1
|
Ondry JC, Zhou Z, Lin K, Gupta A, Chang JH, Wu H, Jeong A, Hammel BF, Wang D, Fry HC, Yazdi S, Dukovic G, Schaller RD, Rabani E, Talapin DV. Reductive pathways in molten inorganic salts enable colloidal synthesis of III-V semiconductor nanocrystals. Science 2024; 386:401-407. [PMID: 39446954 DOI: 10.1126/science.ado7088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024]
Abstract
Colloidal quantum dots, with their size-tunable optoelectronic properties and scalable synthesis, enable applications in which inexpensive high-performance semiconductors are needed. Synthesis science breakthroughs have been key to the realization of quantum dot technologies, but important group III-group V semiconductors, including colloidal gallium arsenide (GaAs), still cannot be synthesized with existing approaches. The high-temperature molten salt colloidal synthesis introduced in this work enables the preparation of previously intractable colloidal materials. We directly nucleated and grew colloidal quantum dots in molten inorganic salts by harnessing molten salt redox chemistry and using surfactant additives for nanocrystal shape control. Synthesis temperatures above 425°C are critical for realizing photoluminescent GaAs quantum dots, which emphasizes the importance of high temperatures enabled by molten salt solvents. We generalize the methodology and demonstrate nearly a dozen III-V solid-solution nanocrystal compositions that have not been previously reported.
Collapse
Affiliation(s)
- Justin C Ondry
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Zirui Zhou
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Kailai Lin
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aritrajit Gupta
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jun Hyuk Chang
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Haoqi Wu
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Ahhyun Jeong
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Benjamin F Hammel
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Di Wang
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Sadegh Yazdi
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
| | - Gordana Dukovic
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Li Y, Wang L, Xiang D, Zhu J, Wu K. Dielectric and Wavefunction Engineering of Electron Spin Lifetime in Colloidal Nanoplatelet Heterostructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306518. [PMID: 38234238 DOI: 10.1002/advs.202306518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/23/2023] [Indexed: 01/19/2024]
Abstract
Colloidal semiconductor nanoplatelets (NPLs) have emerged as low-cost and free-standing alternates of traditional quantum wells. The giant heavy- and light-hole splitting in NPLs allows for efficient optical spin injection. However, the electron spin lifetimes for prototypical CdSe NPLs are within a few picoseconds, likely limited by strong electron-hole exchange in these quantum- and dielectric-confined materials. Here how this hurdle can be overcome with engineered NPL-heterostructures is demonstrated. By constructing type-I CdSe/ZnS core/shell NPLs, dielectric screening inside the core is strongly enhanced, prolonging the electron spin polarization time (τesp) to over 30 ps (or 60 ps electron spin-flip time). Alternatively, by growing type-II CdSe/CdTe core/crown NPLs to spatially separate electron and hole wavefunctions, the electron-hole exchange is strongly suppressed, resulting in τesp as long as 300 ps at room temperature. This study not only exemplifies how the well-established synthetic chemistry of colloidal heterostructures can aid in spin dynamics control but also establishes the feasibility of room-temperature coherent spin manipulation in colloidal NPLs.
Collapse
Affiliation(s)
- Yulu Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Lifeng Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of the Chinese Academy of Sciences, Beijing, Hebei, 100049, China
| | - Dongmei Xiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Jingyi Zhu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of the Chinese Academy of Sciences, Beijing, Hebei, 100049, China
| |
Collapse
|
3
|
Saenz N, Hamachi LS, Wolock A, Goodge BH, Kuntzmann A, Dubertret B, Billinge I, Kourkoutis LF, Muller DA, Crowther AC, Owen JS. Synthesis of graded CdS 1-xSe x nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity. Chem Sci 2023; 14:12345-12354. [PMID: 37969574 PMCID: PMC10631235 DOI: 10.1039/d3sc03384h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023] Open
Abstract
A mixture of N,N,N'-trisubstituted thiourea and cyclic N,N,N',N'-tetrasubstituted selenourea precursors were used to synthesize three monolayer thick CdS1-xSex nanoplatelets in a single synthetic step. The microstructure of the nanoplatelets could be tuned from homogeneous alloys, to graded alloys to core/crown heterostructures depending on the relative conversion reactivity of the sulfur and selenium precursors. UV-visible absorption and photoluminescence spectroscopy and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) images demonstrate that the elemental distribution is governed by the relative precursor conversion kinetics. Slow conversion kinetics produced nanoplatelets with larger lateral dimensions, behavior that is characteristic of precursor conversion limited growth kinetics. Across a 10-fold range of reactivity, CdS nanoplatelets have 4× smaller lateral dimensions than CdSe nanoplatelets grown under identical conversion kinetics. The difference in size is consistent with a rate of CdSe growth that is 4× greater than the rate of CdS. The influence of the relative sulfide and selenide growth rates, the duration of the nucleation phase, and the solute composition on the nanoplatelet microstructure are discussed.
Collapse
Affiliation(s)
- Natalie Saenz
- Department of Chemistry, Columbia University New York NY USA
| | | | - Anna Wolock
- Department of Chemistry, Barnard College, Columbia University New York NY USA
| | - Berit H Goodge
- School of Applied and Engineering Physics, Cornell University Ithaca NY 14853 USA
| | - Alexis Kuntzmann
- Ecole Supérieure de Physique et de Chimie Industrielle Paris France
| | - Benoit Dubertret
- Ecole Supérieure de Physique et de Chimie Industrielle Paris France
| | - Isabel Billinge
- Department of Chemistry, Columbia University New York NY USA
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University Ithaca NY 14853 USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University Ithaca NY 14853 USA
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University Ithaca NY 14853 USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University Ithaca NY 14853 USA
| | - Andrew C Crowther
- Department of Chemistry, Barnard College, Columbia University New York NY USA
| | - Jonathan S Owen
- Department of Chemistry, Columbia University New York NY USA
| |
Collapse
|
4
|
Liang X, Durmusoglu EG, Lunina M, Hernandez-Martinez PL, Valuckas V, Yan F, Lekina Y, Sharma VK, Yin T, Ha ST, Shen ZX, Sun H, Kuznetsov A, Demir HV. Near-Unity Emitting, Widely Tailorable, and Stable Exciton Concentrators Built from Doubly Gradient 2D Semiconductor Nanoplatelets. ACS NANO 2023; 17:19981-19992. [PMID: 37610378 PMCID: PMC10603796 DOI: 10.1021/acsnano.3c05125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
The strength of electrostatic interactions (EIs) between electrons and holes within semiconductor nanocrystals profoundly affects the performance of their optoelectronic systems, and different optoelectronic devices demand distinct EI strength of the active medium. However, achieving a broad range and fine-tuning of the EI strength for specific optoelectronic applications is a daunting challenge, especially in quasi two-dimensional core-shell semiconductor nanoplatelets (NPLs), as the epitaxial growth of the inorganic shell along the direction of the thickness that solely contributes to the quantum confined effect significantly undermines the strength of the EI. Herein we propose and demonstrate a doubly gradient (DG) core-shell architecture of semiconductor NPLs for on-demand tailoring of the EI strength by controlling the localized exciton concentration via in-plane architectural modulation, demonstrated by a wide tuning of radiative recombination rate and exciton binding energy. Moreover, these exciton-concentration-engineered DG NPLs also exhibit a near-unity quantum yield, high photo- and thermal stability, and considerably suppressed self-absorption. As proof-of-concept demonstrations, highly efficient color converters and high-performance light-emitting diodes (external quantum efficiency: 16.9%, maximum luminance: 43,000 cd/m2) have been achieved based on the DG NPLs. This work thus provides insights into the development of high-performance colloidal optoelectronic device applications.
