022; 45:2217-2227. [PMID: 35460597 DOI: 10.1002/jssc.202100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/06/2022]
Abstract
A new approach for evaluation of chiral purity of serine esterification products bearing long-chain alkyl substituents was developed. The compounds were simply converted to aryl-substituted oxazolines which: (i) facilitates effective chromatographic enantioseparation and (ii) enables direct detection using ultraviolet absorption. The method employs polysaccharide-based chiral stationary phase and allows enantioseparation of highly stable oxazoline products in less than 6 minutes using simple binary mobile phase. As opposed to the previously used normal phase method the developed method was performed in the reversed-phase mode. Aside from the benefits of switching to less hazardous solvents with regards to the principles of Green Chemistry, this has also led to reduction of the analysis time. In comparison with known serine chromophores, the best enantioseparation of aryloxazoline rigid structure may be achieved only based on non-polar interactions with chiral stationary phase. In contrast, substitution of the chromophore moiety with hydroxyl substituent affected intra and intermolecular interactions that caused enantioseparation differences. Concurrently, we found a high chirality retention of (R)- and (S)-configuration oxazoline standards (≥ 99% e.e.) during introduction of ultraviolet label. The method is suitable for rapid injection of mixture containing the ultraviolet absorption marker without prior purification. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Karel Pomeisl
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Vaňkátová
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.,Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Věra Hamplová
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
37
|
Xiao Y, Tang Z, Huang X, Chen W, Zhou J, Liu H, Liu C, Kong N, Tao W. Emerging mRNA technologies: delivery strategies and biomedical applications. Chem Soc Rev 2022; 51:3828-3845. [PMID: 35437544 DOI: 10.1039/d1cs00617g] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The great success achieved by the two highly-effective messenger RNA (mRNA) vaccines during the COVID-19 pandemic highlights the great potential of mRNA technology. Through the evolution of mRNA technology, chemistry has played an important role from mRNA modification to the synthesis of mRNA delivery platforms, which allows various applications of mRNA to be achieved both in vitro and in vivo. In this tutorial review, we provide a summary and discussion on the significant progress of emerging mRNA technologies, as well as the underlying chemical designs and principles. Various nanoparticle (NP)-based delivery strategies including protein-mRNA complex, lipid-based carriers, polymer-based carriers, and hybrid carriers for the efficient delivery of mRNA molecules are presented. Furthermore, typical mRNA delivery platforms for various biomedical applications (e.g., functional protein expression, vaccines, cancer immunotherapy, and genome editing) are highlighted. Finally, our insights into the challenges and future development towards clinical translation of these mRNA technologies are provided.
Collapse
Affiliation(s)
- Yufen Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | - Xiangang Huang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | - Haijun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China. .,Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
38
|
Chen W, Ma Y, Liu X, Zhu D. Polyester materials for mRNA delivery. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:117-127. [PMID: 36046844 PMCID: PMC9400784 DOI: 10.37349/etat.2022.00075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/30/2022] [Indexed: 11/19/2022] Open
Abstract
Messenger RNA (mRNA) has recently made important progress in clinical implementation, offering a promising therapeutic option for infectious disease and cancer. However, the nature of mRNA molecules rendered them poorly bioavailable and unstable in vivo, impeding their further clinical application. Therefore, safe and efficient delivery of mRNA therapeutics to the target site is crucial for their successful translation into the clinical setting. Various vectors have been explored for mRNA delivery. Among them, polyesters and their analogs, a family of biodegradable polymers, have exhibited great potential for mRNA delivery. In this short review, the authors briefly introduce mRNA therapeutics, their therapeutic applications and delivery challenges. The authors then presented the typical examples of polyester materials for mRNA delivery to highlight the current progress and discuss the challenges for the rational design of polyester based mRNA delivery vectors. The authors hope to provide a new insight for the design of biodegradable vectors for nucleic acids delivery, thereby promoting their further clinic translation.
