1
|
Saji VS. Nanocarbons-Based Trifunctional Electrocatalysts for Overall Water Splitting and Metal-Air Batteries: Metal-Free and Hybrid Electrocatalysts. Chem Asian J 2024; 19:e202400712. [PMID: 39037924 DOI: 10.1002/asia.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Trifunctional electrocatalysts, an exciting class of materials that can simultaneously catalyze hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR), can significantly enhance the performance and economic viability of electrochemical energy storage and conversion technologies such as water-splitting electrolyzers, metal-air batteries, fuel cells and their integrated devices. Such multifunctional electrocatalysts encompass multiple active sites that can simultaneously catalyze two or more different electrochemical reactions and are feasible routes for addressing global energy and environmental challenges. This review accounts for nanocarbons-based trifunctional electrocatalysts reported for electrolyzers, metal-air batteries and integrated electrolyzer-battery systems, providing a practical perspective. Metal-free and hybrid (hybrids of nanocarbons and transition metals/compounds) trifunctional electrocatalysts are covered. Given the growing importance of green technologies, we discuss biomass-derived carbon-based trifunctional electrocatalysts separately. The collective information provided in the review could help researchers derive more effective and durable trifunctional electrocatalysts suitable for commercial use.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Li N, Guo K, Lu S, Bao L, Yu Z, Lu X. Fullerene as a probe molecule for single-atom oxygen reduction electrocatalysts. Chem Commun (Camb) 2024; 60:11964-11967. [PMID: 39351811 DOI: 10.1039/d4cc03901g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Fullerenes interact positively with many metal-based catalysts via intense electron transfer. Yet, we here revealed that C60 serves as a probe due to its deactivation of the active sites of single-atom O2 reduction electrocatalysts. C60 adsorption to metal atoms creates steric hindrance that restricts the access of O2 to the active sites.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Song Lu
- Institute of New Energy, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Zhai Q, Huang H, Lawson T, Xia Z, Giusto P, Antonietti M, Jaroniec M, Chhowalla M, Baek JB, Liu Y, Qiao S, Dai L. Recent Advances on Carbon-Based Metal-Free Electrocatalysts for Energy and Chemical Conversions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405664. [PMID: 39049808 DOI: 10.1002/adma.202405664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, carbon-based metal-free electrocatalysts (C-MFECs) have become important in electrocatalysis. This field is started thanks to the initial discovery that nitrogen atom doped carbon can function as a metal-free electrode in alkaline fuel cells. A wide variety of metal-free carbon nanomaterials, including 0D carbon dots, 1D carbon nanotubes, 2D graphene, and 3D porous carbons, has demonstrated high electrocatalytic performance across a variety of applications. These include clean energy generation and storage, green chemistry, and environmental remediation. The wide applicability of C-MFECs is facilitated by effective synthetic approaches, e.g., heteroatom doping, and physical/chemical modification. These methods enable the creation of catalysts with electrocatalytic properties useful for sustainable energy transformation and storage (e.g., fuel cells, Zn-air batteries, Li-O2 batteries, dye-sensitized solar cells), green chemical production (e.g., H2O2, NH3, and urea), and environmental remediation (e.g., wastewater treatment, and CO2 conversion). Furthermore, significant advances in the theoretical study of C-MFECs via advanced computational modeling and machine learning techniques have been achieved, revealing the charge transfer mechanism for rational design and development of highly efficient catalysts. This review offers a timely overview of recent progress in the development of C-MFECs, addressing material syntheses, theoretical advances, potential applications, challenges and future directions.
Collapse
Affiliation(s)
- Qingfeng Zhai
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Hetaishan Huang
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Tom Lawson
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Zhenhai Xia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, 44240, OH, USA
| | - Manish Chhowalla
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Jong-Beom Baek
- Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, South Korea
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, 2601, Australia
| | - Shizhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Liming Dai
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| |
Collapse
|
4
|
Guo J, Haghshenas Y, Jiao Y, Kumar P, Yakobson BI, Roy A, Jiao Y, Regenauer-Lieb K, Nguyen D, Xia Z. Rational Design of Earth-Abundant Catalysts toward Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407102. [PMID: 39081108 DOI: 10.1002/adma.202407102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/06/2024] [Indexed: 10/18/2024]
Abstract
Catalysis is crucial for clean energy, green chemistry, and environmental remediation, but traditional methods rely on expensive and scarce precious metals. This review addresses this challenge by highlighting the promise of earth-abundant catalysts and the recent advancements in their rational design. Innovative strategies such as physics-inspired descriptors, high-throughput computational techniques, and artificial intelligence (AI)-assisted design with machine learning (ML) are explored, moving beyond time-consuming trial-and-error approaches. Additionally, biomimicry, inspired by efficient enzymes in nature, offers valuable insights. This review systematically analyses these design strategies, providing a roadmap for developing high-performance catalysts from abundant elements. Clean energy applications (water splitting, fuel cells, batteries) and green chemistry (ammonia synthesis, CO2 reduction) are targeted while delving into the fundamental principles, biomimetic approaches, and current challenges in this field. The way to a more sustainable future is paved by overcoming catalyst scarcity through rational design.
Collapse
Affiliation(s)
- Jinyang Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yousof Haghshenas
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yiran Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Priyank Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77251, USA
| | - Ajit Roy
- U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Yan Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
| | - Klaus Regenauer-Lieb
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6151, Australia
| | | | - Zhenhai Xia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
| |
Collapse
|
5
|
Liu T, Chen C, Pu Z, Huang Q, Zhang X, Al-Enizi AM, Nafady A, Huang S, Chen D, Mu S. Non-Noble-Metal-Based Electrocatalysts for Acidic Oxygen Evolution Reaction: Recent Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405399. [PMID: 39183523 DOI: 10.1002/smll.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The oxygen evolution reaction (OER) plays a pivotal role in diverse renewable energy storage and conversion technologies, including water electrolysis, electrochemical CO2 reduction, nitrogen fixation, and metal-air batteries. Among various water electrolysis techniques, proton exchange membrane (PEM)-based water electrolysis devices offer numerous advantages, including high current densities, exceptional chemical stability, excellent proton conductivity, and high-purity H2. Nevertheless, the prohibitive cost associated with Ir/Ru-based OER electrocatalysts poses a significant barrier to the broad-scale application of PEM-based water splitting. Consequently, it is crucial to advance the development of non-noble metal OER catalysis substance with high acid-activity and stability, thereby fostering their widespread integration into PEM water electrolyzers (PEMWEs). In this review, a comprehensive analysis of the acidic OER mechanism, encompassing the adsorbate evolution mechanism (AEM), lattice oxygen mechanism (LOM) and oxide path mechanism (OPM) is offered. Subsequently, a systematic summary of recently reported noble-metal-free catalysts including transition metal-based, carbon-based and other types of catalysts is provided. Additionally, a comprehensive compilation of in situ/operando characterization techniques is provided, serving as invaluable tools for furnishing experimental evidence to comprehend the catalytic mechanism. Finally, the present challenges and future research directions concerning precious-metal-free acidic OER are comprehensively summarized and discussed in this review.
Collapse
Affiliation(s)
- Tingting Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chen Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zonghua Pu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
6
|
Li Y, Chen C, Zhao G, Huang H, Ren Y, Zuo S, Wu ZP, Zheng L, Lai Z, Zhang J, Rueping M, Han Y, Zhang H. Unveiling the Activity Origin of Electrochemical Oxygen Evolution on Heteroatom-Decorated Carbon Matrix. Angew Chem Int Ed Engl 2024:e202411218. [PMID: 39137124 DOI: 10.1002/anie.202411218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Chemical modification via functional dopants in carbon materials holds great promise for elevating catalytic activity and stability. To gain comprehensive insights into the pivotal mechanisms and establish structure-performance relationships, especially concerning the roles of dopants, remains a pressing need. Herein, we employ computational simulations to unravel the catalytic function of heteroatoms in the acidic oxygen evolution reaction (OER), focusing on a physical model of high-electronegative F and N co-doped carbon matrix. Theoretical and experimental findings elucidate that the enhanced activity originates from the F and pyridinic-N (Py-N) species that achieve carbon activation. This activated carbon significantly lowers the conversion energy barrier from O* to OOH*, shifts the potential-limiting step from OOH* formation to O* generation, and ultimately optimizes the energy barrier of the potential-limiting step. This wok elucidates that the critical role of heteroatoms in catalyzing the reaction and unlocks the potential of carbon materials for acidic OER.
