1
|
Song J, Zhao W, Zhou L, Meng H, Wang H, Guan P, Li M, Zou Y, Feng W, Zhang M, Zhu L, He P, Liu F, Zhang Y. Rational Materials and Structure Design for Improving the Performance and Durability of High Temperature Proton Exchange Membranes (HT-PEMs). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303969. [PMID: 37653601 PMCID: PMC10602569 DOI: 10.1002/advs.202303969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Hydrogen energy as the next-generation clean energy carrier has attracted the attention of both academic and industrial fields. A key limit in the current stage is the operation temperature of hydrogen fuel cells, which lies in the slow development of high-temperature and high-efficiency proton exchange membranes. Currently, much research effort has been devoted to this field, and very innovative material systems have been developed. The authors think it is the right time to make a short summary of the high-temperature proton exchange membranes (HT-PEMs), the fundamentals, and developments, which can help the researchers to clearly and efficiently gain the key information. In this paper, the development of key materials and optimization strategies, the degradation mechanism and possible solutions, and the most common morphology characterization techniques as well as correlations between morphology and overall properties have been systematically summarized.
Collapse
Affiliation(s)
- Jingnan Song
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Wutong Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Libo Zhou
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Hongjie Meng
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Haibo Wang
- Shanghai Maxim Fuel Cell Technology CompanyShanghai201401P. R. China
| | - Panpan Guan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Min Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials CompanyZiboShandong256401P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials CompanyZiboShandong256401P. R. China
| | - Ming Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Ping He
- Shanghai Maxim Fuel Cell Technology CompanyShanghai201401P. R. China
| | - Feng Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yongming Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|
2
|
He H, Zhu Y, Li T, Song S, Zhai L, Li X, Wu L, Li H. Supramolecular Anchoring of Polyoxometalate Amphiphiles into Nafion Nanophases for Enhanced Proton Conduction. ACS NANO 2022; 16:19240-19252. [PMID: 36315623 DOI: 10.1021/acsnano.2c08614] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Advanced proton exchange membranes (PEMs) are highly desirable in emerging sustainable energy technology. However, the further improvement of commercial perfluorosulfonic acid PEMs represented by Nafion is hindered by the lack of precise modification strategy due to their chemical inertness and low compatibility. Here, we report the robust assembly of polyethylene glycol grafted polyoxometalate amphiphile (GSiW11) into the ionic nanophases of Nafion, which largely enhances the comprehensive performance of Nafion. GSiW11 can coassemble with Nafion through multiple supramolecular interactions and realize a stable immobilization. The incorporation of GSiW11 can increase the whole proton content in the system and induce the hydrated ionic nanophase to form a wide channel for proton transport; meanwhile, GSiW11 can reinforce the Nafion ionic nanophase by noncovalent cross-linking. Based on these synergistic effects, the hybrid PEMs show multiple enhancements in proton conductivity, tensile strength, and fuel cell power density, which are all superior to the pristine Nafion. This work demonstrates the intriguing advantage of molecular nanoclusters as supramolecular enhancers to develop high-performance electrolyte materials.
Collapse
Affiliation(s)
- Haibo He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Youliang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Tingting Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Shihao Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Liang Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| |
Collapse
|
3
|
Eskandari H, Paul DK, Young AP, Karan K. Humidity-Dependent Hydration and Proton Conductivity of PFSA Ionomer Thin Films at Fuel-Cell-Relevant Temperatures: Effect of Ionomer Equivalent Weight and Side-Chain Characteristics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50762-50772. [PMID: 36342365 DOI: 10.1021/acsami.2c12667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Studies on the hydration properties, proton conductivity, and water content of perfluorinated ionomer thin films at temperatures relevant to fuel cell operation temperatures (around 80 °C) and the effect of ionomer chemistry are scarce. In this work, we report the water content and proton conductivity properties of thin-film ionomers (30 nm) at 80 °C over a wide range of relative humidity (0-90%) for seven different ionomers differing in the side-chain structure, including the number of protogenic groups, with the equivalent weight ranging from 620 to 1100 g/mol of sulfonic acid. The results show that the acid content or equivalent weight of the ionomer is the strongest determinant of both the swelling and the proton conductivity of ionomer films at a given relative humidity. The molar water content (λ) of ionomer films normalized to the molar protogenic group is observed to be equivalent-weight-dependent, implying that the affinity for water is acid-content-dependent. At high relative humidity conditions (>70%) pertinent to fuel cell operations, the proton conductivity of low-equivalent-weight ionomers was higher than that of higher-equivalent-weight ionomers. However, upon correlating the proton conductivity with molar water content (λ), the differences reduce dramatically, highlighting that water content is the controlling factor for proton conduction. Significantly higher values of both water content and proton conductivity are observed at 80 °C compared to those at 30 °C, implying that room temperature data are not reliable for estimating ionomer properties in the fuel cell catalyst layer.