Collapse
Affiliation(s)
- Wang Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yonghui Ma
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Dandan Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
39
|
Zhang D, Atochina-Vasserman EN, Lu J, Maurya DS, Xiao Q, Liu M, Adamson J, Ona N, Reagan EK, Ni H, Weissman D, Percec V. The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One-Component Ionizable Amphiphilic Janus Dendrimers in Targeted mRNA Delivery Activity. J Am Chem Soc 2022; 144:4746-4753. [PMID: 35263098 DOI: 10.1021/jacs.2c00273] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral and synthetic vectors for delivery of nucleic acids impacted genetic nanomedicine by aiding the rapid development of the extraordinarily efficient Covid-19 vaccines. Access to targeted delivery of nucleic acids is expected to expand the field of nanomedicine beyond most expectations. Both viral and synthetic vectors have advantages and disadvantages. The major advantage of the synthetic vectors is their unlimited synthetic capability. The four-component lipid nanoparticles (LNPs) are the leading nonviral vector for mRNA used by Pfizer and Moderna in Covid-19 vaccines. Their synthetic capacity inspired us to develop a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA. The first experiments on IAJDs provided, through a rational-library design combined with orthogonal-modular accelerated synthesis and sequence control in their hydrophilic part, some of the most active synthetic vectors for the delivery of mRNA to lung. The second experiments employed a similar strategy, generating, by a less complex hydrophilic structure, a library of IAJDs targeting spleen, liver, and lung. Here, we report preliminary studies designing the hydrophobic region of IAJDs by using dissimilar alkyl lengths and demonstrate the unexpectedly important role of the primary structure of the hydrophobic part of IAJDs by increasing up to 90.2-fold the activity of targeted delivery of mRNA to spleen, lymph nodes, liver, and lung. The principles of the design strategy reported here and in previous publications indicate that IAJDs could have a profound impact on the future of genetic nanomedicine.
Collapse
Affiliation(s)
- Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
40
|
Yu X, Liu S, Cheng Q, Lee SM, Wei T, Zhang D, Farbiak L, Johnson LT, Wang X, Siegwart DJ. Hydrophobic Optimization of Functional Poly(TPAE-co-suberoyl chloride) for Extrahepatic mRNA Delivery following Intravenous Administration. Pharmaceutics 2021; 13:pharmaceutics13111914. [PMID: 34834329 PMCID: PMC8624493 DOI: 10.3390/pharmaceutics13111914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
Abstract
Messenger RNA (mRNA) has generated great attention due to its broad potential therapeutic applications, including vaccines, protein replacement therapy, and immunotherapy. Compared to other nucleic acids (e.g., siRNA and pDNA), there are more opportunities to improve the delivery efficacy of mRNA through systematic optimization. In this report, we studied a high-throughput library of 1200 functional polyesters for systemic mRNA delivery. We focused on the chemical investigation of hydrophobic optimization as a method to adjust mRNA polyplex stability, diameter, pKa, and efficacy. Focusing on a region of the library heatmap (PE4K-A17), we further explored the delivery of luciferase mRNA to IGROV1 ovarian cancer cells in vitro and to C57BL/6 mice in vivo following intravenous administration. PE4K-A17-0.2C8 was identified as an efficacious carrier for delivering mRNA to mouse lungs. The delivery selectivity between organs (lungs versus spleen) was found to be tunable through chemical modification of polyesters (both alkyl chain length and molar ratio in the formulation). Cre recombinase mRNA was delivered to the Lox-stop-lox tdTomato mouse model to study potential application in gene editing. Overall, we identified a series of polymer-mRNA polyplexes stabilized with Pluronic F-127 for safe and effective delivery to mouse lungs and spleens. Structure–activity relationships between alkyl side chains and in vivo delivery were elucidated, which may be informative for the continued development of polymer-based mRNA delivery.