Collapse
Affiliation(s)
- Yang Li
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Cailing Chen
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Guoxiang Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, 350002, Fuzhou, P. R. China
| | - Huawei Huang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Shouwei Zuo
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Zhi-Peng Wu
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiping Lai
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, 350002, Fuzhou, P. R. China
| | - Magnus Rueping
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yu Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, 350002, Fuzhou, P. R. China
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdulla University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
7
|
Mushtaq MA, Kumar A, Yasin G, Tabish M, Arif M, Ajmal S, Raza W, Naseem S, Zhao J, Li P, Ali HG, Ji S, Yan D. Multivalent Sulfur Vacancy-Rich NiCo 2S 4@MnO 2 Urchin-Like Heterostructures for Ambient Electrochemical N 2 Reduction to NH 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310431. [PMID: 38441366 DOI: 10.1002/smll.202310431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/23/2024] [Indexed: 08/02/2024]
Abstract
Innovative advances in the exploitation of effective electrocatalytic materials for the reduction of nitrogen (N2) to ammonia (NH3) are highly required for the sustainable production of fertilizers and zero-carbon emission fuel. In order to achieve zero-carbon footprints and renewable NH3 production, electrochemical N2 reduction reaction (NRR) provides a favorable energy-saving alternative but it requires more active, efficient, and selective catalysts. In current work, sulfur vacancy (Sv)-rich NiCo2S4@MnO2 heterostructures are efficaciously fabricated via a facile hydrothermal approach followed by heat treatment. The urchin-like Sv-NiCo2S4@MnO2 heterostructures serve as cathodes, which demonstrate an optimal NH3 yield of 57.31 µg h-1 mgcat -1 and Faradaic efficiency of 20.55% at -0.2 V versus reversible hydrogen electrode (RHE) in basic electrolyte owing to the synergistic interactions between Sv-NiCo2S4 and MnO2. Density functional theory (DFT) simulation further verifies that Co-sites of urchin-like Sv-NiCo2S4@MnO2 heterostructures are beneficial to lowering the energy threshold for N2 adsorption and successive protonation. Distinctive micro/nano-architectures exhibit high NRR electrocatalytic activities that might motivate researchers to explore and concentrate on the development of heterostructures for ambient electrocatalytic NH3 generation.
Collapse
Affiliation(s)
- Muhammad Asim Mushtaq
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, UP, 281406, India
| | - Ghulam Yasin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Mohammad Tabish
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Muhammad Arif
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, 64200, Pakistan
| | - Saira Ajmal
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Sajid Naseem
- Department of Polymer and Process Engineering, University of Engineering and Technology, Lahore, Punjab, 39161, Pakistan
| | - Jie Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Pengyan Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hina Ghulam Ali
- Department of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Shengfu Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
8
|
Luo Y, Zhang Y, Zhu J, Tian X, Liu G, Feng Z, Pan L, Liu X, Han N, Tan R. Material Engineering Strategies for Efficient Hydrogen Evolution Reaction Catalysts. SMALL METHODS 2024:e2400158. [PMID: 38745530 DOI: 10.1002/smtd.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Water electrolysis, a key enabler of hydrogen energy production, presents significant potential as a strategy for achieving net-zero emissions. However, the widespread deployment of water electrolysis is currently limited by the high-cost and scarce noble metal electrocatalysts in hydrogen evolution reaction (HER). Given this challenge, design and synthesis of cost-effective and high-performance alternative catalysts have become a research focus, which necessitates insightful understandings of HER fundamentals and material engineering strategies. Distinct from typical reviews that concentrate only on the summary of recent catalyst materials, this review article shifts focus to material engineering strategies for developing efficient HER catalysts. In-depth analysis of key material design approaches for HER catalysts, such as doping, vacancy defect creation, phase engineering, and metal-support engineering, are illustrated along with typical research cases. A special emphasis is placed on designing noble metal-free catalysts with a brief discussion on recent advancements in electrocatalytic water-splitting technology. The article also delves into important descriptors, reliable evaluation parameters and characterization techniques, aiming to link the fundamental mechanisms of HER with its catalytic performance. In conclusion, it explores future trends in HER catalysts by integrating theoretical, experimental and industrial perspectives, while acknowledging the challenges that remain.
Collapse
Affiliation(s)
- Yue Luo
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yulong Zhang
- College of Mechatronical and Electrical Engineering, Hebei Agricultrual Univesity, Baoding, 07001, China
| | - Jiayi Zhu
- Warwick Electrochemical Engineering, WMG, University of Warwick, Coventry, CV4 7AL, UK
| | - Xingpeng Tian
- Warwick Electrochemical Engineering, WMG, University of Warwick, Coventry, CV4 7AL, UK
| | - Gang Liu
- IDTECH (Suzhou) Co. Ltd., Suzhou, 215217, China
| | - Zhiming Feng
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Liwen Pan
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of High Performance Structural Materials and Thermo-surface Processing (Guangxi University), Nanning, 530004, China
| | - Xinhua Liu
- School of Transportation Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, Heverlee, B-3001, Belgium
| | - Rui Tan
- Warwick Electrochemical Engineering, WMG, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemcial Engineering, Swansea University, Swansea, SA1 8EN, United Kingdom
| |
Collapse
|
9
|
Zhao H, Zhu L, Yin J, Jin J, Du X, Tan L, Peng Y, Xi P, Yan CH. Stabilizing Lattice Oxygen through Mn Doping in NiCo 2O 4-δ Spinel Electrocatalysts for Efficient and Durable Acid Oxygen Evolution. Angew Chem Int Ed Engl 2024; 63:e202402171. [PMID: 38494450 DOI: 10.1002/anie.202402171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Design the electrocatalysts without noble metal is still a challenge for oxygen evolution reaction (OER) in acid media. Herein, we reported the manganese (Mn) doping method to decrease the concentration of oxygen vacancy (VO) and form the Mn-O structure adjacent octahedral sites in spinel NiCo2O4-δ (NiMn1.5Co3O4-δ), which highly enhanced the activity and stability of spinel NiCo2O4-δ with a low overpotential (η) of 280 mV at j=10 mA cm-2 and long-term stability of 80 h in acid media. The isotopic labelling experiment based on differential electrochemical mass spectrometry (DEMS) clearly demonstrated the lattice oxygen in NiMn1.5Co3O4-δ is more stable due to strong Mn-O bond and shows synergetic adsorbate evolution mechanism (SAEM) for acid OER. Density functional theory (DFT) calculations reveal highly increased oxygen vacancy formation energy (EVO) of NiCo2O4-δ after Mn doping. More importantly, the highly hydrogen bonding between Mn-O and *OOH adsorbed on adjacent Co octahedral sites promote the formation of *OO from *OOH due to the greatly enhanced charge density of O in Mn substituted sites.
Collapse
Affiliation(s)
- Hongyu Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Liu Zhu
- School of Materials and Energy, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Xin Du
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Tan
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yong Peng
- School of Materials and Energy, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University. The University of Hong Kong Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Mushtaq MA, Kumar A, Liu W, Ji Q, Deng Y, Yasin G, Saad A, Raza W, Zhao J, Ajmal S, Wu Y, Ahmad M, Lashari NUR, Wang Y, Li T, Sun S, Zheng D, Luo Y, Cai X, Sun X. A Metal Coordination Number Determined Catalytic Performance in Manganese Borides for Ambient Electrolysis of Nitrogen to Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313086. [PMID: 38341608 DOI: 10.1002/adma.202313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Indexed: 02/12/2024]
Abstract
A new strategy that can effectively increase the nitrogen reduction reaction performance of catalysts is proposed and verified by tuning the coordination number of metal atoms. It is found that the intrinsic activity of Mn atoms in the manganese borides (MnBx) increases in tandem with their coordination number with B atoms. Electron-deficient boron atoms are capable of accepting electrons from Mn atoms, which enhances the adsorption of N2 on the Mn catalytic sites (*) and the hydrogenation of N2 to form *NNH intermediates. Furthermore, the increase in coordination number reduces the charge density of Mn atoms at the Fermi level, which facilitates the desorption of ammonia from the catalyst surface. Notably, the MnB4 compound with a Mn coordination number of up to 12 exhibits a high ammonia yield rate (74.9 ± 2.1 µg h-1 mgcat -1) and Faradaic efficiency (38.5 ± 2.7%) at -0.3 V versus reversible hydrogen electrode (RHE) in a 0.1 m Li2SO4 electrolyte, exceeding those reported for other boron-related catalysts.
