1
|
Zheng J, Peters BBC, Mallick RK, Andersson PG. Stereocontrolled Hydrogenation of Conjugated Enones to Alcohols via Dual Iridium-Catalysis. Angew Chem Int Ed Engl 2024:e202415171. [PMID: 39320171 DOI: 10.1002/anie.202415171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
The concept of dual catalysis is an emerging area holding high potential in terms of preparative efficiency, yet faces severe challenges in compatibility of reaction conditions and interference of catalysts. The transition-metal catalyzed stereoselective hydrogenation of olefins and ketones typically proceeds under different reaction conditions and/or uses a different reductant. As a result, these two types of hydrogenations can normally not be performed in the same pot. Herein, the stereocontrolled hydrogenation of enones to saturated alcohols is described, enabled by orthogonal dual iridium catalysis, using molecular hydrogen for both reductions. In this one-pot procedure, N,P-iridium catalysts (hydrogenation active towards olefins) and NHC,P-iridium catalysts (hydrogenation active towards ketones) operated independently of one another allowing the construction of two contiguous stereogenic centers up to 99 % ee, 99/1 d.r. Ultimately, by simple selection of the chirality of either ligands, the enone could be efficiently reduced to all four stereoisomers of the saturated alcohol in equally high stereopurity. This degree of stereocontrol for the synthesis of different stereoisomers by dual transition-metal catalyzed hydrogenation was previously not attained. The generality in substituted enones (alkyl, aryl, heteroaryl) demonstrate the wide applicability of this concept.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- The Marine Biomedical Research Institute, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Rajendra K Mallick
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| |
Collapse
|
2
|
Chang X, Zhang J, Cheng X, Lv X, Guo C. Ni/Cu Dual-Catalyzed Propargylation for the Stereodivergent Synthesis of Methohexital. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406764. [PMID: 39049712 PMCID: PMC11423103 DOI: 10.1002/advs.202406764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The development of efficient methodologies for the controlled manufacture of specific stereoisomers bearing quaternary stereocenters has prompted advances in a variety of scientific disciplines including pharmaceutical chemistry, materials science, and chemical biology. However, complete control of the absolute and relative stereochemical configurations of alkyne derivatives remains an unmet synthetic challenge. Herein, a Ni/Cu dual-catalyzed asymmetric propargylic substitution reaction is presented to produce propargylated products with all-carbon quaternary stereocenters in high yields with significant diastereo- and enantioselectivities (up to >20:1 dr, >99% ee). The synthesis of all stereochemical variants of methohexital, a widely used sedative-hypnotic drug, exemplifies the efficacy of dual-catalyzed stereodivergent propargylation.
Collapse
Affiliation(s)
- Xihao Chang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Cheng
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xianhai Lv
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Lainer B, Li S, Mammadova F, Dydio P. A Merger of Relay Catalysis with Dynamic Kinetic Resolution Enables Enantioselective β-C(sp 3)-H Arylation of Alcohols. Angew Chem Int Ed Engl 2024; 63:e202408418. [PMID: 38800865 DOI: 10.1002/anie.202408418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/29/2024]
Abstract
The conceptual merger of relay catalysis with dynamic kinetic resolution strategy is reported to enable regio- and enantioselective C(sp3)-H bond arylation of aliphatic alcohols, forming enantioenriched β-aryl alcohols typically with >90 : 10 enantiomeric ratios (up to 98 : 2 er) and 36-74 % yields. The starting materials bearing neighbouring stereogenic centres can be converted to either diastereomer of the β-aryl alcohol products, with >85 : 15 diastereomeric ratios determined by the catalysts. The reactions occur under mild conditions, ensuring broad compatibility, and involve readily available aryl bromides, an inorganic base, and commercial Ru- and Pd-complexes. Mechanistic experiments support the envisioned mechanism of the transformation occurring through a network of regio- and stereoselective processes operated by a coherent Ru/Pd-dual catalytic system.