Collapse
Affiliation(s)
- Xiao Liang
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Emek G. Durmusoglu
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Maria Lunina
- Interdisciplinary
Graduate Program, Nanyang Technological
University, Singapore, 637371, Singapore
| | - Pedro Ludwig Hernandez-Martinez
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Vytautas Valuckas
- Institute
of Materials Research and Engineering, A*STAR (Agency for Science,
Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yulia Lekina
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Vijay Kumar Sharma
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Tingting Yin
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Son Tung Ha
- Institute
of Materials Research and Engineering, A*STAR (Agency for Science,
Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Ze Xiang Shen
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Arseniy Kuznetsov
- Institute
of Materials Research and Engineering, A*STAR (Agency for Science,
Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- UNAM—Institute
of Materials Science and Nanotechnology, The National Nanotechnology
Research Center, Department of Electrical and Electronics Engineering,
Department of Physics, Bilkent University, Bilkent, Ankara 06800,Turkey
| |
Collapse
|
5
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
6
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
7
|
Volk AA, Epps RW, Yonemoto DT, Masters BS, Castellano FN, Reyes KG, Abolhasani M. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nat Commun 2023; 14:1403. [PMID: 36918561 PMCID: PMC10015005 DOI: 10.1038/s41467-023-37139-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Closed-loop, autonomous experimentation enables accelerated and material-efficient exploration of large reaction spaces without the need for user intervention. However, autonomous exploration of advanced materials with complex, multi-step processes and data sparse environments remains a challenge. In this work, we present AlphaFlow, a self-driven fluidic lab capable of autonomous discovery of complex multi-step chemistries. AlphaFlow uses reinforcement learning integrated with a modular microdroplet reactor capable of performing reaction steps with variable sequence, phase separation, washing, and continuous in-situ spectral monitoring. To demonstrate the power of reinforcement learning toward high dimensionality multi-step chemistries, we use AlphaFlow to discover and optimize synthetic routes for shell-growth of core-shell semiconductor nanoparticles, inspired by colloidal atomic layer deposition (cALD). Without prior knowledge of conventional cALD parameters, AlphaFlow successfully identified and optimized a novel multi-step reaction route, with up to 40 parameters, that outperformed conventional sequences. Through this work, we demonstrate the capabilities of closed-loop, reinforcement learning-guided systems in exploring and solving challenges in multi-step nanoparticle syntheses, while relying solely on in-house generated data from a miniaturized microfluidic platform. Further application of AlphaFlow in multi-step chemistries beyond cALD can lead to accelerated fundamental knowledge generation as well as synthetic route discoveries and optimization.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA
| | - Robert W Epps
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA
| | - Daniel T Yonemoto
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Benjamin S Masters
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Kristofer G Reyes
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14260, USA
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
8
|
Liu H, Michelsen JM, Mendes JL, Klein IM, Bauers SR, Evans JM, Zakutayev A, Cushing SK. Measuring Photoexcited Electron and Hole Dynamics in ZnTe and Modeling Excited State Core-Valence Effects in Transient Extreme Ultraviolet Reflection Spectroscopy. J Phys Chem Lett 2023; 14:2106-2111. [PMID: 36802601 DOI: 10.1021/acs.jpclett.2c03894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transient extreme ultraviolet (XUV) spectroscopy is becoming a valuable tool for characterizing solar energy materials because it can separate photoexcited electron and hole dynamics with element specificity. Here, we use surface-sensitive femtosecond XUV reflection spectroscopy to separately measure photoexcited electron, hole, and band gap dynamics of ZnTe, a promising photocathode for CO2 reduction. We develop an ab initio theoretical framework based on density functional theory and the Bethe-Salpeter equation to robustly assign the complex transient XUV spectra to the material's electronic states. Applying this framework, we identify the relaxation pathways and quantify their time scales in photoexcited ZnTe, including subpicosecond hot electron and hole thermalization, surface carrier diffusion, ultrafast band gap renormalization, and evidence of acoustic phonon oscillations.
Collapse
Affiliation(s)
- Hanzhe Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonathan M Michelsen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jocelyn L Mendes
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Isabel M Klein
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sage R Bauers
- Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jake M Evans
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Andriy Zakutayev
- Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Scott K Cushing
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Martin PI, Panuganti S, Portner JC, Watkins NE, Kanatzidis MG, Talapin DV, Schaller RD. Excitonic Spin-Coherence Lifetimes in CdSe Nanoplatelets Increase Significantly with Core/Shell Morphology. NANO LETTERS 2023; 23:1467-1473. [PMID: 36753635 DOI: 10.1021/acs.nanolett.2c04845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report spin-polarized transient absorption for colloidal CdSe nanoplatelets as functions of thickness (2-6 monolayer thickness) and core/shell motif. Using electro-optical modulation of co- and cross-polarization pump-probe combinations, we sensitively observe spin-polarized transitions. Core-only nanoplatelets exhibit few-picosecond spin lifetimes that weakly increase with layer thickness. The spectral content of differenced spin-polarized signals indicate biexciton binding energies that decrease with increasing thickness and smaller values than previously reported. Shell growth of CdS with controlled thicknesses, which partially delocalize the electron from the hole, significantly increases the spin lifetime to ∼49 ps at room temperature. Implementation of ZnS shells, which do not alter delocalization but do alter surface termination, increased spin lifetimes up to ∼100 ps, bolstering the interpretation that surface termination heavily influences spin coherence, likely due to passivation of dangling bonds. Spin precession in magnetic fields both confirms long coherence lifetime at room temperature and yields the excitonic g factor.
Collapse
Affiliation(s)
- Phillip I Martin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shobhana Panuganti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua C Portner
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicolas E Watkins
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Dmitri V Talapin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Diroll BT, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E, Ithurria S. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023; 123:3543-3624. [PMID: 36724544 DOI: 10.1021/acs.chemrev.2c00436] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Burak Guzelturk
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Hong Po
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Ningyuan Fu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Lina Makke
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
11
|
Heteroepitaxial chemistry of zinc chalcogenides on InP nanocrystals for defect-free interfaces with atomic uniformity. Nat Commun 2023; 14:43. [PMID: 36596807 PMCID: PMC9810615 DOI: 10.1038/s41467-022-35731-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Heteroepitaxy on colloidal semiconductor nanocrystals is an essential strategy for manipulating their optoelectronic functionalities. However, their practical synthesis typically leads to scattered and unexpected outcomes due to the intervention of multiple reaction pathways associated with complicated side products of reactants. Here, the heteroepitaxy mechanism of zinc chalcogenide initiated on indium phosphide (InP) colloidal nanocrystals is elucidated using the precursors, zinc carboxylate and trialkylphosphine selenide. The high magnetic receptivity of 77Se and the characteristic longitudinal optical phonon mode of ZnSe allowed for monitoring the sequence of epilayer formation at the molecular level. The investigation revealed the sterically hindered acyloxytrialkylphosphonium and diacyloxytrialkylphosphorane to be main intermediates in the surface reaction, which retards the metal ion adsorption by a large steric hindrance. The transformation of adsorbates to the crystalline epilayer was disturbed by surface oxides. Raman scattering disclosed the pathway of secondary surface oxidation triggered by carboxylate ligands migrated from zinc carboxylate. The surface-initiated heteroepitaxy protocol is proposed to fabricate core/shell heterostructured nanocrystals with atomic-scale uniformity of epilayers. Despite the large lattice mismatch of ZnS to InP, we realised a uniform and interface defect-free ZnS epilayer (~0.3 nm thickness) on InP nanocrystals, as evidenced by a high photoluminescence quantum yield of 97.3%.