Collapse
|
41
|
Zhang D, Atochina-Vasserman EN, Maurya DS, Liu M, Xiao Q, Lu J, Lauri G, Ona N, Reagan EK, Ni H, Weissman D, Percec V. Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers. J Am Chem Soc 2021; 143:17975-17982. [PMID: 34672554 DOI: 10.1021/jacs.1c09585] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeted and efficient delivery of nucleic acids with viral and synthetic vectors is the key step of genetic nanomedicine. The four-component lipid nanoparticle synthetic delivery systems consisting of ionizable lipids, phospholipids, cholesterol, and a PEG-conjugated lipid, assembled by microfluidic or T-tube technology, have been extraordinarily successful for delivery of mRNA to provide Covid-19 vaccines. Recently, we reported a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) synthetic delivery system for mRNA relying on amphiphilic Janus dendrimers and glycodendrimers developed in our laboratory. Amphiphilic Janus dendrimers consist of functional hydrophilic dendrons conjugated to hydrophobic dendrons. Co-assembly of IAJDs with mRNA into dendrimersome nanoparticles (DNPs) occurs by simple injection in acetate buffer, rather than by microfluidic devices, and provides a very efficient system for delivery of mRNA to lung. Here we report the replacement of most of the hydrophilic fragment of the dendron from IAJDs, maintaining only its ionizable amine, while changing its interconnecting group to the hydrophobic dendron from amide to ester. The resulting IAJDs demonstrated that protonated ionizable amines play dual roles of hydrophilic fragment and binding ligand for mRNA, changing delivery from lung to spleen and/or liver. Replacing the interconnecting ester with the amide switched the delivery back to lung. Delivery predominantly to liver is favored by pairs of odd and even alkyl groups in the hydrophobic dendron. This simple structural change transformed the targeted delivery of mRNA mediated with IAJDs, from lung to liver and spleen, and expands the utility of DNPs from therapeutics to vaccines.
Collapse
Affiliation(s)
- Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - George Lauri
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
42
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
43
|
Li M, Li S, Huang Y, Chen H, Zhang S, Zhang Z, Wu W, Zeng X, Zhou B, Li B. Secreted Expression of mRNA-Encoded Truncated ACE2 Variants for SARS-CoV-2 via Lipid-Like Nanoassemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101707. [PMID: 34278613 PMCID: PMC8420471 DOI: 10.1002/adma.202101707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Indexed: 05/24/2023]
Abstract
The transfer of foreign synthetic messenger RNA (mRNA) into cells is essential for mRNA-based protein-replacement therapies. Prophylactic mRNA COVID-19 vaccines commonly utilize nanotechnology to deliver mRNA encoding SARS-CoV-2 vaccine antigens, thereby triggering the body's immune response and preventing infections. In this study, a new combinatorial library of symmetric lipid-like compounds is constructed, and among which a lead compound is selected to prepare lipid-like nanoassemblies (LLNs) for intracellular delivery of mRNA. After multiround optimization, the mRNA formulated into core-shell-structured LLNs exhibits more than three orders of magnitude higher resistance to serum than the unprotected mRNA, and leads to sustained and high-level protein expression in mammalian cells. A single intravenous injection of LLNs into mice achieves over 95% mRNA translation in the spleen, without causing significant hematological and histological changes. Delivery of in-vitro-transcribed mRNA that encodes high-affinity truncated ACE2 variants (tACE2v mRNA) through LLNs induces elevated expression and secretion of tACE2v decoys, which is able to effectively block the binding of the receptor-binding domain of the SARS-CoV-2 to the human ACE2 receptor. The robust neutralization activity in vitro suggests that intracellular delivery of mRNA encoding ACE2 receptor mimics via LLNs may represent a potential intervention strategy for COVID-19.