Collapse
Affiliation(s)
- Bruno Lainer
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Shuailong Li
- University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Flora Mammadova
- University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Paweł Dydio
- University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
4
|
Vázquez-Galiñanes N, Sciortino G, Piñeiro-Suárez M, Tóth BL, Maseras F, Fañanás-Mastral M. Switching Selectivity in Borylative Allyl-Allyl Cross-Coupling through Synergistic Catalysis. J Am Chem Soc 2024; 146:21977-21988. [PMID: 39046799 PMCID: PMC11311230 DOI: 10.1021/jacs.4c07188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
A Cu/Pd-catalyzed borylative coupling of allenes with allyl carbonates is reported. Synergistic Cu/Pd catalysis enables a divergent selectivity compared to Cu catalysis and allows for the regio-, diastereo-, and enantioselective formation of synthetically versatile chiral borylated 1,5-dienes featuring two adjacent tertiary stereocenters. DFT calculations support a closed inner-sphere SE2' transmetalation between the catalytic allyl copper and allyl palladium intermediates and point at the reductive elimination of the resulting bis(allyl)Pd intermediate as the regio- and diastereo-determining step.
Collapse
Affiliation(s)
- Nuria Vázquez-Galiñanes
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giuseppe Sciortino
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda, Països Catalans 16, 43007 Tarragona, Spain
| | - Martín Piñeiro-Suárez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Balázs L. Tóth
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Feliu Maseras
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda, Països Catalans 16, 43007 Tarragona, Spain
| | - Martín Fañanás-Mastral
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Pan Q, Wang K, Xu W, Ai Y, Ping Y, Liu C, Wang M, Zhang J, Kong W. Ligand-Controlled, Nickel-Catalyzed Stereodivergent Construction of 1,3-Nonadjacent Stereocenters. J Am Chem Soc 2024; 146:15453-15463. [PMID: 38795043 DOI: 10.1021/jacs.4c03745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
In contrast to the asymmetric synthesis of molecules with a single stereocenter or 1,2-adjacent stereocenters, the simultaneous construction of acyclic 1,3-nonadjacent stereocenters via a single catalyst in an enantioselective and diastereoselective manner remains a formidable challenge. Here, we demonstrate the enantioselective and diastereodivergent construction of 1,3-nonadjacent stereocenters through Ni-catalyzed reductive cyclization/cross-coupling of alkene-tethered aryl bromides and α-bromoamides, which represents the major remaining stereochemical challenge of cyclization/difunctionalization of alkenes. Using Ming-Phos as ligand, a diverse set of oxindoles containing 1,3-nonadjacent stereocenters were obtained with high levels of enantio- and diastereoselectivity. Mechanistic experiments and density functional theory calculations indicate that magnesium salt plays a key role in controlling the diastereoselectivity. Furthermore, another set of complementary stereoisomeric products were constructed from the same set of starting materials using Ph-Phox as ligand.
Collapse
Affiliation(s)
- Qi Pan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Kuai Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuqi Ai
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chuhan Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Lin X, Mu X, Cui H, Li Q, Feng Z, Liu Y, Li G, Li C. Diastereo-divergent synthesis of chiral hindered ethers via a synergistic calcium(II)/gold(I) catalyzed cascade hydration/1,4-addition reaction. Nat Commun 2024; 15:3683. [PMID: 38693101 PMCID: PMC11063041 DOI: 10.1038/s41467-024-47951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Hindered ethers are ubiquitous in natural products and bioactive molecules. However, developing an efficient method for the stereocontrolled synthesis of all stereoisomers of chiral hindered ethers is highly desirable but challenging. Here we show a strategy that utilizes in situ-generated water as a nucleophile in an asymmetric cascade reaction involving two highly reactive intermediates, 3-furyl methyl cations and ortho-quinone methides (o-QMs), to synthesize chiral hindered ethers. The Ca(II)/Au(I) synergistic catalytic system enables the control of diastereoselectivity and enantioselectivity by selecting suitable chiral phosphine ligands in this cascade hydration/1,4-addition reaction, affording all four stereoisomers of a diverse range of chiral tetra-aryl substituted ethers with high diastereoselectivities (up to >20/1) and enantioselectivities (up to 95% ee). This work provides an example of chiral Ca(II)/Au(I) bimetallic catalytic system controlling two stereogenic centers via a cascade reaction in a single operation.