Collapse
Affiliation(s)
- Muhammad Asim Mushtaq
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Wei Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qianqian Ji
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yonggui Deng
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ghulam Yasin
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ali Saad
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Waseem Raza
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jie Zhao
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Saira Ajmal
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yanyan Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Muhammad Ahmad
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Najeeb Ur Rehman Lashari
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
11
|
Sadhukhan A, Karmakar A, Koner K, Karak S, Sharma RK, Roy A, Sen P, Dey KK, Mahalingam V, Pathak B, Kundu S, Banerjee R. Functionality Modulation Toward Thianthrene-based Metal-Free Electrocatalysts for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310938. [PMID: 38245860 DOI: 10.1002/adma.202310938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Indexed: 01/22/2024]
Abstract
The development of metal-free bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) is significant but rarely demonstrated. Porous organic polymers (POPs) with well-defined electroactive functionalities show superior performance in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Precise control of the active sites' local environment requires careful modulation of linkers through the judicious selection of building units. Here, a systematic strategy is introduced for modulating functionality to design and synthesize a series of thianthrene-based bifunctional sp2 C═C bonded POPs with hollow spherical morphologies exhibiting superior electrocatalytic activity. This precise structural tuning allowed to gain insight into the effects of heteroatom incorporation, hydrophilicity, and variations in linker length on electrocatalytic activity. The most efficient bifunctional electrocatalyst THT-PyDAN achieves a current density of 10 mA cm─2 at an overpotential (η10) of ≈65 mV (in 0.5 m H2SO4) and ≈283 mV (in 1 m KOH) for HER and OER, respectively. THT-PyDAN exhibits superior activity to all previously reported metal-free bifunctional electrocatalysts in the literature. Furthermore, these investigations demonstrate that THT-PyDAN maintains its performance even after 36 h of chronoamperometry and 1000 CV cycling. Post-catalytic characterization using FT-IR, XPS, and microscopic imaging techniques underscores the long-term durability of THT-PyDAN.
Collapse
Affiliation(s)
- Arnab Sadhukhan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research Ghaziabad 201002 India, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Kalipada Koner
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Rahul Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Avishek Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Prince Sen
- Department of Physics, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India
| | - Krishna Kishor Dey
- Department of Physics, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research Ghaziabad 201002 India, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| |
Collapse
|
12
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
13
|
Jhariat P, Warrier A, Sasmal A, Das S, Sarfudeen S, Kumari P, Nayak AK, Panda T. Reticular synthesis of two-dimensional ionic covalent organic networks as metal-free bifunctional electrocatalysts for oxygen reduction and evolution reactions. NANOSCALE 2024. [PMID: 38312071 DOI: 10.1039/d3nr05277j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are the heart of metal-air batteries, fuel cells, and other energy storage systems. Here, we report a series of a novel class of redox-active viologen-based ionic covalent organic networks (vCONs) which are directly used as metal-free bifunctional electrocatalysts towards ORR and OER applications. These vCONs (named vGC, vGAC, vMEL and vBPDP) were synthesized by the well-known Zincke reaction. The installation of redox-active viologen moieties among the extended covalent organic architectures played a crucial role for exceptional acid/base stability, as well as bifunctional ORR and OER activities, confirmed by the cyclic voltammetry (CV) curves. Among all of them, vBPDP showed high ORR efficiency with a half-wave potential of 0.72 V against a reversible hydrogen electrode (RHE) in 1 M KOH electrolyte. In contrast, vMEL demonstrated high OER activity with an overpotential of 320 mV at a current density of 10 mAcm-2 and a Tafel slope of 109.4 mV dec-1 in 1 M KOH electrolyte solution. This work is exceptional and unique in terms of directly used pristine ionic covalent organic networks that are used as bifunctional (ORR and OER) electrocatalysts without adding any metals or conductive materials.
Collapse
Affiliation(s)
- Pampa Jhariat
- Centre for Clean Environment, Vellore Institute of Technology, Tamil Nadu, 632014, India.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 623014, India
| | - Arjun Warrier
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 623014, India
| | - Ananta Sasmal
- Department of Physics, School of Advanced Sciences, VIT, Vellore, Tamil Nadu, 623014, India
| | - Subhadip Das
- Department of chemistry, Chaudhary Ranbir Singh University, Jind, Haryana, 126102, India
| | - Shafeeq Sarfudeen
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 623014, India
| | - Priyanka Kumari
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 623014, India
| | - Arpan Kumar Nayak
- Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| | - Tamas Panda
- Centre for Clean Environment, Vellore Institute of Technology, Tamil Nadu, 632014, India.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 623014, India
| |
Collapse
|
14
|
Wu X, Tu WH, Veksha A, Chen W, Lisak G. Polyolefin-derived substrate-grown carbon nanotubes as binder-free electrode for hydrogen evolution in alkaline media. CHEMOSPHERE 2024; 349:140769. [PMID: 38000550 DOI: 10.1016/j.chemosphere.2023.140769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Switching from a linear mode of waste management to a circular loop by transforming plastic waste into carbon nanotubes (CNTs) is a promising approach to current plastic waste treatment. One of the many applications of CNTs is its use for electrocatalytic water splitting for hydrogen evolution. Existing methods of CNTs-based hydrogen evolution reaction (HER) electrode fabrication involve additives like polymeric binders and additional steps to improve CNT dispersion, which are detrimental to the CNT structure and properties. The in-situ fabrication approach can potentially be a one-pot solution to HER electrode synthesis. In this study, polyolefins pyrolysis gas and a Co:Ni:Mg catalyst were used to fabricate binder-free CNTs-based electrodes on different substrates for HER. The study assessed CNT quality on conductive carbon paper, semiconductive silicon, and dielectric glass substrates, evaluating their HER performance in 1 M KOH. A mixture of hollow-core, bamboo-like, and cup-stacked arrangement nanotubes were synthesized on the substrates, with CNTs on glass and carbon paper substrates possessing better graphitization than CNTs grown on silicon. This is in agreement with HER performance, whereby the as-prepared electrodes required overpotentials of 267 mV, 241 mV, and 216 mV for silicon, glass, and carbon paper, respectively, to achieve 10 mA/cm2. Despite being poorly conductive, the glass substrate electrode achieved a lower overpotential than the silicon electrode. Additionally, the as-prepared silicon electrode faced a delamination issue likely attributed to the lower surface energy of the silicon substrate surface, demonstrating the weaker adhesion between the CNTs and silicon surface. The proposed approach thus showed that the in-situ fabricated electrodes performed better than separately synthesized CNTs prepared into electrodes by 27.4% and 14.2% for carbon paper and glass substrates, respectively. The improved performance of the as-prepared, binder-free electrodes can be linked to the lower charge-transfer resistance and reduced contact resistance between the CNTs and substrate.
Collapse
Affiliation(s)
- XinYi Wu
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wei Han Tu
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Interdisciplinary Graduate Program, Nanyang Technological University, 1 Cleantech Loop, Cleantech One, Singapore, 637141, Singapore
| | - Andrei Veksha
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Wenqian Chen
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
15
|
Qu J, Wang Z, Gan W, Xiao R, Yao X, Khanam Z, Ouyang L, Wang H, Yang H, Zhang S, Balogun MS. Efficient Hydrogen Evolution on Antiperovskite CuNCo 3 Nanowires by Mo Incorporation and its Trifunctionality for Zn Air Batteries and Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304541. [PMID: 37661573 DOI: 10.1002/smll.202304541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Indexed: 09/05/2023]
Abstract
The current development of single electrocatalyst with multifunctional applications in overall water splitting (OWS) and zinc-air batteries (ZABs) is crucial for sustainable energy conversion and storage systems. However, exploring new and efficient low-cost trifunctional electrocatalysts is still a significant challenge. Herein, the antiperovskite CuNCo3 prototype, that is proved to be highly efficient in oxygen evolution reaction but severe hydrogen evolution reaction (HER) performance, is endowed with optimum HER catalytic properties by in situ-derived interfacial engineering via incorporation of molybdenum (Mo). The as-prepared Mo-CuNCo3 @CoN nanowires achieve a low HER overpotential of 58 mV@10 mA cm-2 , which is significantly higher than the pristine CuNCo3 . The assembled CuNCo3 -antiperovskite-based OWS not only entails a low overall voltage of 1.56 V@10 mA cm-2 , comparable to most recently reported metal-nitride-based OWS, but also exhibits excellent ZAB cyclic stability up to 310 h, specific capacity of 819.2 mAh g-1 , and maximum power density of 102 mW cm-2 . The as-designed antiperovskite-based ZAB could self-power the OWS system generating a high hydrogen rate, and creating opportunity for developing integrated portable multifunctional energy devices.