Collapse
|
12
|
Bai B, Zhang C, Dou Y, Kong L, Wang L, Wang S, Li J, Zhou Y, Liu L, Liu B, Zhang X, Hadar I, Bekenstein Y, Wang A, Yin Z, Turyanska L, Feldmann J, Yang X, Jia G. Atomically flat semiconductor nanoplatelets for light-emitting applications. Chem Soc Rev 2023; 52:318-360. [PMID: 36533300 DOI: 10.1039/d2cs00130f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applications. Such NPLs have electronic structures similar to those of quantum wells in which excitons are predominantly confined along the vertical direction, while electrons are free to move in the lateral directions, resulting in unique optical properties, such as extremely narrow emission line width, short photoluminescence (PL) lifetime, high gain coefficient, and giant oscillator strength transition (GOST). These unique optical properties make NPLs favorable for high color purity light-emitting applications, in particular in light-emitting diodes (LEDs), backlights for liquid crystal displays (LCDs) and lasers. This review article first introduces the intrinsic characteristics of 2D semiconductor NPLs with atomic flatness. Subsequently, the approaches and mechanisms for the controlled synthesis of atomically flat NPLs are summarized followed by an insight on recent progress in the mediation of core/shell, core/crown and core/crown@shell structures by selective epitaxial growth of passivation layers on different planes of NPLs. Moreover, an overview of the unique optical properties and the associated light-emitting applications is elaborated. Despite great progress in this research field, there are some issues relating to heavy metal elements such as Cd2+ in NPLs, and the ambiguous gain mechanisms of NPLs and others are the main obstacles that prevent NPLs from widespread applications. Therefore, a perspective is included at the end of this review article, in which the current challenges in this stimulating research field are discussed and possible solutions to tackle these challenges are proposed.
Collapse
Affiliation(s)
- Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Chengxi Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Yongjiang Dou
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Jun Li
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Yi Zhou
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Ido Hadar
- Institute of Chemistry, and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yehonadav Bekenstein
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Aixiang Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, ACT 2601, Australia
| | - Lyudmila Turyanska
- Faculty of Engineering, The University of Nottingham, Additive Manufacturing Building, Jubilee Campus, University Park, Nottingham NG7 2RD, UK
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, Munich 80539, Germany
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
13
|
Maciulis V, Ramanaviciene A, Plikusiene I. Recent Advances in Synthesis and Application of Metal Oxide Nanostructures in Chemical Sensors and Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244413. [PMID: 36558266 PMCID: PMC9783830 DOI: 10.3390/nano12244413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/31/2023]
Abstract
Nanostructured materials formed from metal oxides offer a number of advantages, such as large surface area, improved mechanical and other physical properties, as well as adjustable electronic properties that are important in the development and application of chemical sensors and biosensor design. Nanostructures are classified using the dimensions of the nanostructure itself and their components. In this review, various types of nanostructures classified as 0D, 1D, 2D, and 3D that were successfully applied in chemical sensors and biosensors, and formed from metal oxides using different synthesis methods, are discussed. In particular, significant attention is paid to detailed analysis and future prospects of the synthesis methods of metal oxide nanostructures and their integration in chemical sensors and biosensor design.
Collapse
Affiliation(s)
- Vincentas Maciulis
- State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Ieva Plikusiene
- State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
- Nanotechnas–Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
14
|
Kim D, Shcherbakov-Wu W, Ha SK, Lee WS, Tisdale WA. Uniaxial Strain Engineering via Core Position Control in CdSe/CdS Core/Shell Nanorods and Their Optical Response. ACS NANO 2022; 16:14713-14722. [PMID: 36044017 DOI: 10.1021/acsnano.2c05427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anisotropic strain engineering has emerged as a powerful strategy for enhancing the optoelectronic performance of semiconductor nanocrystals. Here, we show that CdSe/CdS dot-in-rod structures offer a platform for fine-tuning the optical response of CdSe quantum dots through anisotropic strain. By controlling the spatial position of the CdSe core within a growing CdS nanorod shell, varying degrees of uniaxial strain can be introduced. Placing CdSe cores at the end of the CdS nanorod induces strong asymmetric compression along the c-axis of the wurtzite CdSe core, dramatically altering its absorption and emission characteristics, whereas CdSe cores located near the middle of the nanorod experience a comparatively weak uniaxial strain field. The change in absorption and emission spectra and dynamics for highly strained end-position CdSe/CdS nanorods is explained by (1) relative shifting of the valence band light hole and heavy hole levels and (2) introduction of a strong piezoelectric potential, which spatially separates the electron and hole wave functions. The ability to tune the degree of uniaxial strain through core position control in a nanorod structure creates opportunities for precisely modulating the electronic properties of CdSe nanocrystals while simultaneously taking advantage of dielectric and optical anisotropies intrinsic to 1D nanostructures.
Collapse
Affiliation(s)
- Dahin Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenbi Shcherbakov-Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seung Kyun Ha
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Woo Seok Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Wang N, Cheong S, Yoon DE, Lu P, Lee H, Lee YK, Park YS, Lee DC. Efficient, Selective CO 2 Photoreduction Enabled by Facet-Resolved Redox-Active Sites on Colloidal CdS Nanosheets. J Am Chem Soc 2022; 144:16974-16983. [PMID: 36007150 DOI: 10.1021/jacs.2c06164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in nanotechnology have enabled precise design of catalytic sites for CO2 photoreduction, pushing product selectivity to near unity. However, activity of most nanostructured photocatalysts remains underwhelming due to fast recombination of photogenerated electron-hole pairs and sluggish hole transfer. To address these issues, we construct colloidal CdS nanosheets (NSs) with the large basal planes terminated by S2- atomic layers as intrinsic photocatalysts (CdS-S2- NSs). Experimental investigation reveals that the S2- termination endows ultrathin CdS-S2- NSs with facet-resolved redox-catalytic sites: oxidation occurs on S2--terminated large basal facets and reduction happens on side facets. Such an allocation of redox sites not only promotes spatial separation of photoinduced electrons and holes but also facilitates balanced extraction of holes and electrons by shortening the hole diffusion distance along the (001) direction of the ultrathin NSs. Consequently, the CdS-S2- NSs exhibit superb performance for photocatalytic CO2-to-CO conversion, which was verified by the isotope-labeled experiments to be a record-breaking performance: a CO selectivity of 99%, a CO formation rate of 2.13 mol g-1 h-1, and an effective apparent quantum efficiency of 42.1% under the irradiation (340 to 450 nm) of a solar simulator (AM 1.5G). The breakthrough performance achieved in this work provides novel insights into the precise design of nanostructures for selective and efficient CO2 photoreduction.
Collapse
Affiliation(s)
- Nianfang Wang
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy & Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seokhyeon Cheong
- Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Da-Eun Yoon
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy & Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Pan Lu
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy & Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyunjoo Lee
- Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.,Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Young Kuk Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Young-Shin Park
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy & Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy & Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Jasrasaria D, Weinberg D, Philbin JP, Rabani E. Simulations of nonradiative processes in semiconductor nanocrystals. J Chem Phys 2022; 157:020901. [PMID: 35840368 DOI: 10.1063/5.0095897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The description of carrier dynamics in spatially confined semiconductor nanocrystals (NCs), which have enhanced electron-hole and exciton-phonon interactions, is a great challenge for modern computational science. These NCs typically contain thousands of atoms and tens of thousands of valence electrons with discrete spectra at low excitation energies, similar to atoms and molecules, that converge to the continuum bulk limit at higher energies. Computational methods developed for molecules are limited to very small nanoclusters, and methods for bulk systems with periodic boundary conditions are not suitable due to the lack of translational symmetry in NCs. This perspective focuses on our recent efforts in developing a unified atomistic model based on the semiempirical pseudopotential approach, which is parameterized by first-principle calculations and validated against experimental measurements, to describe two of the main nonradiative relaxation processes of quantum confined excitons: exciton cooling and Auger recombination. We focus on the description of both electron-hole and exciton-phonon interactions in our approach and discuss the role of size, shape, and interfacing on the electronic properties and dynamics for II-VI and III-V semiconductor NCs.