Collapse
Affiliation(s)
- Xiangfeng Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xia Mu
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, PR China
| | - Hongqiang Cui
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, PR China
- University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Qian Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
- University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Zhaochi Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| | - Guohui Li
- University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
7
|
Xu MM, Xie PP, He JX, Zhang YZ, Zheng C, Cai Q. Enantioselective Cross-[4 + 2]-Cycloaddition/Decarboxylation of 2-Pyrones by Cooperative Catalysis of the Pd(0)/NHC Complex and Chiral Phosphoric Acid. J Am Chem Soc 2024; 146:6936-6946. [PMID: 38414423 DOI: 10.1021/jacs.3c14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Here, we describe a cooperative Pd(0)/chiral phosphoric acid catalytic system that allows us to realize the first chemo-, regio-, and enantioselective sequential cross-[4 + 2]-cycloaddition/decarboxylation reaction between 2-pyrones and unactivated acyclic 1,3-dienes. The key to the success of this transformation is the utilization of an achiral N-heterocyclic carbene (NHC) as the ligand and a newly developed chiral phosphoric acid as the cocatalyst. Experimental investigations and computational studies support the idea that the Pd(0)/NHC complex acts as a π-Lewis base to increase the nucleophilicity of 1,3-dienes via η2 coordination, while the chiral phosphoric acid simultaneously increases the electrophilicity of 2-pyrones by hydrogen bonding. By this synergistic catalysis, the sequential cross-[4 + 2]-cycloaddition and decarboxylation reaction proceeds efficiently, enabling the preparation of a wide range of chiral vinyl-substituted 1,3-cyclohexadienes in good yields and enantioselectivities. The synthetic utility of this reaction is demonstrated by synthetic transformations of the product to various valuable chiral six-membered carbocycles.
Collapse
Affiliation(s)
- Meng-Meng Xu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Pei-Pei Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun-Xiong He
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Yu-Zhen Zhang
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Quan Cai
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Li J, Gong S, Gao S, Chen J, Chen WW, Zhao B. Asymmetric α-C(sp 3)-H allylic alkylation of primary alkylamines by synergistic Ir/ketone catalysis. Nat Commun 2024; 15:939. [PMID: 38296941 PMCID: PMC10830461 DOI: 10.1038/s41467-024-45131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Primary alkyl amines are highly reactive in N-nucleophilic reactions with electrophiles. However, their α-C-H bonds are unreactive towards electrophiles due to their extremely low acidity (pKa ~57). Nonetheless, 1,8-diazafluoren-9-one (DFO) can activate primary alkyl amines by increasing the acidity of the α-amino C-H bonds by up to 1044 times. This makes the α-amino C-H bonds acidic enough to be deprotonated under mild conditions. By combining DFO with an iridium catalyst, direct asymmetric α-C-H alkylation of NH2-unprotected primary alkyl amines with allylic carbonates has been achieved. This reaction produces a wide range of chiral homoallylic amines with high enantiopurities. The approach has successfully switched the reactivity between primary alkyl amines and allylic carbonates from intrinsic allylic amination to the α-C-H alkylation, enabling the construction of pharmaceutically significant chiral homoallylic amines from readily available primary alkyl amines in a single step.
Collapse
Affiliation(s)
- Jianyu Li
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China
| | - Sheng Gong
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China
| | - Shaolun Gao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China
| | - Jianfeng Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China.