Collapse
Affiliation(s)
- Jing Qu
- Guangxi Academy of Sciences, Nanning, Guangxi, 530007, P. R. China
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Zhongmin Wang
- Guangxi Academy of Sciences, Nanning, Guangxi, 530007, P. R. China
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Weijiang Gan
- Guangxi Academy of Sciences, Nanning, Guangxi, 530007, P. R. China
| | - Ran Xiao
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Xincheng Yao
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Zeba Khanam
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Liuzhang Ouyang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Hui Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Hao Yang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Muhammad-Sadeeq Balogun
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
16
|
Sangtam BT, Park H. Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield. MICROMACHINES 2023; 14:2234. [PMID: 38138403 PMCID: PMC10745635 DOI: 10.3390/mi14122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas, the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However, one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles, which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors, measuring techniques, and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions, as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis, facilitating more competent, inexpensive, and feasible green hydrogen production.
Collapse
Affiliation(s)
| | - Hanwook Park
- Department of Biomedical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Republic of Korea;
| |
Collapse
|
17
|
Akram R, Arif M, Arshad A, Zhang S, Liu W, Wu Z, Zhang T. A 2D Nano-architecture (NPSMC@Ir-Ru@rGO) Derived from Graphene Enfolded Polyphosphazene Nanospheres Decorated Ir-Ru Metals (PZS@Ir-Ru@GO) towards Bifunctional Water Splitting. Chem Asian J 2023; 18:e202300718. [PMID: 37846640 DOI: 10.1002/asia.202300718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
A leap-forward approach has been successfully devised to synthesize a novel hierarchical binary metal modified heteroatom doped 2D micro-/mesporous carbon-graphene nanostructure (NPSMC@Ir-Ru@rGO) for overall water splitting application. To investigate the role of decorating metals, different electrolcatalysts like NPSMC, NPSMC@rGO, NPSMC@Ir@rGO, and NPSMC@Ru@rGO were also synthesized and structural changes were compared and investigated by physiochemical techniques. All of the samples have shown electrocatalytic activities attributed to the presence of heteroatom (N, P, S) doped micro-/mesoporous carbonaceous matrix, amorphous carbon in the coexistence of graphitic lattice carbons, presence of active metal NPs (Ir and/-or Ru), an even distribution of active sites, and graphene 2D interconnected channels to promote electron transfer ability, respectively. However, the Ir-Ru metal codeped nanocatalyst (NPCMS@Ir-Ru@rGO) is proved to be an excellent electrocatalyst based on the synergistic role of Ir-Ru metals that necessitates the low overpotentials of 181 mV and 318 mV to convey a current density of 10 mA cm-2 towards the electroctalytic application of HER and OER, respectively. Furthermore, exhibiting the corresponding Tafel slopes (132 and 70 mV dec-1 ) in an alkaline medium. This work is anticipated to open up new avenues for the development of promising electrocatalysts based on active metals modified heteroatom doped carbon nanomaterials for energy applications.
Collapse
Affiliation(s)
- Raheel Akram
- Key Laboratory of Carbon fiber and functional polymers, Beijing University of Chemical Technology, Ministry of education, Beijing, 100029, China
| | - Muhammad Arif
- Institute of Chemical and Environmental Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, 64200, Pakistan
| | - Anila Arshad
- Key Laboratory of Carbon fiber and functional polymers, Beijing University of Chemical Technology, Ministry of education, Beijing, 100029, China
| | - Shuangkun Zhang
- Key Laboratory of Carbon fiber and functional polymers, Beijing University of Chemical Technology, Ministry of education, Beijing, 100029, China
| | - Wei Liu
- Key Laboratory of Carbon fiber and functional polymers, Beijing University of Chemical Technology, Ministry of education, Beijing, 100029, China
| | - Zhanpeng Wu
- Key Laboratory of Carbon fiber and functional polymers, Beijing University of Chemical Technology, Ministry of education, Beijing, 100029, China
| | - Teng Zhang
- School of Electrical Engineering, Beijing Jiao Tong University, Beijing, 100044, China
| |
Collapse
|
18
|
Kou J, Wu Q, Cui D, Geng Y, Zhang K, Zhang M, Zang H, Wang X, Su Z, Sun C. Selective Encapsulation and Chiral Induction of C 60 and C 70 Fullerenes by Axially Chiral Porous Aromatic Cages. Angew Chem Int Ed Engl 2023; 62:e202312733. [PMID: 37819157 DOI: 10.1002/anie.202312733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Chiral induction has been an important topic in chemistry, not only for its relevance in understanding the mysterious phenomenon of spontaneous symmetry breaking in nature but also due to its critical implications in medicine and the chiral industry. The induced chirality of fullerenes by host-guest interactions has been rarely reported, mainly attributed to their chiral resistance from high symmetry and challenges in their accessibility. Herein, we report two new pairs of chiral porous aromatic cages (PAC), R-PAC-2, S-PAC-2 (with Br substituents) and R-PAC-3, S-PAC-3 (with CH3 substituents) enantiomers. PAC-2, rather than PAC-3, achieves fullerene encapsulation and selective binding of C70 over C60 in fullerene carbon soot. More significantly, the occurrence of chiral induction between R-PAC-2, S-PAC-2 and fullerenes is confirmed by single-crystal X-ray diffraction and the intense CD signal within the absorption region of fullerenes. DFT calculations reveal the contribution of electrostatic effects originating from face-to-face arene-fullerene interactions dominate C70 selectivity and elucidate the substituent effect on fullerene encapsulation. The disturbance from the differential interactions between fullerene and surrounding chiral cages on the intrinsic highly symmetric electronic structure of fullerene could be the primary reason accounting for the induced chirality of fullerene.
Collapse
Affiliation(s)
- Junning Kou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Qi Wu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Dongxu Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yun Geng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kunhao Zhang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Min Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Hongying Zang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Zhongmin Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| | - Chunyi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
19
|
Peng X, Han J, Li X, Liu G, Xu Y, Peng Y, Nie S, Li W, Li X, Chen Z, Peng H, Cao R, Fang Y. Electrocatalytic hydrogen evolution with a copper porphyrin bearing meso-( o-carborane) substituents. Chem Commun (Camb) 2023; 59:10777-10780. [PMID: 37593777 DOI: 10.1039/d3cc03104g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A newly designed copper complex of 5,15-bis(pentafluorophenyl)-10,20-bis(o-carborane)porphyrin (1) was synthesized and tested for the electrocatalytic hydrogen evolution reaction (HER). In acetonitrile, 1 was much more efficient than Cu 5,15-bis(pentafluorophenyl)-10,20-diphenylporphyrin (2) for electrocatalytic HER by shifting the catalytic wave to the anodic direction by 190 mV. In aqueous media, 1 also outperformed 2 by achieving higher current densities under smaller overpotentials. This enhancement was attributed to the aromatic and the strong electron-withdrawing properties of o-carborane groups. This work is significant to address the crucial effects of meso-(o-carborane) substituents of metal porphyrins on boosting the electrocatalytic HER.
Collapse
Affiliation(s)
- Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Guijun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuxin Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Shuai Nie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinrui Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhuo Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
20
|
Bulmer J, Durán-Chaves M, Long DM, Lipp J, Williams S, Trafford M, Pelton A, Shank J, Maruyama B, Drummy LF, Pasquali M, Koerner H, Haugan T. Self-Assembly of Uniaxial Fullerene Supramolecules Aligned within Carbon Nanotube Fibers. NANO LETTERS 2023. [PMID: 37442114 DOI: 10.1021/acs.nanolett.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The conductivity and strength of carbon nanotube (CNT) wires currently rival those of existing engineering materials; fullerene-based materials have not progressed similarly, despite their exciting transport properties such as superconductivity. This communication reveals a new mechanically robust wire of mutually aligned fullerene supramolecules self-assembled between CNT bundles, where the fullerene supramolecular internal crystal structure and outer surface are aligned and dispersed with the CNT bundles. The crystallinity, crystal dimensions, and other structural features of the fullerene supramolecular network are impacted by a number of important production processes such as fullerene concentration and postprocess annealing. The crystal spacing of the CNTs and fullerenes is not altered, suggesting that they are not exerting significant internal pressure on each other. In low concentrations, the addition of networked fullerenes makes the CNT wire mechanically stronger. More importantly, novel mutually aligned and networked fullerene supramolecules are now in a bulk self-supporting architecture.