Collapse
Affiliation(s)
- Min Li
- Department of Infectious DiseaseShenzhen People's HospitalThe First Affiliated Hospital of Southern University of Science and TechnologyShenzhen518020China
| | - Sanpeng Li
- Department of Infectious DiseaseShenzhen People's HospitalThe First Affiliated Hospital of Southern University of Science and TechnologyShenzhen518020China
| | - Yixuan Huang
- Department of Infectious DiseaseShenzhen People's HospitalThe First Affiliated Hospital of Southern University of Science and TechnologyShenzhen518020China
| | - Haixia Chen
- Department of Clinical LaboratoryThe Second Clinical Medical College of Jinan UniversityShenzhen518020China
| | - Songya Zhang
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Zhicheng Zhang
- Department of Infectious DiseaseShenzhen People's HospitalThe First Affiliated Hospital of Southern University of Science and TechnologyShenzhen518020China
| | - Weigang Wu
- Department of Infectious DiseaseShenzhen People's HospitalThe First Affiliated Hospital of Southern University of Science and TechnologyShenzhen518020China
| | - Xiaobin Zeng
- Department of Infectious DiseaseShenzhen People's HospitalThe First Affiliated Hospital of Southern University of Science and TechnologyShenzhen518020China
| | - Boping Zhou
- Department of Infectious DiseaseShenzhen People's HospitalThe First Affiliated Hospital of Southern University of Science and TechnologyShenzhen518020China
| | - Bin Li
- Department of Infectious DiseaseShenzhen People's HospitalThe First Affiliated Hospital of Southern University of Science and TechnologyShenzhen518020China
- Department of Infectious DiseaseThe Second Clinical Medical College of Jinan UniversityShenzhen518020China
| |
Collapse
|
44
|
Zhang D, Atochina-Vasserman EN, Maurya DS, Huang N, Xiao Q, Ona N, Liu M, Shahnawaz H, Ni H, Kim K, Billingsley MM, Pochan DJ, Mitchell MJ, Weissman D, Percec V. One-Component Multifunctional Sequence-Defined Ionizable Amphiphilic Janus Dendrimer Delivery Systems for mRNA. J Am Chem Soc 2021; 143:12315-12327. [PMID: 34324336 DOI: 10.1021/jacs.1c05813] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Efficient viral or nonviral delivery of nucleic acids is the key step of genetic nanomedicine. Both viral and synthetic vectors have been successfully employed for genetic delivery with recent examples being DNA, adenoviral, and mRNA-based Covid-19 vaccines. Viral vectors can be target specific and very efficient but can also mediate severe immune response, cell toxicity, and mutations. Four-component lipid nanoparticles (LNPs) containing ionizable lipids, phospholipids, cholesterol for mechanical properties, and PEG-conjugated lipid for stability represent the current leading nonviral vectors for mRNA. However, the segregation of the neutral ionizable lipid as droplets in the core of the LNP, the "PEG dilemma", and the stability at only very low temperatures limit their efficiency. Here, we report the development of a one-component multifunctional ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA that exhibits high activity at a low concentration of ionizable amines organized in a sequence-defined arrangement. Six libraries containing 54 sequence-defined IAJDs were synthesized by an accelerated modular-orthogonal methodology and coassembled with mRNA into dendrimersome nanoparticles (DNPs) by a simple injection method rather than by the complex microfluidic technology often used for LNPs. Forty four (81%) showed activity in vitro and 31 (57%) in vivo. Some, exhibiting organ specificity, are stable at 5 °C and demonstrated higher transfection efficiency than positive control experiments in vitro and in vivo. Aside from practical applications, this proof of concept will help elucidate the mechanisms of packaging and release of mRNA from DNPs as a function of ionizable amine concentration, their sequence, and constitutional isomerism of IAJDs.