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
9
|
Huang R, Yang S, Hu Z, Peng B, Zhu Y, Cheng T, Liu G. Bridging the incompatibility gap in dual asymmetric catalysis over a thermoresponsive hydrogel-supported catalyst. Commun Chem 2024; 7:2. [PMID: 38172516 PMCID: PMC10764871 DOI: 10.1038/s42004-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
The integration of dual asymmetric catalysis is highly beneficial for the synthesis of organic molecules with multiple stereocenters. However, two major issues that need to be addressed are the intrinsic deactivation of dual-species and the extrinsic conflict of reaction conditions. To overcome these concerns, we have utilized the compartmental and thermoresponsive properties of poly(N-isopropylacrylamide) (PNIPAM) to develop a cross-linked PNIPAM-hydrogel-supported bifunctional catalyst. This catalyst is designed with Rh(diene) species situated on the outer surface and Ru(diamine) species positioned within the interior of the hydrogel. The compartmental function of PNIPAM in the middle overcomes intrinsic mutual deactivations between the dual-species. The thermoresponsive nature of PNIPAM allows for precise control of catalytic pathways in resolving external conflicts by controlling the reaction switching between an Rh-catalyzed enantioselective 1,4-addition at 50°C and a Ru-catalyzed asymmetric transfer hydrogenation (ATH) at 25°C. As we envisioned, this sequential 1,4-addition/reduction dual enantioselective cascade reaction achieves a transformation from incompatibility to compatibility, resulting in direct access to γ-substituted cyclic alcohols with dual stereocenters in high yields and enantio/diastereoselectivities. Mechanistic investigation reveals a reversible temperature transition between 50°C and 25°C, ensuring a cascade process comprising a 1,4-addition followed by the ATH process.
Collapse
Affiliation(s)
- Renfu Huang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Shoujin Yang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Zhipeng Hu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Bangtai Peng
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Yuanli Zhu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Tanyu Cheng
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China
| | - Guohua Liu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, No.100 Guilin Rd, Shanghai, China.
| |
Collapse
|
10
|
Gambhir D, Singh S, Singh RP. Enamine/Iminium-based Dual Organocatalytic Systems for Asymmetric Catalysis and Synthesis. Chem Asian J 2023:e202300627. [PMID: 37910066 DOI: 10.1002/asia.202300627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
The rational combination of two catalysts to expedite the construction of chiral complex biologically and pharmacologically relevant chiral compounds has widely gained momentum over the past decade. In particular, enamine or iminium catalysis ensuing from the activation of aldehyde or ketone by chiral amine catalysts in conjugation with other organocatalytic cycles has facilitated several asymmetric transformations to yield the enantioenriched products. Regardless of the considerable discussion on the various dual catalytic approaches, literature lacks a comprehensive review focusing on the enamine and iminium-based dual organocatalytic systems. Thus, this review article has discussed the noteworthy achievements in the field of asymmetric catalysis and synthesis catalyzed by the enamine and iminium-based dual organocatalytic systems.
Collapse
Affiliation(s)
- Diksha Gambhir
- Prof. Ravi P. Singh, Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi, 110-016, India
| | - Sanjay Singh
- Prof. Ravi P. Singh, Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi, 110-016, India
| | - Ravi P Singh
- Prof. Ravi P. Singh, Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi, 110-016, India
| |
Collapse
|
11
|
Lainer B, Das K, Dydio P. Variable structure diversification by multicatalysis: the case of alcohols. Chem Commun (Camb) 2023; 59:4716-4725. [PMID: 36974691 PMCID: PMC10111201 DOI: 10.1039/d3cc00551h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Given that alcohol moieties are present in a great diversity of valuable fine chemicals from nature and synthesis, methods enabling their structure diversification are highly sought after. Catalysis proved to enable the development of new transformations that are beyond the inherent reactivity of alcohols. However, modifying the structure of alcohols at certain unbiased positions remains a major challenge or requires tedious multistep procedures. Recently, increased attention has been given to multicatalyis, which combines multiple reactions and catalysts within one system, creating room for discovering previously inaccessible reactivities or increasing the overall efficiency of multistep transformations. This feature article focuses on demonstrating various aspects of devising such multicatalytic systems that modify the structure of alcohol-containing compounds. Special attention is given to highlighting the challenges and advantages of multicatalysis, and in a broader context discussing how the field of catalysis may progress toward more complex systems.
Collapse
Affiliation(s)
- Bruno Lainer
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Kuhali Das
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Paweł Dydio
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| |
Collapse
|
12
|
Ackerman-Biegasiewicz LKG, Kariofillis SK, Weix DJ. Multimetallic-Catalyzed C-C Bond-Forming Reactions: From Serendipity to Strategy. J Am Chem Soc 2023; 145:6596-6614. [PMID: 36913663 PMCID: PMC10163949 DOI: 10.1021/jacs.2c08615] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The use of two or more metal catalysts in a reaction is a powerful synthetic strategy to access complex targets efficiently and selectively from simple starting materials. While capable of uniting distinct reactivities, the principles governing multimetallic catalysis are not always intuitive, making the discovery and optimization of new reactions challenging. Here, we outline our perspective on the design elements of multimetallic catalysis using precedent from well-documented C-C bond-forming reactions. These strategies provide insight into the synergy of metal catalysts and compatibility of the individual components of a reaction. Advantages and limitations are discussed to promote further development of the field.