Collapse
Affiliation(s)
- Dipti Jasrasaria
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel Weinberg
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John P Philbin
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
17
|
Liu H, Wang Y, Yang X, Zhao X, Wang K, Wu M, Zuo X, Yang W, Sui Y, Zou B. Pressure-stimulus-responsive behaviors of core-shell InP/ZnSe nanocrystals: remarkable piezochromic luminescence and structural assembly. NANOSCALE 2022; 14:7530-7537. [PMID: 35481922 DOI: 10.1039/d2nr00281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Piezochromic luminescence materials with optical properties can be adjusted (the colors most sensitive to the human eye range from red to green) to provide powerful means for information acquisition in various applications. Inorganic quantum dots, typically based on heavy metals such as cadmium and lead, have congenital advantages as luminescence materials, including strong inoxidizability and excellent photoelectric properties. However, small band-gap shifts under pressure have hindered the development of inorganic-based piezochromic materials. Herein, we combined in situ high-pressure photoluminescence (PL) and absorption measurements with synchrotron X-ray scattering spectra to elucidate the remarkable modulation of optical properties and morphologies by pressure, particularly that of the piezochromic luminescence, in all-inorganic core-shell InP/ZnSe nanocrystals (NCs). We observed a stepwise PL color change from red to green, and an ultrabroad bandgap tunability of 0.46 eV was observed from 1.99 to 2.45 eV in the pressure range of 14.2 GPa for InP/ZnSe NCs. Moreover, two-dimensional (2D) InP/ZnSe nanosheets were synthesized by the stress-driven attachment of nanoparticles. These results demonstrate the ability of the pressure-stimulus response to trigger remarkable piezochromic luminescence and 2D nanosheet assembly in InP/ZnSe NCs, which paves the way for new applications of all-inorganic InP-based semiconductor NCs.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China
| | - Yixuan Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Xinyi Yang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Xiaohui Zhao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Min Wu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Xiaobing Zuo
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Wenge Yang
- Center for High-Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Yongming Sui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| |
Collapse
|
18
|
Po H, Dabard C, Roman B, Reyssat E, Bico J, Baptiste B, Lhuillier E, Ithurria S. Chiral Helices Formation by Self-Assembled Molecules on Semiconductor Flexible Substrates. ACS NANO 2022; 16:2901-2909. [PMID: 35107969 DOI: 10.1021/acsnano.1c09982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The crystal structure of atomically defined colloidal II-VI semiconductor nanoplatelets (NPLs) induces the self-assembly of organic ligands over thousands of square nanometers on the top and bottom basal planes of these anisotropic nanoparticles. NPLs curl into helices under the influence of the surface stress induced by these ligands. We demonstrate the control of the radii of NPL helices through the ligands described as an anchoring group and an aliphatic chain of a given length. A mechanical model accounting for the misfit strain between the inorganic core and the surface ligands predicts the helices' radii. We show how the chirality of the helices can be tuned by the ligands anchoring group and inverted from one population to another.
Collapse
Affiliation(s)
- Hong Po
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS, 10 rue Vauquelin 75005 Paris, France
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS, 10 rue Vauquelin 75005 Paris, France
| | - Benoit Roman
- Physique et Mécanique des Milieux Hétérogènes, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Etienne Reyssat
- Physique et Mécanique des Milieux Hétérogènes, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - José Bico
- Physique et Mécanique des Milieux Hétérogènes, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Benoit Baptiste
- Sorbonne Université, CNRS, Institut de minéralogie, de physique des matériaux et de cosmochimie, IMPMC, F-75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
19
|
Shabani F, Dehghanpour Baruj H, Yurdakul I, Delikanli S, Gheshlaghi N, Isik F, Liu B, Altintas Y, Canımkurbey B, Demir HV. Deep-Red-Emitting Colloidal Quantum Well Light-Emitting Diodes Enabled through a Complex Design of Core/Crown/Double Shell Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106115. [PMID: 34894078 DOI: 10.1002/smll.202106115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/13/2021] [Indexed: 06/14/2023]
Abstract
Extending the emission peak wavelength of quasi-2D colloidal quantum wells has been an important quest to fully exploit the potential of these materials, which has not been possible due to the complications arising from the partial dissolution and recrystallization during growth to date. Here, the synthetic pathway of (CdSe/CdS)@(1-4 CdS/CdZnS) (core/crown)@(colloidal atomic layer deposition shell/hot injection shell) hetero-nanoplatelets (NPLs) using multiple techniques, which together enable highly efficient emission beyond 700 nm in the deep-red region, is proposed and demonstrated. Given the challenges of using conventional hot injection procedure, a method that allows to obtain sufficiently thick and passivated NPLs as the seeds is developed. Consequently, through the final hot injection shell coating, thick NPLs with superior optical properties including a high photoluminescence quantum yield of 88% are achieved. These NPLs emitting at 701 nm exhibit a full-width-at-half-maximum of 26 nm, enabled by the successfully maintained quasi-2D shape and minimum defects of the resulting heterostructure. The deep-red light-emitting diode (LED) device fabricated with these NPLs has shown to yield a high external quantum efficiency of 6.8% at 701 nm, which is on par with other types of LEDs in this spectral range.
Collapse
Affiliation(s)
- Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Hamed Dehghanpour Baruj
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Iklim Yurdakul
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Negar Gheshlaghi
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Furkan Isik
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yemliha Altintas
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Materials Science and Nanotechnology, Abdullah Gül University, Kayseri, TR-38080, Turkey
| | - Betül Canımkurbey
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Central Research Laboratory, Amasya University, Amasya, 05100, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
20
|
Wang W, Zhang M, Pan Z, Biesold GM, Liang S, Rao H, Lin Z, Zhong X. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chem Rev 2021; 122:4091-4162. [PMID: 34968050 DOI: 10.1021/acs.chemrev.1c00478] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colloidal nanocrystals (NCs) are intriguing building blocks for assembling various functional thin films and devices. The electronic, optoelectronic, and thermoelectric applications of solution-processed, inorganic ligand (IL)-capped colloidal NCs are especially promising as the performance of related devices can substantially outperform their organic ligand-capped counterparts. This in turn highlights the significance of preparing IL-capped NC dispersions. The replacement of initial bulky and insulating ligands capped on NCs with short and conductive inorganic ones is a critical step in solution-phase ligand exchange for preparing IL-capped NCs. Solution-phase ligand exchange is extremely appealing due to the highly concentrated NC inks with completed ligand exchange and homogeneous ligand coverage on the NC surface. In this review, the state-of-the-art of IL-capped NCs derived from solution-phase inorganic ligand exchange (SPILE) reactions are comprehensively reviewed. First, a general overview of the development and recent advancements of the synthesis of IL-capped colloidal NCs, mechanisms of SPILE, elementary reaction principles, surface chemistry, and advanced characterizations is provided. Second, a series of important factors in the SPILE process are offered, followed by an illustration of how properties of NC dispersions evolve after ILE. Third, surface modifications of perovskite NCs with use of inorganic reagents are overviewed. They are necessary because perovskite NCs cannot withstand polar solvents or undergo SPILE due to their soft ionic nature. Fourth, an overview of the research progresses in utilizing IL-capped NCs for a wide range of applications is presented, including NC synthesis, NC solid and film fabrication techniques, field effect transistors, photodetectors, photovoltaic devices, thermoelectric, and photoelectrocatalytic materials. Finally, the review concludes by outlining the remaining challenges in this field and proposing promising directions to further promote the development of IL-capped NCs in practical application in the future.
Collapse
Affiliation(s)
- Wenran Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Meng Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhenxiao Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huashang Rao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xinhua Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
21
|
Wang L, Xiang D, Gao K, Wang J, Wu K. Colloidal n-Doped CdSe and CdSe/ZnS Nanoplatelets. J Phys Chem Lett 2021; 12:11259-11266. [PMID: 34766755 DOI: 10.1021/acs.jpclett.1c02856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal semiconductor nanoplatelets (NPLs) are chemical versions of well-studied quantum wells (QWs). For QWs, gating and carrier doping are standard tools to manipulate their optical, electric, or magnetic properties. It would be highly desirable to use pure chemical methods to dope extra charge carriers into free-standing colloidal NPLs to achieve a similar level of manipulation. Here we report colloidal n-doped CdSe and CdSe/ZnS NPLs achieved through a photochemical doping method. The extra electrons doped into the conduction band edges are evidenced by exciton absorption bleaches recoverable through dedoping and the appearance of new intersub-band transitions in the near-infrared. A high surface ligand coverage is the key to successful doping; otherwise, the doped electrons can be depleted likely by unpassivated surface cations. Large trion binding energies of 20-30 meV are found for the n-doped CdSe NPLs, which, in contrast, are reduced by 1 order of magnitude in CdSe/ZnS core/shell NPLs due to dielectric screening. Furthermore, we identify a long-lived negative trion with a lifetime of 1.5-1.6 ns that is likely dominated by radiative recombination.