Collapse
Affiliation(s)
- John Bulmer
- Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- National Research Council, Washington, D.C. 20001, United States
| | - Michelle Durán-Chaves
- Department of Chemical & Biomolecular Engineering, Department of Chemistry, Department of Materials Science & NanoEngineering, The Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Daniel M Long
- Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RX, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., 4401 Dayton Xenia Rd., Dayton, Ohio 45432, United States
| | - Jeremiah Lipp
- Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RX, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., 4401 Dayton Xenia Rd., Dayton, Ohio 45432, United States
| | - Steven Williams
- Department of Chemical & Biomolecular Engineering, Department of Chemistry, Department of Materials Science & NanoEngineering, The Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Mitchell Trafford
- Department of Chemical & Biomolecular Engineering, Department of Chemistry, Department of Materials Science & NanoEngineering, The Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Anthony Pelton
- Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RX, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., 4401 Dayton Xenia Rd., Dayton, Ohio 45432, United States
| | - Jared Shank
- Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RX, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., 4401 Dayton Xenia Rd., Dayton, Ohio 45432, United States
| | - Benji Maruyama
- Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RX, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Lawrence F Drummy
- Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RX, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matteo Pasquali
- Department of Chemical & Biomolecular Engineering, Department of Chemistry, Department of Materials Science & NanoEngineering, The Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Carbon Hub, Rice University, Houston, Texas 77005, United States
| | - Hilmar Koerner
- Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RX, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Timothy Haugan
- Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| |
Collapse
|
21
|
Che Z, Yuan Y, Qin J, Li P, Chen Y, Wu Y, Ding M, Zhang F, Cui M, Guo Y, Wang S. Progress of Nonmetallic Electrocatalysts for Oxygen Reduction Reactions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1945. [PMID: 37446461 DOI: 10.3390/nano13131945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
As a key role in hindering the large-scale application of fuel cells, oxygen reduction reaction has always been a hot issue and nodus. Aiming to explore state-of-art electrocatalysts, this paper reviews the latest development of nonmetallic catalysts in oxygen reduction reactions, including single atoms doped with carbon materials such as N, B, P or S and multi-doped carbon materials. Afterward, the remaining challenges and research directions of carbon-based nonmetallic catalysts are prospected.
Collapse
Affiliation(s)
- Zhongmei Che
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Yanan Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Jianxin Qin
- Qingdao Haiwang Paper Co., Ltd., 1218, Haiwang Road, Huangdao District, Qingdao 266431, China
| | - Peixuan Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Yulei Chen
- Qingdao Haiwang Paper Co., Ltd., 1218, Haiwang Road, Huangdao District, Qingdao 266431, China
| | - Yue Wu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Meng Ding
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Fei Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Min Cui
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Shuai Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, 3501, Daxue Road, Changqing District, Jinan 250353, China
| |
Collapse
|
22
|
Chhetri A, Karthick K, Karmakar A, Kundu S, Mitra J. Melamine-Based Hydrogen-bonded Systems as Organoelectrocatalysts for Water Oxidation Reaction. CHEMSUSCHEM 2023; 16:e202300220. [PMID: 36852710 DOI: 10.1002/cssc.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/22/2023] [Indexed: 06/10/2023]
Abstract
Applications of small organic molecules and hydrogen-bonded aggregates, instead of traditional transition-metal-based electrocatalysts, are gaining momentum for addressing the issue of low-cost generation of H2 to power a sustainable environment. Such systems offer the possibility to integrate desired functional moieties with predictive structural repetition for modulating their properties. Despite these advantages, hydrogen-bonded organic systems have largely remained unexplored, especially as electrocatalysts. Melamine and adipic acid-based hydrogen-bonded organic ionic (BMA) and co-crystal systems developed under varying temperatures are explored as electrocatalysts for water oxidation reaction (WOR). These systems are easily modifiable with precisely designed molecular architecture and judiciously positioned nitrogen atoms. Combined effect of charge-assisted hydrogen bonding stabilizes the ionic BMA system under corrosive alkaline conditions and augments its remarkable electrocatalytic WOR activity, achieving a current density of 10 mA cm-2 at an overpotential of 387 mV and Faradaic efficiency ∼94.5 %. The enhanced electrocatalytic ability of BMA is attributed to its hydrophilic nature, unique molecular composition with complementary hydrogen-bonded motifs and a high density of positively charged nitrogen atoms on the surface, that facilitates electrostatic interactions and accelerate charge and mass transport processes culminating in a turnover frequency of ∼0.024 s-1 . This work validates the potential of hydrogen-bonded molecular organo-electrocatalysts towards WOR.
Collapse
Affiliation(s)
- Ashis Chhetri
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, 364002, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, 201002, Ghaziabad, U.P., India
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, 3000, Melbourne, VIC, Australia
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, 201002, Ghaziabad, U.P., India
- Electrochemical Process Engineering (EPE) Division, CSIR-CECRI, 630003, Karaikudi, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, 201002, Ghaziabad, U.P., India
- Electrochemical Process Engineering (EPE) Division, CSIR-CECRI, 630003, Karaikudi, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, 201002, Ghaziabad, U.P., India
- Electrochemical Process Engineering (EPE) Division, CSIR-CECRI, 630003, Karaikudi, Tamil Nadu, India
| | - Joyee Mitra
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, 364002, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, 201002, Ghaziabad, U.P., India
| |
Collapse
|
23
|
Zhai Q, Xia Z, Dai L. Unifying the origin of catalytic activities for carbon-based metal-free electrocatalysts. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
24
|
Chen J, Aliasgar M, Zamudio FB, Zhang T, Zhao Y, Lian X, Wen L, Yang H, Sun W, Kozlov SM, Chen W, Wang L. Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution. Nat Commun 2023; 14:1711. [PMID: 36973303 PMCID: PMC10042996 DOI: 10.1038/s41467-023-37404-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Membrane-based alkaline water electrolyser is promising for cost-effective green hydrogen production. One of its key technological obstacles is the development of active catalyst-materials for alkaline hydrogen-evolution-reaction (HER). Here, we show that the activity of platinum towards alkaline HER can be significantly enhanced by anchoring platinum-clusters onto two-dimensional fullerene nanosheets. The unusually large lattice distance (~0.8 nm) of the fullerene nanosheets and the ultra-small size of the platinum-clusters (~2 nm) leads to strong confinement of platinum clusters accompanied by pronounced charge redistributions at the intimate platinum/fullerene interface. As a result, the platinum-fullerene composite exhibits 12 times higher intrinsic activity for alkaline HER than the state-of-the-art platinum/carbon black catalyst. Detailed kinetic and computational investigations revealed the origin of the enhanced activity to be the diverse binding properties of the platinum-sites at the interface of platinum/fullerene, which generates highly active sites for all elementary steps in alkaline HER, particularly the sluggish Volmer step. Furthermore, encouraging energy efficiency of 74% and stability were achieved for alkaline water electrolyser assembled using platinum-fullerene composite under industrially relevant testing conditions.
Collapse
Affiliation(s)
- Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Mohammed Aliasgar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Fernando Buendia Zamudio
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Tianyu Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Yilin Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Xu Lian
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Lan Wen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Haozhou Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore.
| | - Wei Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
- Centre for Hydrogen Innovations, National University of Singapore, 1 Engineering Drive 3, Singapore, Singapore
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, 1 Engineering Drive 3, Singapore, Singapore.
| |
Collapse
|
25
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
26
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
27
|
Tan D, Xiong H, Zhang T, Fan X, Wang J, Xu F. Recent progress in noble-metal-free electrocatalysts for alkaline oxygen evolution reaction. Front Chem 2022; 10:1071274. [PMID: 36569965 PMCID: PMC9772454 DOI: 10.3389/fchem.2022.1071274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The practical application of splitting water to generate hydrogen is to a large extent hindered by an oxygen evolution reaction (OER) process. Electrocatalysts with low-cost, high activity, and durability are essential for the low kinetic threshold of the OER. Despite the high active performances of noble metal compound electrocatalysts like IrO2 and RuO2, they are heavily restricted by the high cost and scarcity of noble metal elements. In this context, noble-metal-free electrocatalysts have acquired increasing significance in recent years. So far, a broad spectrum of noble-metal-free electrocatalysts has been developed for improved OER performance. In this review, three types of electrolysis and some evaluation criteria are introduced, followed by recent progress in designing and synthesizing noble-metal-free alkaline OER electrocatalysts, with the classification of metal oxides/(oxy)hydroxides, carbon-based materials, and metal/carbon hybrids. Finally, perspectives are also provided on the future development of the alkaline OER on active sites and stability of electrocatalysts.