Collapse
Affiliation(s)
- Hamideh Eskandari
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Calgary, AlbertaT2N 1N4, Canada
| | - Devproshad K Paul
- Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, British ColumbiaV5J 5J8, Canada
| | - Alan P Young
- Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, British ColumbiaV5J 5J8, Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Calgary, AlbertaT2N 1N4, Canada
| |
Collapse
|
4
|
|
5
|
Crothers AR, Kusoglu A, Radke CJ, Weber AZ. Influence of Mesoscale Interactions on Proton, Water, and Electrokinetic Transport in Solvent-Filled Membranes: Theory and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10362-10374. [PMID: 35969508 DOI: 10.1021/acs.langmuir.2c00706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transport of protons and water through water-filled, phase-separated cation-exchange membranes occurs through a network of interconnected nanoscale hydrophilic aqueous domains. This paper uses numerical simulations and theory to explore the role of the mesoscale network on water, proton, and electrokinetic transport in perfluorinated sulfonic acid (PFSA) membranes, pertinent to electrochemical energy-conversion devices. Concentrated-solution theory describes microscale transport. Network simulations model mesoscale effects and ascertain macroscopic properties. An experimentally consistent 3D Voronoi-network topology characterizes the interconnected channels in the membrane. Measured water, proton, and electrokinetic transport properties from literature validate calculations of macroscopic properties from network simulations and from effective-medium theory. The results demonstrate that the hydrophilic domain size affects the various microscale, domain-level transport modes dissimilarly, resulting in different distributions of microscale coefficients for each mode of transport. As a result, the network mediates the transport of species nonuniformly with dissimilar calculated tortuosities for water, proton, and electrokinetic transport coefficients (i.e., 4.7, 3.0, and 6.1, respectively, at a water content of 8 H2O molecules per polymer charge equivalent). The dominant water-transport pathways across the membrane are different than those taken by the proton cation. Finally, the distribution of transport properties across the network induces local electrokinetic flows that couple water and proton transport; specifically, local electrokinetic transport induces water chemical-potential gradients that decrease macroscopic conductivity by up to a factor of 3. Macroscopic proton, water, and electrokinetic transport coefficients depend on the collective microscale transport properties of all modes of transport and their distribution across the hydrophilic domain network.
Collapse
Affiliation(s)
- Andrew R Crothers
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Ahmet Kusoglu
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Clayton J Radke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Adam Z Weber
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| |
Collapse
|
6
|
Zhu Z, Paddison SJ. Perspective: Morphology and ion transport in ion-containing polymers from multiscale modeling and simulations. Front Chem 2022; 10:981508. [PMID: 36059884 PMCID: PMC9437359 DOI: 10.3389/fchem.2022.981508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
Ion-containing polymers are soft materials composed of polymeric chains and mobile ions. Over the past several decades they have been the focus of considerable research and development for their use as the electrolyte in energy conversion and storage devices. Recent and significant results obtained from multiscale simulations and modeling for proton exchange membranes (PEMs), anion exchange membranes (AEMs), and polymerized ionic liquids (polyILs) are reviewed. The interplay of morphology and ion transport is emphasized. We discuss the influences of polymer architecture, tethered ionic groups, rigidity of the backbone, solvents, and additives on both morphology and ion transport in terms of specific interactions. Novel design strategies are highlighted including precisely controlling molecular conformations to design highly ordered morphologies; tuning the solvation structure of hydronium or hydroxide ions in hydrated ion exchange membranes; turning negative ion-ion correlations to positive correlations to improve ionic conductivity in polyILs; and balancing the strength of noncovalent interactions. The design of single-ion conductors, well-defined supramolecular architectures with enhanced one-dimensional ion transport, and the understanding of the hierarchy of the specific interactions continue as challenges but promising goals for future research.