Collapse
Affiliation(s)
| | - Stavros K. Kariofillis
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| |
Collapse
|
13
|
Xie JH, Hou YM, Feng Z, You SL. Stereodivergent Construction of 1,3-Chiral Centers via Tandem Asymmetric Conjugate Addition and Allylic Substitution Reaction. Angew Chem Int Ed Engl 2023; 62:e202216396. [PMID: 36597878 DOI: 10.1002/anie.202216396] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Herein, we report a synthesis of cyclohexanones bearing multi-continuous stereocenters by combining copper-catalyzed asymmetric conjugate addition of dialkylzinc reagents to cyclic enones with iridium-catalyzed asymmetric allylic substitution reaction. Good to excellent yields, diastereoselectivity and enantioselectivity can be obtained. Unlike the stereodivergent construction of adjacent stereocenters (1,2-position) reported in the literature, the current reaction can achieve the stereodivergent construction of nonadjacent stereocenters (1,3-position) by a proper combination of two chiral catalysts with different enantiomers.
Collapse
Affiliation(s)
- Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Yi-Ming Hou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| |
Collapse
|
14
|
Adili A, Webster JP, Zhao C, Mallojjala SC, Romero-Reyes MA, Ghiviriga I, Abboud KA, Vetticatt MJ, Seidel D. Mechanism of a Dually Catalyzed Enantioselective Oxa-Pictet-Spengler Reaction and the Development of a Stereodivergent Variant. ACS Catal 2023; 13:2240-2249. [PMID: 37711191 PMCID: PMC10501388 DOI: 10.1021/acscatal.2c05484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes proceed under weakly acidic conditions utilizing a combination of two catalysts, an indoline HCl salt and a bisthiourea compound. Mechanistic investigations revealed the roles of both catalysts and confirmed the involvement of oxocarbenium ion intermediates, ruling out alternative scenarios. A stereochemical model was derived from density functional theory calculations, which provided the basis for the development of a highly enantioselective stereodivergent variant with racemic tryptophol derivatives.
Collapse
Affiliation(s)
- Alafate Adili
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - John-Paul Webster
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Chenfei Zhao
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | | - Moises A Romero-Reyes
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Mathew J Vetticatt
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Daniel Seidel
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
15
|
Huo LQ, Wang XH, Zhang Z, Jia Z, Peng XS, Wong HNC. Sustainable and practical formation of carbon-carbon and carbon-heteroatom bonds employing organo-alkali metal reagents. Chem Sci 2023; 14:1342-1362. [PMID: 36794178 PMCID: PMC9906645 DOI: 10.1039/d2sc05475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Metal-catalysed cross-coupling reactions are amongst the most widely used methods to directly construct new bonds. In this connection, sustainable and practical protocols, especially transition metal-catalysed cross-coupling reactions, have become the focus in many aspects of synthetic chemistry due to their high efficiency and atom economy. This review summarises recent advances from 2012 to 2022 in the formation of carbon-carbon bonds and carbon-heteroatom bonds by employing organo-alkali metal reagents.