Collapse
Affiliation(s)
- Deming Tan
- School of Mechanical Engineering, Chengdu University, Chengdu, China,*Correspondence: Deming Tan, ; Fei Xu,
| | - Hao Xiong
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Tao Zhang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xuelin Fan
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Junjie Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu, China
| | - Fei Xu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, China,*Correspondence: Deming Tan, ; Fei Xu,
| |
Collapse
|
28
|
He S, Wu M, Li S, Jiang Z, Hong H, Cloutier SG, Yang H, Omanovic S, Sun S, Zhang G. Research Progress on Graphite-Derived Materials for Electrocatalysis in Energy Conversion and Storage. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248644. [PMID: 36557778 PMCID: PMC9782663 DOI: 10.3390/molecules27248644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
High-performance electrocatalysts are critical to support emerging electrochemical energy storage and conversion technologies. Graphite-derived materials, including fullerenes, carbon nanotubes, and graphene, have been recognized as promising electrocatalysts and electrocatalyst supports for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and carbon dioxide reduction reaction (CO2RR). Effective modification/functionalization of graphite-derived materials can promote higher electrocatalytic activity, stability, and durability. In this review, the mechanisms and evaluation parameters for the above-outlined electrochemical reactions are introduced first. Then, we emphasize the preparation methods for graphite-derived materials and modification strategies. We further highlight the importance of the structural changes of modified graphite-derived materials on electrocatalytic activity and stability. Finally, future directions and perspectives towards new and better graphite-derived materials are presented.
Collapse
Affiliation(s)
- Shuaijie He
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Mingjie Wu
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, QC J3X 1P7, Canada
- Correspondence: (M.W.); (H.Y.); (S.O.); (G.Z.)
| | - Song Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhiyi Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hanlie Hong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Sylvain G. Cloutier
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC H3C 1K3, Canada
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Correspondence: (M.W.); (H.Y.); (S.O.); (G.Z.)
| | - Sasha Omanovic
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
- Correspondence: (M.W.); (H.Y.); (S.O.); (G.Z.)
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, QC J3X 1P7, Canada
| | - Gaixia Zhang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC H3C 1K3, Canada
- Correspondence: (M.W.); (H.Y.); (S.O.); (G.Z.)
| |
Collapse
|
29
|
Bao L, Xu T, Guo K, Huang W, Lu X. Supramolecular Engineering of Crystalline Fullerene Micro-/Nano-Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200189. [PMID: 35213750 DOI: 10.1002/adma.202200189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Fullerenes are a molecular form of carbon allotrope and bear certain solubility, which allow the supramolecular assembly of fullerene molecules-also together with other complementary compound classes-via solution-based wet processes. By well-programmed organizing these building blocks and precisely modulating over the assembly process, supramolecularly assembled fullerene micro-/nano-architectures (FMNAs) are obtained. These FMNAs exhibit remarkably enhanced functions as well as tunable morphologies and dimensions at different size scales, leading to their applications in diverse fields. In this review, both traditional and newly developed assembly strategies are reviewed, with an emphasis on the morphological evolution mechanism of FMNAs. The discussion is then focused on how to precisely regulate the dimensions and morphologies to generate functional FMNAs through solvent engineering, co-crystallization, surfactant incorporation, or post-fabrication treatment. In addition to C60 -based FMNAs, this review particularly focuses on recently fabricated FMNAs comprising higher fullerenes (e.g., C70 ) and metallofullerenes. Meanwhile, an overview of the property modulation is presented and multidisciplinary applications of FMNAs in various fields are summarized, including sensors, optoelectronics, biomedicines, and energy. At the end, the prospects for future research, application opportunities, and challenges associated with FMNAs are proposed.
Collapse
Affiliation(s)
- Lipiao Bao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ting Xu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kun Guo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wenhuan Huang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xing Lu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
30
|
Paul A, Radinović K, Hazra S, Mladenović D, Šljukić B, Khan RA, Guedes da Silva MFC, Pombeiro AJL. Electrocatalytic Behavior of an Amide Functionalized Mn(II) Coordination Polymer on ORR, OER and HER. Molecules 2022; 27:7323. [PMID: 36364154 PMCID: PMC9655238 DOI: 10.3390/molecules27217323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 10/29/2023] Open
Abstract
The new 3D coordination polymer (CP) [Mn(L)(HCOO)]n (Mn-CP) [L = 4-(pyridin-4-ylcarbamoyl)benzoate] was synthesised via a hydrothermal reaction using the pyridyl amide functionalized benzoic acid HL. It was characterized by elemental, FT-IR spectroscopy, single-crystal and powder X-ray diffraction (PXRD) analyses. Its structural features were disclosed by single-crystal X-ray diffraction analysis, which revealed a 3D structure with the monoclinic space group P21/c. Its performance as an electrocatalyst for oxygen reduction (ORR), oxygen evolution (OER), and hydrogen evolution (HER) reactions was tested in both acidic (0.5 M H2SO4) and alkaline (0.1 M KOH) media. A distinct reduction peak was observed at 0.53 V vs. RHE in 0.1 M KOH, which corresponds to the oxygen reduction, thus clearly demonstrating the material's activity for the ORR. Tafel analysis revealed a Tafel slope of 101 mV dec-1 with mixed kinetics of 2e- and 4e- pathways indicated by the Koutecky-Levich analysis. Conversely, the ORR peak was not present in 0.5 M H2SO4 indicating no activity of Mn-CP for this reaction in acidic media. In addition, Mn-CP demonstrated a noteworthy activity toward OER and HER in acidic media, in contrast to what was observed in 0.1 M KOH.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Kristina Radinović
- University of Belgrade, Faculty of Physical Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Susanta Hazra
- Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Dušan Mladenović
- University of Belgrade, Faculty of Physical Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Biljana Šljukić
- University of Belgrade, Faculty of Physical Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
- Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Maria Fátima C. Guedes da Silva
- Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
31
|
Wang S, Zhao R, Zheng T, Lu Z, Fang Y, Xie H, Wang W, Xue W. Rational Design of a Low-Dimensional and Metal-free Heterostructure for Efficient Water Oxidation: DFT and Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12562-12569. [PMID: 36191260 DOI: 10.1021/acs.langmuir.2c02011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A nitrogen-doped fullerene dimer is synthesized and compounded with multi-walled carbon nanotubes (MWCNTs) to construct a low-dimensional and metal-free 0D-1D heterostructure for electrocatalytic water oxidation. The (C59N)2/MWCNTs heterostructure exhibits a highly efficient performance, as verified by both first-principles density functional theory and experimental studies. The *O → *OOH process is confirmed as the rate-determining step of water oxidation. The negatively charged N-doping leads to electronic redistribution and intermolecular charge transfer and thus reduces the uphill free energies of intermediates on the (C59N)2/MWCNTs interface. Therefore, the (C59N)2/MWCNTs heterostructure has great potential to emit light and heat in metal-free-based electrocatalytic water oxidation.
Collapse
Affiliation(s)
- Shuai Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Rui Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Tian Zheng
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang621010, China
| | - Zheng Lu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yuan Fang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou310003, China
| | - Wenjian Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Weidong Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| |
Collapse
|
32
|
Sahoo DP, Das KK, Mansingh S, Sultana S, Parida K. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Zhang W, Guillén-Soler M, Moreno-Da Silva S, López-Moreno A, González LR, Giménez-López MDC, Pérez EM. Mechanical interlocking of SWNTs with N-rich macrocycles for efficient ORR electrocatalysis. Chem Sci 2022; 13:9706-9712. [PMID: 36091908 PMCID: PMC9400660 DOI: 10.1039/d2sc02346f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/23/2022] [Indexed: 12/05/2022] Open
Abstract
Substitutional N-doping of single-walled carbon nanotubes is a common strategy to enhance their electrocatalytic properties in the oxygen-reduction reaction (ORR). Here, we explore the encapsulation of SWNTs within N-rich macrocycles as an alternative strategy to display electroactive sites on the surface of SWNTs. We design and synthesize four types of mechanically interlocked derivatives of SWNTs (MINTs) by combining two types of macrocycles and two types of SWNT samples. Comprehensive electrochemical characterization of these MINTs and their reference SWNTs allows us to establish structure-activity relationships. First, we show that all MINT samples are superior electrocatalysts compared to pristine SWNTs, which serves as general validation of our strategy. Secondly, we show that macrocycles displaying both N atoms and carbonyl groups perform better than those with N atoms only. Finally, we demonstrate that a tighter fit between macrocycles and SWNTs results in enhanced catalytic activity and stability, most likely due to a more effective charge-transfer between the SWNTs and the macrocycles. These results, focusing on the ORR as a testbed, show the possibility of understanding electrocatalytic performance of SWNTs at the molecular level and thus enable the design of more active and more stable catalysts in the future.