Collapse
Affiliation(s)
- Lifeng Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Xiang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Kaimin Gao
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Pun AB, Mule AS, Held JT, Norris DJ. Core/Shell Magic-Sized CdSe Nanocrystals. NANO LETTERS 2021; 21:7651-7658. [PMID: 34464529 DOI: 10.1021/acs.nanolett.1c02412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magic-sized semiconductor nanocrystals (MSNCs) grow via discrete jumps between specific sizes. Despite their potential to offer atomically precise structures, their use has been limited by poor stability and trap-dominated photoluminescence. Recently, CdSe MSNCs have been grown to larger sizes. We exploit such particles and demonstrate a method to grow shells on CdSe MSNC cores via high-temperature synthesis. Thin CdS shells lead to dramatic improvements in the emissive properties of the MSNCs, narrowing their fluorescence line widths, enhancing photoluminescence quantum yields, and eliminating trap emission. Although thicker CdS shells lead to decreased performance, CdxZn1-xS alloyed shells maintain efficient and narrow emission lines. These alloyed core/shell crystallites exhibit a tetrahedral shape, in agreement with a recent model for MSNC growth. Our results indicate that MSNCs can compete with other state-of-the-art semiconductor nanocrystals. Furthermore, these core/shell structures will allow further study of MSNCs and their potential for atomically precise growth.
Collapse
Affiliation(s)
- Andrew B Pun
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Aniket S Mule
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Jacob T Held
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - David J Norris
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
23
|
Li J, Cao W, Shu Y, Zhang H, Qian X, Kong X, Wang L, Peng X. Water molecules bonded to the carboxylate groups at the inorganic-organic interface of an inorganic nanocrystal coated with alkanoate ligands. Natl Sci Rev 2021; 9:nwab138. [PMID: 35233287 PMCID: PMC8882163 DOI: 10.1093/nsr/nwab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
High-quality colloidal nanocrystals are commonly synthesized in hydrocarbon solvents with alkanoates as the most common organic ligand. Water molecules with an approximately equal number of surface alkanoate ligands are identified at the inorganic–organic interface for all types of colloidal nanocrystals studied, and investigated quantitatively using CdSe nanocrystals as the model system. Carboxylate ligands are coordinated to the surface metal ions and the first monolayer of water molecules is found to bond to the carboxylate groups of alkanoate ligands through hydrogen bonds. Additional monolayer(s) of water molecules can further be adsorbed through hydrogen bonds to the first monolayer of water molecules. The nearly ideal environment for hydrogen bonding at the inorganic–organic interface of alkanoate-coated nanocrystals helps to rapidly and stably enrich the interface-bonded water molecules, most of which are difficult to remove through vacuum treatment, thermal annealing and chemical drying. The water-enriched structure of the inorganic–organic interface of high-quality colloidal nanocrystals must be taken into account in order to understand the synthesis, processing and properties of these novel materials.
Collapse
Affiliation(s)
- Jiongzhao Li
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Weicheng Cao
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yufei Shu
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haibing Zhang
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xudong Qian
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xueqian Kong
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Peng
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Biondi M, Choi MJ, Wang Z, Wei M, Lee S, Choubisa H, Sagar LK, Sun B, Baek SW, Chen B, Todorović P, Najarian AM, Sedighian Rasouli A, Nam DH, Vafaie M, Li YC, Bertens K, Hoogland S, Voznyy O, García de Arquer FP, Sargent EH. Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101056. [PMID: 34245178 DOI: 10.1002/adma.202101056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Charge carrier transport in colloidal quantum dot (CQD) solids is strongly influenced by coupling among CQDs. The shape of as-synthesized CQDs results in random orientational relationships among facets in CQD solids, and this limits the CQD coupling strength and the resultant performance of optoelectronic devices. Here, colloidal-phase reconstruction of CQD surfaces, which improves facet alignment in CQD solids, is reported. This strategy enables control over CQD faceting and allows demonstration of enhanced coupling in CQD solids. The approach utilizes post-synthetic resurfacing and unites surface passivation and colloidal stability with a propensity for dots to couple via (100):(100) facets, enabling increased hole mobility. Experimentally, the CQD solids exhibit a 10× increase in measured hole mobility compared to control CQD solids, and enable photodiodes (PDs) exhibiting 70% external quantum efficiency (vs 45% for control devices) and specific detectivity, D* > 1012 Jones, each at 1550 nm. The photodetectors feature a 7 ns response time for a 0.01 mm2 area-the fastest reported for solution-processed short-wavelength infrared PDs.
Collapse
Affiliation(s)
- Margherita Biondi
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Min-Jae Choi
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Zhibo Wang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, M1C 1A4, Canada
| | - Mingyang Wei
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Seungjin Lee
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Hitarth Choubisa
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Laxmi Kishore Sagar
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Bin Sun
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Se-Woong Baek
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Bin Chen
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Petar Todorović
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Amin Morteza Najarian
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Armin Sedighian Rasouli
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Dae-Hyun Nam
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Maral Vafaie
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Yuguang C Li
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Koen Bertens
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Oleksandr Voznyy
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, M1C 1A4, Canada
| | - F Pelayo García de Arquer
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| |
Collapse
|
25
|
Zhang Y, Zhang H, Chen D, Sun CJ, Ren Y, Jiang J, Wang L, Li Z, Peng X. Engineering of Exciton Spatial Distribution in CdS Nanoplatelets. NANO LETTERS 2021; 21:5201-5208. [PMID: 34114464 DOI: 10.1021/acs.nanolett.1c01278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Zinc-blende CdS nanoplatelets with atomically flat and very large {100} basal planes terminated solely by one type of element (either Cd or S atoms) are synthesized. Optical spectroscopy, X-ray diffraction, X-ray absorption, and transmission electron microscopy confirm that the surface structures of newly developed S-terminated CdS nanoplatelets are at least as well-defined as the original Cd-terminated nanoplatelets. Band gaps of the nanoplatelets are found to depend on not only the quantum-confined dimension (thickness) but also the nature of the surface termination. The facet structure dictates the packing of the ligands (carboxylate for Cd-terminated nanoplatelets and alkyl for S-terminated nanoplatelets), which causes a difference in the lattice strain and significantly affects the optical spectral width. Experimental and theoretical results reveal that engineering the exciton spatial distribution by the tailored synthesis of semiconductor nanocrystals with a precisely controlled surface structure is fully possible, which should open a new door for delivering the long-promised potential of semiconductor nanocrystals.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haibing Zhang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Dongdong Chen
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Cheng-Jun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yang Ren
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zheng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
26
|
Sayevich V, Robinson ZL, Kim Y, Kozlov OV, Jung H, Nakotte T, Park YS, Klimov VI. Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot. NATURE NANOTECHNOLOGY 2021; 16:673-679. [PMID: 33767383 DOI: 10.1038/s41565-021-00871-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The availability of colloidal quantum dots with highly efficient, fast and 'non-blinking' near-infrared emission would benefit numerous applications, from advanced optical communication and quantum networks to biomedical diagnostics. Here, we report high-quality near-infrared emitters that are based on well known CdSe/CdS heterostructures. By incorporating an HgS interlayer at the quantum dot core/shell interface, we convert normally visible emitters into highly efficient near-infrared fluorophores. Employing thermodynamically controlled sequential deposition of metal and chalcogen ions, we achieve atomic-level precision in defining the thickness of the HgS interlayer (H). This manifests in 'quantized' jumps of the photoluminescence spectrum when H changes in discrete, atomic steps. The synthesized structures show highly efficient photoluminescence, tunable from 700 to 1,370 nm, and fast radiative rates of ~1/60 ns-1. The emission from individual CdSe/HgS/CdS colloidal quantum dots is virtually blinking free and exhibits nearly perfect single-photon purity. In addition, when incorporated into a light-emitting-diode architecture, these quantum dots demonstrate strong electroluminescence with a sub-bandgap turn-on voltage.