Collapse
Affiliation(s)
| | - Stephen J. Paddison
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
7
|
Yu W, Zhang K, Zhang J, Liang X, Ge X, Ge Z, Wei C, Song W, Xu T, Wu L. Efficient lamellar two‐dimensional proton channels derived from dipole interactions in a polyelectrolyte membrane. AIChE J 2022. [DOI: 10.1002/aic.17731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Weisheng Yu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Kaiyu Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Jianjun Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Xian Liang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Xiaolin Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Zijuan Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Chengpeng Wei
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Wanjie Song
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Tongwen Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Liang Wu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| |
Collapse
|
8
|
Yu W, Ge Z, Zhang K, Liang X, Ge X, Wang H, Li M, Shen X, Xu Y, Wu L, Xu T. Development of a High-Performance Proton Exchange Membrane: From Structural Optimization to Quantity Production. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weisheng Yu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Zijuan Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Kaiyu Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Liang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Xiaolin Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Ming Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xianhe Shen
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Yan Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Liang Wu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Affiliation(s)
- Brian A. Collins
- Physics and Astronomy Washington State University Pullman Washington USA
| | - Eliot Gann
- Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|
10
|
Zhong W, Liu F, Wang C. Probing morphology and chemistry in complex soft materials with in situresonant soft x-ray scattering. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:313001. [PMID: 34140434 DOI: 10.1088/1361-648x/ac0194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Small angle scattering methodologies have been evolving at fast pace over the past few decades due to the ever-increasing demands for more details on the complex nanostructures of multiphase and multicomponent soft materials like polymer assemblies and biomaterials. Currently, element-specific and contrast variation techniques such as resonant (elastic) soft/tender x-ray scattering, anomalous small angle x-ray scattering, and contrast-matching small angle neutron scattering, or combinations of above are routinely used to extract the chemical composition and spatial arrangement of constituent elements at multiple length scales and examine electronic ordering phenomena. Here we present some recent advances in selectively characterizing structural architectures of complex soft materials, which often contain multi-components with a wide range of length scales and multiple functionalities, where novel resonant scattering approaches have been demonstrated to decipher a higher level of structural complexity that correlates to functionality. With the advancement of machine learning and artificial intelligence assisted correlative analysis, high-throughput and autonomous experiments would open a new paradigm of material research. Further development of resonant x-ray scattering instrumentation with crossplatform sample environments will enable multimodalin situ/operando characterization of the system dynamics with much improved spatial and temporal resolution.
Collapse
Affiliation(s)
- Wenkai Zhong
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
11
|
Katzenberg A, Angulo A, Kusoglu A, Modestino MA. Impacts of Organic Sorbates on the Ionic Conductivity and Nanostructure of Perfluorinated Sulfonic-Acid Ionomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Adlai Katzenberg
- Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Andrea Angulo
- Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Ahmet Kusoglu
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Miguel A. Modestino
- Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| |
Collapse
|
12
|
Zhou S, Cai Y, Zhang Q, Zheng J, Li S, Li Y, Zhang S, Ding YH. High flexible ether-free semi-crystalline fuel cell membranes: Molecular-level design, assembly structure and properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Fu X, Jiang Y, Wang Y, Zhou C, Lei J. Synthesis and properties of styrenic triblock copolymers with dual structural asymmetry via RAFT emulsion polymerization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Su GM, Cordova IA, Wang C. New Insights into Water Treatment Materials with Chemically Sensitive Soft and Tender X-rays. ACTA ACUST UNITED AC 2020. [DOI: 10.1080/08940886.2020.1784695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Gregory M. Su
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Isvar A. Cordova
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
15
|
Nguyen HD, Porihel R, Brubach JB, Planes E, Soudant P, Judeinstein P, Porcar L, Lyonnard S, Iojoiu C. Perfluorosulfonyl Imide versus Perfluorosulfonic Acid Ionomers in Proton-Exchange Membrane Fuel Cells at Low Relative Humidity. CHEMSUSCHEM 2020; 13:590-600. [PMID: 31793224 DOI: 10.1002/cssc.201902875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Designing highly conductive ionomers at high temperature and low relative humidity is challenging in proton-exchange membrane fuel cells. Perfluorosulfonyl imide ionomers were believed to achieve this goal, owing to their exceptional acidity and excellent thermal stability. Perfluorosulfonyl imide ionomers are less conductive than the analogous perfluorosulfonic acids despite similar membrane microstructure. In this study, the distinct behavior is rationalized by in situ synchrotron infrared spectroscopy during hydration. The protonation mechanism, formation of the protonic moiety and water clustering are totally different for the two different families of membranes. The ionization mediated by trans-to-cis conformational transition of the perfluorosulfonyl imide ionomer is not accompanied by the formation of hydronium ions. In contrast, Zundel-ion entities were identified as the elementary protonic complex, which is stable over the hydration range. The H-bond network of surrounding water molecules appears to be less connected and the protons remain highly localized and unavailable for efficient structural transport. The delocalization of protons and their mitigated interaction with the surrounding medium are prominent effects that negatively impact conductivity.