Collapse
Affiliation(s)
| | - Melanie Guillén-Soler
- CIQUS, Universidad de Santiago de Compostela Rua Jenaro de la Fuente Santiago de Compostela 15782 Spain
| | | | | | - Luisa R González
- Departamento de Química Inorgánica, Universidad Complutense de Madrid Madrid 28040 Spain
| | | | | |
Collapse
|
34
|
Feng L, Zhang L, Chu S, Zhang S, Chen X, Gong Y, Du Z, Mao G, Wang H. One-pot fabrication of nanozyme with 2D/1D heterostructure by in-situ growing MoS2 nanosheets onto single-walled carbon nanotubes with enhanced catalysis for colorimetric detection of glutathione. Anal Chim Acta 2022; 1221:340083. [DOI: 10.1016/j.aca.2022.340083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/28/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
|
35
|
Chronopoulos DD, Stangel C, Scheibe M, Čépe K, Tagmatarchis N, Otyepka M. Electrocatalytic activity for proton reduction by a covalent non-metal graphene-fullerene hybrid. Chem Commun (Camb) 2022; 58:8396-8399. [PMID: 35792707 PMCID: PMC9319450 DOI: 10.1039/d2cc02272a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
Abstract
A non-metal covalent hybrid of fullerene and graphene was synthesized in one step via fluorographene chemistry. Its electrocatalytic performance for the hydrogen evolution reaction and durability was ascribed to intrahybrid charge-transfer phenomena, exploiting the electron-accepting properties of C60 and the high conductivity and large surface area of graphene.
Collapse
Affiliation(s)
- Demetrios D Chronopoulos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | - Magdalena Scheibe
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
| | - Klára Čépe
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
36
|
Ruan QD, Liu LL, Wu DH, Feng JJ, Zhang L, Wang AJ. Cobalt phosphide nanoparticles encapsulated in manganese, nitrogen co-doped porous carbon nanosheets with rich nanoholes for high-efficiency oxygen reduction reaction. J Colloid Interface Sci 2022; 627:630-639. [PMID: 35872420 DOI: 10.1016/j.jcis.2022.07.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023]
Abstract
It is a challenging task to research oxygen reduction electrocatalysts with cost-effectiveness, high-performance and ultra-stability to replace traditional noble metal catalysts in renewable energy conversion/storage devices. Herein, cobalt phosphide (Co2P) nanoparticles encapsulated in Mn, N co-doped porous carbon nanosheets with abundant nanoholes (Co2P/Mn,N-PCNS) were prepared by a alizarin complexone coordination regulated pyrolysis at 800 °C. In the controlled experiments, the pyrolysis temperature and metal types were investigated in details. The resultant catalyst exhibited rapid mass/charge transfer and superior oxygen reduction reaction (ORR) performance (Eonset = 0.96 V; E1/2 = 0.86 V vs RHE), surpassing commercial Pt/C. This work presents some constructive guidelines for synthesis of appealing ORR electrocatalysts in renewable energy technology.
Collapse
Affiliation(s)
- Qi-Dong Ruan
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling-Ling Liu
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Dong-Hui Wu
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
37
|
Hu C, Hu Y, Zhu A, Li M, Wei J, Zhang Y, Xie W. Several Key Factors for Efficient Electrocatalytic Water Splitting: Active Site Coordination Environment, Morphology Changes and Intermediates Identification. Chemistry 2022; 28:e202200138. [DOI: 10.1002/chem.202200138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Cejun Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Aonan Zhu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Mingming Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Junli Wei
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Yuying Zhang
- School of Medicine Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| |
Collapse
|
38
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
39
|
Facile synthesis of defect-rich Fe-N-C hybrid from fullerene/ferrotetraphenylporphyrin as efficient oxygen reduction electrocatalyst for Zn-air battery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Guo Z, Cheng M, Ren W, Wang Z, Zhang M. Treated activated carbon as a metal-free catalyst for effectively catalytic reduction of toxic hexavalent chromium. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128416. [PMID: 35149503 DOI: 10.1016/j.jhazmat.2022.128416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
In this work, activated carbon treated in N2 atmosphere, as a non-metallic catalyst, exhibits excellent catalytic performance in reduction of Cr (VI) to Cr (III) using HCOOH as the reducing agent at room temperature. A series of characterizations and control experiments were carried out to deduce the possible reaction mechanism. The results showed that the improved catalytic performance can be attributed to the enhanced graphitization degree and basic sites such as pyrone-like, which favor electron transferring and activation of reactant. The reaction rate constant observed herein for the C-800 was 22 and 6 times more than that for C-0 and Pd/C catalyst, respectively. In addition, C-800 showed good recycle performance, and no loss of activity was observed after 5 cycles. This study broadens the application of nonmetallic catalyst and provides an easy-available and cost-effective catalytic material for removing toxic Cr (VI).
Collapse
Affiliation(s)
- Zhenbo Guo
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ming Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Wenqiang Ren
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin 300387, PR China.
| | - Minghui Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
41
|
Jiang X, Wang Y, Jia B, Qu X, Qin M. Prediction of Oxygen Evolution Activity for NiCoFe Oxide Catalysts via Machine Learning. ACS OMEGA 2022; 7:14160-14164. [PMID: 35559173 PMCID: PMC9089339 DOI: 10.1021/acsomega.2c00776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Transition metal (such as Fe, Co, and Ni) oxides are excellent systems in the oxygen evolution reaction (OER) for the development of non-noble-metal-based catalysts. However, direct experimental evidence and the physical mechanism of a quantitative relationship between physical factors and oxygen evolution activity are still lacking, which makes it difficult to theoretically and accurately predict the oxygen evolution activity. In this work, a data-driven method for the prediction of overpotential (OP) for (Ni-Fe-Co)O x catalysts is proposed via machine learning. The physical features that are more related to the OP for the OER have been constructed and analyzed. The random forest regression model works exceedingly well on OP prediction with a mean relative error of 1.20%. The features based on first ionization energies (FIEs) and outermost d-orbital electron numbers (DEs) are the principal factors and their variances (δFIE and δDE) exhibit a linearly decreasing correlation with OP, which gives direct guidance for an OP-oriented component design. This method provides novel and promising insights for the prediction of oxygen evolution activity and physical factor analysis in (Ni-Fe-Co)O x catalysts.
Collapse
Affiliation(s)
- Xue Jiang
- Beijing
Advanced Innovation Center for Materials Genome Engineering, Collaborative
Innovation Center of Steel Technology, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Yong Wang
- Institute
for Advanced Materials and Technology, University
of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Baorui Jia
- Institute
for Advanced Materials and Technology, University
of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Xuanhui Qu
- Institute
for Advanced Materials and Technology, University
of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Mingli Qin
- Institute
for Advanced Materials and Technology, University
of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
42
|
Kong F, Cui X, Huang Y, Yao H, Chen Y, Tian H, Meng G, Chen C, Chang Z, Shi J. N-Doped Carbon Electrocatalyst: Marked ORR Activity in Acidic Media without the Contribution from Metal Sites? Angew Chem Int Ed Engl 2022; 61:e202116290. [PMID: 35075773 DOI: 10.1002/anie.202116290] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Fe-N-C electrocatalysts have been demonstrated to be the most promising substitutes for benchmark Pt/C catalysts for the oxygen reduction reaction (ORR). Herein, we report that N-doped carbon materials with trace amounts of iron (0-0.08 wt. %) show excellent ORR activity and durability comparable and even superior to those of Pt/C in both alkaline and acidic media without significant contribution by the metal sites. Such an N-doped carbon (denoted as N-HPCs) features a hollow and hierarchically porous architecture, and more importantly, a noncovalently bonded N-deficient/N-rich heterostructure providing the active sites for oxygen adsorption and activation owing to the efficient electron transfer between the layers. The primary Zn-air battery using N-HPCs as the cathode delivers a much higher power density of 158 mW cm-2 , and the maximum power density in the H2 -O2 fuel cell reaches 486 mW cm-2 , which is comparable to and even better than those using conventional Fe-N-C catalysts at cathodes.