Collapse
Affiliation(s)
- Vladimir Sayevich
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Zachary L Robinson
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Younghee Kim
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Oleg V Kozlov
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Heeyoung Jung
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Tom Nakotte
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | - Young-Shin Park
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Center for High Technology Materials, University of New Mexico, Albuquerque, NM, USA
| | - Victor I Klimov
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
27
|
Efros AL, Brus LE. Nanocrystal Quantum Dots: From Discovery to Modern Development. ACS NANO 2021; 15:6192-6210. [PMID: 33830732 DOI: 10.1021/acsnano.1c01399] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review traces nanocrystal quantum dot (QD) research from the early discoveries to the present day and into the future. We describe the extensive body of theoretical and experimental knowledge that comprises the modern science of QDs. Indeed, the spatial confinement of electrons, holes, and excitons in nanocrystals, coupled with the ability of modern chemical synthesis to make complex designed structures, is today enabling multiple applications of QD size-tunable electronic and optical properties.
Collapse
Affiliation(s)
- Alexander L Efros
- Center for Computational Material Science, Naval Research Laboratory, Washington, DC 20375, United States
| | - Louis E Brus
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
28
|
Toso S, Baranov D, Altamura D, Scattarella F, Dahl J, Wang X, Marras S, Alivisatos AP, Singer A, Giannini C, Manna L. Multilayer Diffraction Reveals That Colloidal Superlattices Approach the Structural Perfection of Single Crystals. ACS NANO 2021; 15:6243-6256. [PMID: 33481560 PMCID: PMC8155329 DOI: 10.1021/acsnano.0c08929] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/13/2021] [Indexed: 05/06/2023]
Abstract
Colloidal superlattices are fascinating materials made of ordered nanocrystals, yet they are rarely called "atomically precise". That is unsurprising, given how challenging it is to quantify the degree of structural order in these materials. However, once that order crosses a certain threshold, the constructive interference of X-rays diffracted by the nanocrystals dominates the diffraction pattern, offering a wealth of structural information. By treating nanocrystals as scattering sources forming a self-probing interferometer, we developed a multilayer diffraction method that enabled the accurate determination of the nanocrystal size, interparticle spacing, and their fluctuations for samples of self-assembled CsPbBr3 and PbS nanomaterials. The multilayer diffraction method requires only a laboratory-grade diffractometer and an open-source fitting algorithm for data analysis. The average nanocrystal displacement of 0.33 to 1.43 Å in the studied superlattices provides a figure of merit for their structural perfection and approaches the atomic displacement parameters found in traditional crystals.
Collapse
Affiliation(s)
- Stefano Toso
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- International
Doctoral Program in Science, Università
Cattolica del Sacro Cuore, 25121 Brescia, Italy
| | - Dmitry Baranov
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Davide Altamura
- Istituto
di Cristallografia - Consiglio Nazionale delle Ricerche (IC−CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Francesco Scattarella
- Istituto
di Cristallografia - Consiglio Nazionale delle Ricerche (IC−CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Jakob Dahl
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Xingzhi Wang
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sergio Marras
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - A. Paul Alivisatos
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California Berkeley, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14850, United States
| | - Cinzia Giannini
- Istituto
di Cristallografia - Consiglio Nazionale delle Ricerche (IC−CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
29
|
Toso S, Baranov D, Altamura D, Scattarella F, Dahl J, Wang X, Marras S, Alivisatos AP, Singer A, Giannini C, Manna L. Multilayer Diffraction Reveals That Colloidal Superlattices Approach the Structural Perfection of Single Crystals. ACS NANO 2021; 15:6243-6256. [PMID: 33481560 DOI: 10.26434/chemrxiv.13103507.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Colloidal superlattices are fascinating materials made of ordered nanocrystals, yet they are rarely called "atomically precise". That is unsurprising, given how challenging it is to quantify the degree of structural order in these materials. However, once that order crosses a certain threshold, the constructive interference of X-rays diffracted by the nanocrystals dominates the diffraction pattern, offering a wealth of structural information. By treating nanocrystals as scattering sources forming a self-probing interferometer, we developed a multilayer diffraction method that enabled the accurate determination of the nanocrystal size, interparticle spacing, and their fluctuations for samples of self-assembled CsPbBr3 and PbS nanomaterials. The multilayer diffraction method requires only a laboratory-grade diffractometer and an open-source fitting algorithm for data analysis. The average nanocrystal displacement of 0.33 to 1.43 Å in the studied superlattices provides a figure of merit for their structural perfection and approaches the atomic displacement parameters found in traditional crystals.
Collapse
Affiliation(s)
- Stefano Toso
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- International Doctoral Program in Science, Università Cattolica del Sacro Cuore, 25121 Brescia, Italy
| | - Dmitry Baranov
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Davide Altamura
- Istituto di Cristallografia - Consiglio Nazionale delle Ricerche (IC-CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Francesco Scattarella
- Istituto di Cristallografia - Consiglio Nazionale delle Ricerche (IC-CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Jakob Dahl
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xingzhi Wang
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sergio Marras
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - A Paul Alivisatos
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Cinzia Giannini
- Istituto di Cristallografia - Consiglio Nazionale delle Ricerche (IC-CNR), Via Amendola 122/O, I-70126 Bari, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
30
|
Delikanli S, Erdem O, Isik F, Dehghanpour Baruj H, Shabani F, Yagci HB, Durmusoglu EG, Demir HV. Ultrahigh Green and Red Optical Gain Cross Sections from Solutions of Colloidal Quantum Well Heterostructures. J Phys Chem Lett 2021; 12:2177-2182. [PMID: 33630593 DOI: 10.1021/acs.jpclett.0c03836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate amplified spontaneous emission (ASE) in solution with ultralow thresholds of 30 μJ/cm2 in red and of 44 μJ/cm2 in green from engineered colloidal quantum well (CQW) heterostructures. For this purpose, CdSe/CdS core/crown CQWs, designed to hit the green region, and CdSe/CdS@CdxZn1-xS core/crown@gradient-alloyed shell CQWs, further tuned to reach the red region by shell alloying, were employed to achieve high-performance ASE in the visible range. The net modal gain of these CQWs reaches 530 cm-1 for the green and 201 cm-1 for the red, 2-3 orders of magnitude larger than those of colloidal quantum dots (QDs) in solution. To explain the root cause for ultrahigh gain coefficient in solution, we show for the first time that the gain cross sections of these CQWs is ≥3.3 × 10-14 cm2 in the green and ≥1.3 × 10-14 cm2 in the red, which are two orders of magnitude larger compared to those of CQDs.
Collapse
Affiliation(s)
- Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Onur Erdem
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Furkan Isik
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Hamed Dehghanpour Baruj
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Huseyin Bilge Yagci
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Emek Goksu Durmusoglu
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
31
|
Greenwood AR, Mazzotti S, Norris DJ, Galli G. Determining the Structure-Property Relationships of Quasi-Two-Dimensional Semiconductor Nanoplatelets. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:4820-4827. [PMID: 38230251 PMCID: PMC10788900 DOI: 10.1021/acs.jpcc.0c10559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
We report a theoretical study of CdSe nanoplatelets aimed at identifying the main factors determining their photophysical properties. Using atomic configurations optimized with density functional theory calculations, we computed quasiparticle and exciton binding energies of nanoplatelets with two to seven monolayers. We employed many body perturbation theory at the GW level and solved the Bethe-Salpeter equation to obtain absorption spectra and excitonic properties. Our results, which agree well with recent experiments, were then used to design a model that allows us to disentangle the effects of quantum confinement, strain induced by passivating ligands, and dielectric environment on the electronic properties of nanoplatelets. We found that, for the model to accurately reproduce our first principle results, it is critical to account for surface stress and consider a finite potential barrier and energy-dependent effective masses when describing quantum confinement. Our findings call into question previous assumptions on the validity of an infinite barrier to describe carrier confinement in nanoplatelets, suggesting that it may be possible to optimize interfacial charge transfer and extraction by appropriately choosing passivating ligands. The model developed here is generalizable to core-shell platelets and enables the description of system sizes not yet directly treatable by first-principles calculations.