Collapse
Affiliation(s)
- Lu-Qiong Huo
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong (Shenzhen) Longgang District Shenzhen China
| | - Xin-Hao Wang
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong (Shenzhen) Longgang District Shenzhen China
| | - Zhenguo Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xiao-Shui Peng
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong (Shenzhen) Longgang District Shenzhen China
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR China
| | - Henry N C Wong
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong (Shenzhen) Longgang District Shenzhen China
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR China
| |
Collapse
|
16
|
Malakar CC, Dell'Amico L, Zhang W. Dual Catalysis in Organic Synthesis: Current Challenges and New Trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
17
|
Yu S, Chang W, Hua R, Jie X, Zhang M, Zhao W, Chen J, Zhang D, Qiu H, Liang Y, Hu W. An enantioselective four-component reaction via assembling two reaction intermediates. Nat Commun 2022; 13:7088. [PMID: 36400780 PMCID: PMC9674633 DOI: 10.1038/s41467-022-34913-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
A reaction intermediate is a key molecular entity that has been used in explaining how starting materials converts into the final products in the reaction, and it is usually unstable, highly reactive, and short-lived. Extensive efforts have been devoted in identifying and characterizing such species via advanced physico-chemical analytical techniques. As an appealing alternative, trapping experiments are powerful tools in this field. This trapping strategy opens an opportunity to discover multicomponent reactions. In this work, we report various highly diastereoselective and enantioselective four-component reactions (containing alcohols, diazoesters, enamines/indoles and aldehydes) which involve the coupling of in situ generated intermediates (iminium and enol). The reaction conditions presented herein to produce over 100 examples of four-component reaction products proceed under mild reaction conditions and show high functional group tolerance to a broad range of substrates. Based on experimental and computational analyses, a plausible mechanism of this multicomponent reaction is proposed.
Collapse
Affiliation(s)
- Sifan Yu
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 PR China
| | - Wenju Chang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 PR China
| | - Ruyu Hua
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 PR China
| | - Xiaoting Jie
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 PR China
| | - Mengchu Zhang
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 PR China
| | - Wenxuan Zhao
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 PR China
| | - Jinzhou Chen
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 PR China
| | - Dan Zhang
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 PR China
| | - Huang Qiu
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 PR China
| | - Yong Liang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 PR China
| | - Wenhao Hu
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 PR China
| |
Collapse
|
18
|
Zhu J, Wang Y, Charlack AD, Wang YM. Enantioselective and Diastereodivergent Allylation of Propargylic C-H Bonds. J Am Chem Soc 2022; 144:15480-15487. [PMID: 35976157 PMCID: PMC9437123 DOI: 10.1021/jacs.2c07297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iridium-catalyzed stereoselective coupling of allylic ethers and alkynes to generate 3,4-substituted 1,5-enynes is reported. Under optimized conditions, the coupling products are formed with excellent regio-, diastereo-, and enantioselectivities, and the protocol is functional group tolerant. Moreover, we report conditions that allow the reaction to proceed with complete reversal of diastereoselectivity. Mechanistic studies are consistent with an unprecedented dual role for the iridium catalyst, enabling the propargylic deprotonation of the alkyne through π-coordination, as well as the generation of a π-allyl species from the allylic ether starting material.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu225002, China
| | - Aaron D Charlack
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| |
Collapse
|
19
|
Djukanovic D, Ganiek MA, Nishi K, Karaghiosoff K, Mashima K, Knochel P. Preparation of Functionalized Amides Using Dicarbamoylzincs. Angew Chem Int Ed Engl 2022; 61:e202205440. [PMID: 35561099 PMCID: PMC9401601 DOI: 10.1002/anie.202205440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 12/15/2022]
Abstract
We report a new convenient preparation of dicarbamoylzincs of type (R1 R2 NCO)2 Zn by the treatment of ZnCl2 and formamides R1 R2 NCHO with LiTMP in THF (15 °C, 15 min) or by the reaction of formamides R1 R2 NCHO with TMP2 Zn (25 °C, 16 h). This second method tolerates sensitive groups such as an ester, ketone or nitro function. Reaction of these dicarbamoylzincs with allylic, benzylic, aryl, alkenyl bromides, acid chlorides, aldehydes or enones provided various polyfunctional amides in 47-97 % yields. 13 C NMR characterization of these new carbamoylzinc derivatives is reported.