Collapse
Affiliation(s)
- Fantao Kong
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xiangzhi Cui
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310021, P. R. China
| | - Yifan Huang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Heliang Yao
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yafeng Chen
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Han Tian
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Ge Meng
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chang Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziwei Chang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
43
|
|
44
|
Kong F, Cui X, Huang Y, Yao H, Chen Y, Tian H, Meng G, Chen C, Chang Z, Shi J. N‐doped carbon electrocatalyst: marked ORR activity in acidic media without the contribution by metal sites? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fantao Kong
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Lab of High Performance Ceramics and Superfine Microstructure 1295 Dingxi Road shanghai CHINA
| | - Xiangzhi Cui
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Lab of High Performance Ceramics and Superfine Microstructure 1295 Dingxi Road shanghai CHINA
| | - Yifan Huang
- Shanghai Normal University College of Chemistry and Materials Science 100 Guilin Road shanghai CHINA
| | - Heliang Yao
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Lab of High Performance Ceramics and Superfine Microstructure 1295 Dingxi Road shanghai CHINA
| | - Yafeng Chen
- University of Science and Technology Beijing Collaborative Innovation Center of Steel Technology 30 Xueyuan Road Beijing CHINA
| | - Han Tian
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Lab of High Performance Ceramics and Superfine Microstructure 1295 Dingxi Road shanghai CHINA
| | - Ge Meng
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Lab of High Performance Ceramics and Superfine Microstructure 1295 Dingxi Road shanghai CHINA
| | - Chang Chen
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Lab of High Performance Ceramics and Superfine Microstructure 1295 Dingxi Road shanghai CHINA
| | - Ziwei Chang
- ShanghaiTech University School of Physical Science and Technology 393 Huaxia Middle Road shanghai CHINA
| | - Jianlin Shi
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure 1295 Ding-Xi Road 200050 Shanghai CHINA
| |
Collapse
|
45
|
Ahsan MA, He T, Noveron JC, Reuter K, Puente-Santiago AR, Luque R. Low-dimensional heterostructures for advanced electrocatalysis: an experimental and computational perspective. Chem Soc Rev 2022; 51:812-828. [PMID: 35022644 DOI: 10.1039/d1cs00498k] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Low dimensional electrocatalytic heterostructures have recently attracted significant attention in the catalysis community due to their highly tuneable interfaces and exciting electronic features, opening up new possibilities for effective nanometric control of both the charge carriers and energetic states of several intermediate catalytic species. In-depth understanding of electrocatalytic routes at the interface between two or more low-dimensional nanostructures has triggered the development of heterostructure nanocatalysts with extraordinary properties for water splitting reactions, NRR and CO2RR. This tutorial review provides an overview of the most recent advances in synthetic strategies for 0D-1D, 0D-2D, and 2D-2D nanoheterostructures, discussing key aspects of their electrocatalytic performances from experimental and computational perspectives as well as their applications towards the development of overall water splitting and Zn-air battery devices.
Collapse
Affiliation(s)
- Md Ariful Ahsan
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Tianwei He
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Juan C Noveron
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. .,Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Alain R Puente-Santiago
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain.,Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russia
| |
Collapse
|
46
|
Ding J, Yue R, Zhu X, Liu W, Pei H, He S, Mo Z. Flower-like Co3Ni1B nanosheets based on reduced graphene oxide (rGO) as an efficient electrocatalyst for the oxygen evolution reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj02165j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flower-like Co3Ni1B nanosheets based on a reduced graphene oxide electrocatalyst exhibit a better OER performance than commercial RuO2.
Collapse
Affiliation(s)
- Junxia Ding
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ruimei Yue
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaolun Zhu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wentong Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
47
|
Jia HL, Li HC, Zhao J, Guan MY. Hyperdispersed ruthenium nanoparticles anchored on S/N co-doped carbon nanotubes as an efficient HER electrocatalyst. NEW J CHEM 2022. [DOI: 10.1039/d2nj02869g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hyperdispersed ruthenium nanoparticles anchored on S/N co-doped carbon nanotubes show the same high-performance HER catalytic activity as commercial Pt/C.
Collapse
Affiliation(s)
- Hai-Lang Jia
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Analysis and Testing Center of Jiangsu University of Technology, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Hong-Cheng Li
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Analysis and Testing Center of Jiangsu University of Technology, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Jiao Zhao
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Analysis and Testing Center of Jiangsu University of Technology, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Ming-Yun Guan
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Analysis and Testing Center of Jiangsu University of Technology, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
48
|
Ahmed I, Biswas R, Singh H, Patil RA, Varshney R, Patra D, Ma YR, Haldar KK. Green synthesis of hybrid papain/Ni 3(PO 4) 2 rods electrocatalyst for enhanced oxygen evolution reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj03700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An eco-friendly approach was used to produce the binary papain/Ni3(PO4)2 in the presence of papain, which is derived from green papaya fruits. Rod shape Papain/Ni3(PO4)2 showed excellent OER activities in alkaline, neutral and acidic media.
Collapse
Affiliation(s)
- Imtiaz Ahmed
- Department of Chemistry, Central University of Punjab, Bathinda, 151401, India
| | | | - Harjinder Singh
- Department of Chemistry, Central University of Punjab, Bathinda, 151401, India
| | - Ranjit A. Patil
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Rohit Varshney
- Institute of Nano Science and Technology, Mohali, 160062, India
| | - Debabrata Patra
- Institute of Nano Science and Technology, Mohali, 160062, India
| | - Yuan-Ron Ma
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | | |
Collapse
|
49
|
Hu L, Tian L, Ding X, Wang X, Wang X, Qin Y, Gu W, Shi L, Zhu C. p–d hybridization in CoFe LDH nanoflowers for efficient oxygen evolution electrocatalysis. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01688e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic ligands can induce p–d orbital hybridization at the interface of CoFe LDH, resulting in a downshift of the d-band center of CoFe LDH and the optimization of the binding strength of intermediates during the OER.
Collapse
Affiliation(s)
- Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liliang Tian
- State key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Fujian Shuikou Power Generation Group Corp, Fuzhou 350004, P.R. China
| | - Xiang Ding
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xia Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiaosi Wang
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ying Qin
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenling Gu
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Le Shi
- State key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chengzhou Zhu
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
50
|
Zoller F, Häringer S, Böhm D, Luxa J, Sofer Z, Fattakhova-Rohlfing D. Carbonaceous Oxygen Evolution Reaction Catalysts: From Defect and Doping-Induced Activity over Hybrid Compounds to Ordered Framework Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007484. [PMID: 33942507 DOI: 10.1002/smll.202007484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Oxygen evolution reaction (OER) is expected to be of great importance for the future energy conversion and storage in form of hydrogen by water electrolysis. Besides the traditional noble-metal or transition metal oxide-based catalysts, carbonaceous electrocatalysts are of great interest due to their huge structural and compositional variety and unrestricted abundance. This review provides a summary of recent advances in the field of carbon-based OER catalysts ranging from "pure" or unintentionally doped carbon allotropes over heteroatom-doped carbonaceous materials and carbon/transition metal compounds to metal oxide composites where the role of carbon is mainly assigned to be a conductive support. Furthermore, the review discusses the recent developments in the field of ordered carbon framework structures (metal organic framework and covalent organic framework structures) that potentially allow a rational design of heteroatom-doped 3D porous structures with defined composition and spatial arrangement of doping atoms to deepen the understanding on the OER mechanism on carbonaceous structures in the future. Besides introducing the structural and compositional origin of electrochemical activity, the review discusses the mechanism of the catalytic activity of carbonaceous materials, their stability under OER conditions, and potential synergistic effects in combination with metal (or metal oxide) co-catalysts.
Collapse
Affiliation(s)
- Florian Zoller
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
- Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, Duisburg, 47057, Germany
| | - Sebastian Häringer
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU Munich), Butenandtstrasse 5-13 (E), Munich, 81377, Germany
| | - Daniel Böhm
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Dina Fattakhova-Rohlfing
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
- Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, Duisburg, 47057, Germany
| |
Collapse
|