Collapse
Affiliation(s)
- Arin R. Greenwood
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Sergio Mazzotti
- Optical
Materials Engineering Laboratory, Department of Mechanical and Process
Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - David J. Norris
- Optical
Materials Engineering Laboratory, Department of Mechanical and Process
Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Giulia Galli
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
32
|
Gréboval C, Chu A, Goubet N, Livache C, Ithurria S, Lhuillier E. Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration. Chem Rev 2021; 121:3627-3700. [DOI: 10.1021/acs.chemrev.0c01120] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Charlie Gréboval
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Audrey Chu
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Nicolas Goubet
- CNRS, Laboratoire de la Molécule aux Nano-objets; Réactivité, Interactions et Spectroscopies, MONARIS, Sorbonne Université, 4 Place Jussieu, Case Courier 840, F-75005 Paris, France
| | - Clément Livache
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d’Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| |
Collapse
|
33
|
Moghaddam N, Dabard C, Dufour M, Po H, Xu X, Pons T, Lhuillier E, Ithurria S. Surface Modification of CdE (E: S, Se, and Te) Nanoplatelets to Reach Thicker Nanoplatelets and Homostructures with Confinement-Induced Intraparticle Type I Energy Level Alignment. J Am Chem Soc 2021; 143:1863-1872. [PMID: 33471504 DOI: 10.1021/jacs.0c10336] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two-dimensional II-VI semiconductor nanoplatelets (NPLs) present exceptionally narrow optical features due to their thickness defined at the atomic scale. Because thickness drives the band-edge energy, its control is of paramount importance. Here, we demonstrate that native carboxylate ligands can be replaced by halides that partially dissolve cadmium chalcogenide NPLs at the edges. The released monomers then recrystallize on the wide top and bottom facets, leading to an increase in NPL thickness. This dissolution/recrystallization method is used to increase NPL thickness to 9 ML while using 3 ML NPLs as the starting material. We also demonstrate that this method is not limited to CdSe and can be extended to CdS and CdTe to grow thick NPLs. When the metal halide precursor is introduced with a chalcogenide precursor on the NPLs, CdSe/CdSe, CdTe/CdTe, and CdSe/CdTe core/shell homo- and heterostructures are achieved. Finally, when an incomplete layer is grown, NPLs with steps are synthesized. These stress-free homostructures are comparable to type I heterostructures, leading to recombination of the exciton in the thicker area of the NPLs. Following the growth of core/crown and core/shell NPLs, it affords a new degree of freedom for the growth of structured NPLs with designed band engineering, which has so far been only achievable for heteromaterial nanostructures.
Collapse
Affiliation(s)
- Nicolas Moghaddam
- CNRS, Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, 10 rue Vauquelin, 75005 Paris, France
| | - Corentin Dabard
- CNRS, Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, 10 rue Vauquelin, 75005 Paris, France.,CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Marion Dufour
- CNRS, Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, 10 rue Vauquelin, 75005 Paris, France
| | - Hong Po
- CNRS, Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, 10 rue Vauquelin, 75005 Paris, France
| | - Xiangzhen Xu
- CNRS, Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Pons
- CNRS, Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, 10 rue Vauquelin, 75005 Paris, France
| | - Emmanuel Lhuillier
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Sandrine Ithurria
- CNRS, Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
34
|
Zhao J, Chen B, Wang F. Shedding Light on the Role of Misfit Strain in Controlling Core-Shell Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004142. [PMID: 33051904 DOI: 10.1002/adma.202004142] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Indexed: 05/17/2023]
Abstract
Heteroepitaxial modification of nanomaterials has become a powerful means to create novel functionalities for various applications. One of the most elementary factors in heteroepitaxial nanostructures is the misfit strain arising from mismatched lattices of the constituent parts. Misfit strain not only dictates epitaxy kinetics for diversifying nanocrystal morphologies but also provides rational control over materials properties. In recent years, advances in chemical synthesis along with the rapid development of electron microscopy and X-ray diffraction techniques have enabled a substantial understanding of strain-related processes, which offers theoretical foundation and experimental guidance for researchers to refine heteroepitaxial nanostructures and their properties. Herein, recent investigations on heterogeneous core-shell nanocrystals containing misfit strains are summarized, with a focus on the mechanistic understanding of strain and strain-induced effects such as tuning the epitaxial habit, modulating the optical emission, and enhancing the catalytic activity and magnetic coercivity.
Collapse
Affiliation(s)
- Jianxiong Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
35
|
Shu Y, Lin X, Qin H, Hu Z, Jin Y, Peng X. Quantum Dots for Display Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yufei Shu
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Xing Lin
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Haiyan Qin
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Zhuang Hu
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yizheng Jin
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Xiaogang Peng
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| |
Collapse
|
36
|
Shu Y, Lin X, Qin H, Hu Z, Jin Y, Peng X. Quantum Dots for Display Applications. Angew Chem Int Ed Engl 2020; 59:22312-22323. [PMID: 32421230 DOI: 10.1002/anie.202004857] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/19/2022]
Abstract
This article offers a materials-chemistry perspective for colloidal quantum dots (QDs) in the field of display, including QD-enhanced liquid-crystal-display (QD-LCD) and QD-based light-emitting-diodes (QLEDs) display. The rapid successes of QDs for display in the past five years are not accidental but have a deep root in both maturity of their synthetic chemistry and their unique chemical, optical, and optoelectronic properties. This article intends to discuss the natural match of QD emitters for display and chemical means to eventually bring about their full potential.
Collapse
Affiliation(s)
- Yufei Shu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xing Lin
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Haiyan Qin
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhuang Hu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yizheng Jin
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiaogang Peng
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| |
Collapse
|
37
|
Philbin JP, Brumberg A, Diroll BT, Cho W, Talapin DV, Schaller RD, Rabani E. Area and thickness dependence of Auger recombination in nanoplatelets. J Chem Phys 2020; 153:054104. [PMID: 32770880 DOI: 10.1063/5.0012973] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ability to control both the thickness and the lateral dimensions of colloidal nanoplatelets offers a test-bed for area and thickness dependent properties in 2D materials. An important example is Auger recombination, which is typically the dominant process by which multiexcitons decay in nanoplatelets. Herein, we uncover fundamental properties of biexciton decay in nanoplatelets by comparing the Auger recombination lifetimes based on interacting and noninteracting formalisms with measurements based on transient absorption spectroscopy. Specifically, we report that electron-hole correlations in the initial biexcitonic state must be included in order to obtain Auger recombination lifetimes in agreement with experimental measurements and that Auger recombination lifetimes depend nearly linearly on the lateral area and somewhat more strongly on the thickness of the nanoplatelet. We also connect these scalings to those of the area and thickness dependencies of single exciton radiative recombination lifetimes, exciton coherence areas, and exciton Bohr radii in these quasi-2D materials.