Collapse
Affiliation(s)
- Huu-Dat Nguyen
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LEPMI, UMR5279, 38000, Grenoble, France
| | - Regis Porihel
- Synchrotron Soleil, Saint Aubin-BP48, 91192, Gif sur Yvette, France
| | | | - Emilie Planes
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LEPMI, UMR5279, 38000, Grenoble, France
| | - Priscillia Soudant
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LEPMI, UMR5279, 38000, Grenoble, France
| | - Patrick Judeinstein
- Laboratoire Léon Brillouin (LLB, UMR12) CEA Saclay, CEA-CNRS-Université Paris Saclay, 91191, Gif-sur-Yvette Cedex, France
| | - Lionel Porcar
- Institut Laue Langevin (ILL), 38000, Grenoble, France
| | - Sandrine Lyonnard
- INAC-SyMMES, CEA Grenoble, CEA-CNRS-Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Cristina Iojoiu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LEPMI, UMR5279, 38000, Grenoble, France
| |
Collapse
|
16
|
Nagao Y. Progress on highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:79-91. [PMID: 32158509 PMCID: PMC7033726 DOI: 10.1080/14686996.2020.1722740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 05/08/2023]
Abstract
Several current topics are introduced in this review, with particular attention to highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. Organized structure and molecularly oriented structure are anticipated as more promising approaches than conventional less-molecular-ordered structure to elucidate mechanisms of high proton conduction and control proton conduction. This review introduces related polymer materials and molecular design using lyotropic liquid crystals and hydrogen bond networks for high proton conduction. It also outlines the use of substrate surfaces and external fields, such as pressure and centrifugal force, for organizing structures and molecularly oriented structures.
Collapse
Affiliation(s)
- Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| |
Collapse
|
17
|
Su GM, White W, Renna LA, Feng J, Ardo S, Wang C. Photoacid-Modified Nafion Membrane Morphology Determined by Resonant X-ray Scattering and Spectroscopy. ACS Macro Lett 2019; 8:1353-1359. [PMID: 35651146 DOI: 10.1021/acsmacrolett.9b00622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Covalent attachment of photoacid dye molecules to perfluorinated sulfonic acid membranes is a promising route to enable active light-driven ion pumps, but the complex relationship between chemical modification and morphology is not well understood in this class of functional materials. In this study we demonstrate the effect of bound photoacid dyes on phase-segregated membrane morphology. Resonant X-ray scattering near the sulfur K-edge reveals that introduction of photoacid dyes to the end of the ionomer side chains enhances phase segregation among ionomer domains, and the ionomer domain spacing increases with increasing amount of bound dye. Furthermore, relative crystallinity is marginally enhanced within semicrystalline domains composed of the perfluorinated backbone. X-ray absorption spectroscopy coupled with first-principles density functional theory calculations suggest that above a critical concentration, the multiple hydrophilic groups on the attached photoacid dye may help increase residual water content and promote hydration of adjacent sulfonic acid side chains under dry or ambient conditions.
Collapse
Affiliation(s)
- Gregory M. Su
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - William White
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Lawrence A. Renna
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Jun Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shane Ardo
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical Engineering & Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science & Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|