Collapse
Affiliation(s)
- Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ning Huang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Hamna Shahnawaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kyunghee Kim
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Margaret M Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6321, United States
| | - Darrin J Pochan
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6321, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
45
|
Dutta K, Das R, Medeiros J, Kanjilal P, Thayumanavan S. Charge-Conversion Strategies for Nucleic Acid Delivery. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2011103. [PMID: 35832306 PMCID: PMC9275120 DOI: 10.1002/adfm.202011103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 05/05/2023]
Abstract
Nucleic acids are now considered as one of the most potent therapeutic modalities, as their roles go beyond storing genetic information and chemical energy or as signal transducer. Attenuation or expression of desired genes through nucleic acids have profound implications in gene therapy, gene editing and even in vaccine development for immunomodulation. Although nucleic acid therapeutics bring in overwhelming possibilities towards the development of molecular medicines, there are significant loopholes in designing and effective translation of these drugs into the clinic. One of the major pitfalls lies in the traditional design concepts for nucleic acid drug carriers, viz. cationic charge induced cytotoxicity in delivery pathway. Targeting this bottleneck, several pioneering research efforts have been devoted to design innovative carriers through charge-conversion approaches, whereby built-in functionalities convert from cationic to neutral or anionic, or even from anionic to cationic enabling the carrier to overcome several critical barriers for therapeutics delivery, such as serum deactivation, instability in circulation, low transfection and poor endosomal escape. This review will critically analyze various molecular designs of charge-converting nanocarriers in a classified approach for the successful delivery of nucleic acids. Accompanied by the narrative on recent clinical nucleic acid candidates, the review concludes with a discussion on the pitfalls and scope of these interesting approaches.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis 46268, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Pintu Kanjilal
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
46
|
Integration of [12]aneN3 and Acenaphtho[1,2-b]quinoxaline as non-viral gene vectors with two-photon property for enhanced DNA/siRNA delivery and bioimaging. Bioorg Chem 2021; 113:104983. [PMID: 34029935 DOI: 10.1016/j.bioorg.2021.104983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Two-photon fluorescent Acenaphtho[1,2-b]quinoxaline (ANQ) and the hydrophilic di-(triazole-[12]aneN3) moieties were combined through an alkyl chain (ANQ-A-M) or a β-hairpin motif with two aromatic γ-amino acid residues (ANQ-H-M) to explore their capabilities for in vitro and in vivo gene delivery and tracing. ANQ-A-M and ANQ-H-M showed the same maximum absorption at 420 nm, and their fluorescent intensities around 650 nm were varied in different solvents and became poor in the protic solvents. Gel electrophoresis assays indicated that both compounds completely retarded the migration of pDNA at 20 μM in the presence of DOPE. However, the DNA condensation with ANQ-H-M was not reversible, and the particle size of the corresponding complexes were larger indicated from the SEM and DLS measurements. In vitro transfections indicated ANQ-A-M/DOPE achieved Luciferase and GFP expressions were to be 7.9- and 5.7-fold of those by Lipo2000 in A549 cells respectively. However, ANQ-H-M showed very poor transfection efficiency in Luciferase expression. With the help of single/two-photon fluorescence imaging it clearly demonstrated that the successful transfection of ANQ-A-M was attributed to its cellular uptake, apparent lysosomal escape, and reversible release of DNA; and the poor transfection of ANQ-H-M was resulted from the aggregation of the DNA complexes which prevented them from the cellular uptake, and also the strong binding ability which is not easy to release DNA. ANQ-A-M/DOPE also exhibited robust gene silencing (83% knockdown of Luciferase) and GFP expression (2.47-fold higher) efficiency compared with Lipo2000 in A549 and zebrafish, respectively. The work demonstrated that the linkage structure between fluorescent and di(triazole-[12]aneN3) played the important role for their gene delivery performance, and that ANQ-A-M represents a vector with the strong transfection efficiency in vitro and in vivo as well as the efficient real time bioimaging properties, which is potential for the development in biomedical research.
Collapse
|
47
|
Jiang X, Abedi K, Shi J. Polymeric nanoparticles for RNA delivery. REFERENCE MODULE IN MATERIALS SCIENCE AND MATERIALS ENGINEERING 2021. [PMCID: PMC8568333 DOI: 10.1016/b978-0-12-822425-0.00017-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As exemplified by recent clinical approval of RNA drugs including the latest COVID-19 mRNA vaccines, RNA therapy has demonstrated great promise as an emerging medicine. Central to the success of RNA therapy is the delivery of RNA molecules into the right cells at the right location. While the clinical success of nanotechnology in RNA therapy has been limited to lipid-based nanoparticles currently, polymers, due to their tunability and robustness, have also evolved as a class of promising material for the delivery of various therapeutics including RNAs. This article overviews different types of polymers used in RNA delivery and the methods for the formulation of polymeric nanoparticles and highlights recent progress of polymeric nanoparticle-based RNA therapy.