Collapse
Affiliation(s)
- John P Philbin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alexandra Brumberg
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Wooje Cho
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Dmitri V Talapin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
38
|
Philbin JP, Rabani E. Auger Recombination Lifetime Scaling for Type I and Quasi-Type II Core/Shell Quantum Dots. J Phys Chem Lett 2020; 11:5132-5138. [PMID: 32513003 DOI: 10.1021/acs.jpclett.0c01460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Having already achieved near-unity quantum yields, with promising properties for light-emitting diode, lasing, and charge separation applications, colloidal core/shell quantum dots have great technological potential. The shell thickness and band alignment of the shell and core materials are known to influence the efficiency of these devices. In many such applications, improving the efficiency requires a deep understanding of multiexcitonic states. Herein, we elucidate the shell thickness and band alignment dependencies of the biexciton Auger recombination lifetime for quasi-type II CdSe/CdS and type I CdSe/ZnS core/shell quantum dots. We find that the biexciton Auger recombination lifetime increases with the total nanocrystal volume for quasi-type II CdSe/CdS core/shell quantum dots and is independent of the shell thickness for type I CdSe/ZnS core/shell quantum dots. To perform these calculations and compute Auger recombination lifetimes, we developed a low-scaling approach based on the stochastic resolution of identity. The numerical approach provided a framework for studying the scaling of the biexciton Auger recombination lifetimes in terms of the shell thickness dependencies of the exciton radii, Coulomb couplings, and density of final states in quasi-type II CdSe/CdS and type I CdSe/ZnS core/shell quantum dots.
Collapse
Affiliation(s)
- John P Philbin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Piveteau L, Dirin DN, Gordon CP, Walder BJ, Ong TC, Emsley L, Copéret C, Kovalenko MV. Colloidal-ALD-Grown Core/Shell CdSe/CdS Nanoplatelets as Seen by DNP Enhanced PASS-PIETA NMR Spectroscopy. NANO LETTERS 2020; 20:3003-3018. [PMID: 32078332 PMCID: PMC7227022 DOI: 10.1021/acs.nanolett.9b04870] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ligand exchange and CdS shell growth onto colloidal CdSe nanoplatelets (NPLs) using colloidal atomic layer deposition (c-ALD) were investigated by solid-state nuclear magnetic resonance (NMR) experiments, in particular, dynamic nuclear polarization (DNP) enhanced phase adjusted spinning sidebands-phase incremented echo-train acquisition (PASS-PIETA). The improved sensitivity and resolution of DNP enhanced PASS-PIETA permits the identification and study of the core, shell, and surface species of CdSe and CdSe/CdS core/shell NPLs heterostructures at all stages of c-ALD. The cadmium chemical shielding was found to be proportionally dependent on the number and nature of coordinating chalcogen-based ligands. DFT calculations permitted the separation of the the 111/113Cd chemical shielding into its different components, revealing that the varying strength of paramagnetic and spin-orbit shielding contributions are responsible for the chemical shielding trend of cadmium chalcogenides. Overall, this study points to the roughening and increased chemical disorder at the surface during the shell growth process, which is not readily captured by the conventional characterization tools such as electron microscopy.
Collapse
Affiliation(s)
- Laura Piveteau
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse
129, Zurich CH-8600, Switzerland
| | - Dmitry N. Dirin
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse
129, Zurich CH-8600, Switzerland
| | - Christopher P. Gordon
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| | - Brennan J. Walder
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ta-Chung Ong
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- E-mail:
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse
129, Zurich CH-8600, Switzerland
- E-mail:
| |
Collapse
|
40
|
Li F, Shen T, Wang C, Zhang Y, Qi J, Zhang H. Recent Advances in Strain-Induced Piezoelectric and Piezoresistive Effect-Engineered 2D Semiconductors for Adaptive Electronics and Optoelectronics. NANO-MICRO LETTERS 2020; 12:106. [PMID: 34138113 PMCID: PMC7770727 DOI: 10.1007/s40820-020-00439-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/20/2020] [Indexed: 05/07/2023]
Abstract
The development of two-dimensional (2D) semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness, unique structure, excellent optoelectronic properties and novel physics. The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic-electric performance. The strain-engineered one-dimensional materials have been well investigated, while there is a long way to go for 2D semiconductors. In this review, starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain, following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors, such as Janus 2D and 2D-Xene structures. Moreover, recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized. Furthermore, the applications of strain-engineered 2D semiconductors in sensors, photodetectors and nanogenerators are also highlighted. At last, we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications.
Collapse
Affiliation(s)
- Feng Li
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Tao Shen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Cong Wang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yupeng Zhang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Junjie Qi
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
41
|
Palencia C, Yu K, Boldt K. The Future of Colloidal Semiconductor Magic-Size Clusters. ACS NANO 2020; 14:1227-1235. [PMID: 32003556 DOI: 10.1021/acsnano.0c00040] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Atomically defined, zero-dimensional magic-size clusters play pivotal roles in the nucleation and growth of semiconductor nanocrystals. Thus, they provide new opportunities to understand and to control nucleation and growth reactions beyond classical nucleation theory and to employ these reactions in the colloidal synthesis of increasingly complex and anisotropic nanomaterials with atomic level monodispersity. Both challenges require reliable determination of the exact structure and size of these ultrasmall and metastable nanoclusters. In this Perspective, we review and discuss the current challenges in analytics of magic-size clusters, in elucidating their formation mechanism, and in using them as next-generation reagents in colloidal chemistry.
Collapse
Affiliation(s)
- Cristina Palencia
- Institute of Physical Chemistry , University of Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
- The Hamburg Centre for Ultrafast Imaging, CUI-AIM , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Kui Yu
- Engineering Research Center in Biomaterials , Sichuan University , Chengdu , 610065 , P. R. China
| | - Klaus Boldt
- Department of Chemistry & Zukunftskolleg , University of Konstanz , Universitätsstraße 10 , 78457 Konstanz , Germany
| |
Collapse
|
42
|
Size-Dependent Thermo- and Photoresponsive Plasmonic Properties of Liquid Crystalline Gold Nanoparticles. MATERIALS 2020; 13:ma13040875. [PMID: 32075278 PMCID: PMC7078723 DOI: 10.3390/ma13040875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Achieving remotely controlled, reversibly reconfigurable assemblies of plasmonic nanoparticles is a prerequisite for the development of future photonic technologies. Here, we obtained a series of gold-nanoparticle-based materials which exhibit long-range order, and which are controlled with light or thermal stimuli. The influence of the metallic core size and organic shell composition on the switchability is considered, with emphasis on achieving light-responsive behavior at room temperature and high yield production of nanoparticles. The latter translates to a wide size distribution of metallic cores but does not prevent their assembly into various, switchable 3D and 2D long-range ordered structures. These results provide clear guidelines as to the impact of size, size distribution, and organic shell composition on self-assembly, thus enhancing the smart design process of multi-responsive nanomaterials in a condensed state, hardly attainable by other self-assembly methods which usually require solvents.
Collapse
|
43
|
Boldt K, Bartlett S, Kirkwood N, Johannessen B. Quantification of Material Gradients in Core/Shell Nanocrystals Using EXAFS Spectroscopy. NANO LETTERS 2020; 20:1009-1017. [PMID: 31960678 DOI: 10.1021/acs.nanolett.9b04143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Core/shell nanocrystals with a graded interface between core and shell exhibit improved optoelectronic properties compared with particles with an abrupt, sharp interface. Material gradients mitigate interfacial defects and define the shape of the confinement potential. So far, few works exist that allow to quantify the width of the gradient. In this study, ZnSe/CdS nanocrystals with graded shells made at different temperatures are characterized using extended X-ray absorption fine structure (EXAFS) and Raman spectroscopies. The average coordination number of the probed element with respect to the two possible counterions is fit to a simple, geometric model. It is shown that at the lower temperature limit for shell growth (260 °C), substantial interfacial alloying can be attributed mainly to cation migration. At higher temperature (290 °C), strain minimization leads to atomic ordering of the metal ions and an anomalously low degree of phase mixing.
Collapse
Affiliation(s)
- Klaus Boldt
- Department of Chemistry & Zukunftskolleg, Box 710 , University of Konstanz , 78457 Konstanz , Germany
| | - Stuart Bartlett
- Diamond Light Source , Diamond House, Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 0DE , United Kingdom
| | - Nicholas Kirkwood
- ARC Centre in Exciton Science, School of Chemistry , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Bernt Johannessen
- ANSTO Australian Synchrotron , 800 Blackburn Rd , Clayton , Victoria 3168 , Australia
| |
Collapse
|