Collapse
|
48
|
Trzciński JW, Morillas-Becerril L, Scarpa S, Tannorella M, Muraca F, Rastrelli F, Castellani C, Fedrigo M, Angelini A, Tavano R, Papini E, Mancin F. Poly(lipoic acid)-Based Nanoparticles as Self-Organized, Biocompatible, and Corona-Free Nanovectors. Biomacromolecules 2020; 22:467-480. [PMID: 33347750 PMCID: PMC8016167 DOI: 10.1021/acs.biomac.0c01321] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Herein
we present an innovative approach to produce biocompatible,
degradable, and stealth polymeric nanoparticles based on poly(lipoic
acid), stabilized by a PEG-ended surfactant. Taking advantage of the
well-known thiol-induced polymerization of lipoic acid, a universal
and nontoxic nanovector consisted of a solid cross-linked polymeric
matrix of lipoic acid monomers was prepared and loaded with active
species with a one-step protocol. The biological studies demonstrated
a high stability in biological media, the virtual absence of “protein”
corona in biological fluids, the absence of acute toxicity in vitro
and in vivo, complete clearance from the organism, and a relevant
preference for short-term accumulation in the heart. All these features
make these nanoparticles candidates as a promising tool for nanomedicine.
Collapse
Affiliation(s)
- Jakub W Trzciński
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Lucía Morillas-Becerril
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Sara Scarpa
- Dipartimento di Scienze Biomediche, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy.,Centre for Innovative Biotechnological Research-CRIBI, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy
| | - Marco Tannorella
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Francesco Muraca
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Chiara Castellani
- Patologia Cardiovascolare e Anatomia Patologica, Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università di Padova, via Giustiniani 2, Padova, I-35128, Italy
| | - Marny Fedrigo
- Patologia Cardiovascolare e Anatomia Patologica, Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università di Padova, via Giustiniani 2, Padova, I-35128, Italy
| | - Annalisa Angelini
- Patologia Cardiovascolare e Anatomia Patologica, Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università di Padova, via Giustiniani 2, Padova, I-35128, Italy
| | - Regina Tavano
- Dipartimento di Scienze Biomediche, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy.,Centre for Innovative Biotechnological Research-CRIBI, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy
| | - Emanuele Papini
- Dipartimento di Scienze Biomediche, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy.,Centre for Innovative Biotechnological Research-CRIBI, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| |
Collapse
|
49
|
Encapsulation of mRNA into Artificial Viral Capsids via Hybridization of a β-Annulus-dT20 Conjugate and the Poly(A) Tail of mRNA. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Messenger RNA (mRNA) drugs have attracted considerable attention as promising tools with many therapeutic applications. The efficient delivery of mRNA drugs using non-viral materials is currently being explored. We demonstrate a novel concept where mCherry mRNA bearing a poly(A) tail is encapsulated into capsids co-assembled from viral β-annulus peptides bearing a 20-mer oligothymine (dT20) at the N-terminus and unmodified peptides via hybridization of dT20 and poly(A). Dynamic light scattering measurements and transmission electron microscopy images of the mRNA-encapsulated capsids show the formation of spherical assemblies of approximately 50 nm. The encapsulated mRNA shows remarkable ribonuclease resistance. Further, modification by a cell-penetrating peptide (His16) on the capsid enables the intracellular expression of mCherry of encapsulated mRNA.
Collapse
|
50
|
Affiliation(s)
- Yue Wang
- Australisches Institut für Bioingenieurwesen und Nanotechnologie Universität Queensland Brisbane QLD 4072 Australien
| | - Chengzhong Yu
- Australisches Institut für Bioingenieurwesen und Nanotechnologie Universität Queensland Brisbane QLD 4072 Australien
- Fakultät für Chemie und Molekulartechnik Pädagogische Universität Ostchina Shanghai 200241 P. R. China
| |
Collapse
|