Collapse
Affiliation(s)
- Dimitrije Djukanovic
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| | - Maximilian A. Ganiek
- Patheon, by Thermo Fisher ScientificPatheon Regensburg GmbhDonaustaufer Straße 37893055RegensburgGermany
| | - Kohei Nishi
- Graduate School of Engineering ScienceOsaka University1-3 MachikaneyamaToyonaka565-0871 OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka University1-6 YamadaokaSuita565-0871 OsakaJapan
| | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| | - Kazushi Mashima
- Graduate School of Engineering ScienceOsaka University1-3 MachikaneyamaToyonaka565-0871 OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka University1-6 YamadaokaSuita565-0871 OsakaJapan
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| |
Collapse
|
20
|
Ravi Kishore D, Sreenivasulu C, Satyanarayana G, Dapkekar AB. Recent Applications on Dual-Catalysis for C–C and C–X Cross-Coupling Reactions. SYNOPEN 2022. [DOI: 10.1055/a-1896-4168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
AbstractCoupling reactions stand amid the most significant reactions in synthetic organic chemistry. Of late, these coupling strategies are being viewed as a versatile synthetic tool for a wide range of organic transformations in many sectors of chemistry, ranging from indispensable synthetic scaffolds and natural products of biological significance to novel organic materials. Further, the use of dual-catalysis in accomplishing various interesting cross-coupling transformations is an emerging field in synthetic organic chemistry, owing to their high catalytic performance rather than the use of a single catalyst. In recent years, synthetic organic chemists have given considerable attention to hetero-dual catalysis; wherein these catalytic systems have been employed for the construction of versatile carbon–carbon [C(sp
3)–C(sp
3), C(sp
3)–C(sp
2), C(sp
2)–C(sp
2)] and carbon–heteroatom (C–N, C–O, C–P, C–S) bonds. Therefore, in this mini-review, we are emphasizing recently developed various cross-coupling reactions catalysed by transition-metal dual-catalysis (i.e., using palladium and copper catalysts, but omitting the reports on photoredox/metal catalysis).1 Introduction2 Cu/Pd-Catalysed Bond Formation2.1 Pd/Cu-Catalysed C(sp
3)–C(sp
2) Bond Formation2.2 Pd/Cu-Catalysed C(sp
2)–C(sp
2) Bond Formation2.3 Pd/Cu-Catalysed C(sp)–C(sp
2) Bond Formation2.4 Pd/Cu-Catalysed C(sp
3)–C(sp
3) Bond Formation2.5 Pd/Cu-Catalysed C–X (X = B, N, P, S, Si) Bond Formation3 Conclusion
Collapse
|
21
|
Huo LQ, Shi LL, Fu J. Iron‐Copper Dual‐Catalysis Boosted C‐Based Bond‐Forming Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lu-Qiong Huo
- The Chinese University of Hong Kong - Shenzhen School of Science and Engineering Longgang District 518055 Shenzhen CHINA
| | - Li-Li Shi
- Peking University Shenzhen Graduate School State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics Shenzhen University TownLishui RoadXili TownNanshan District 518055 Shenzhen CHINA
| | - Junkai Fu
- Northeast Normal University Department of Chemistry Renmin Street, 5268Nanguan district 130024 Changchun CHINA
| |
Collapse
|
22
|
Preparation of Functionalized Amides using Dicarbamoylzincs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Chakraborty N, Das B, Rajbongshi KK, Patel BK. Combined Power of Organo‐ and Transition Metal Catalysis in Organic Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikita Chakraborty
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bubul Das
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Kamal K. Rajbongshi
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bhisma K Patel
- Indian Institute of Technology Guwahati Chemistry North Guwahati-781 039 781 039 Guwahati INDIA
| |
Collapse
|
24
|
Nielsen CDT, Linfoot JD, Williams AF, Spivey AC. Recent progress in asymmetric synergistic catalysis - the judicious combination of selected chiral aminocatalysts with achiral metal catalysts. Org Biomol Chem 2022; 20:2764-2778. [PMID: 35298581 PMCID: PMC9082520 DOI: 10.1039/d2ob00025c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review we survey recent synergistic applications of a chiral organocatalyst with an achiral metal to perform stereoselective transformations of synthetic utility (since 2016). The transformations are classified by the modes of reactivity deployed, focussing on organocatalytic activation of carbonyl substrates as chiral nucleophiles via the α-position (e.g., as enamines) and as chiral electrophiles via the β-position (e.g., as iminium ions) combined with complementary activation of their reaction partners by an achiral metal co-catalyst (e.g., Pd or Cu-based). Corresponding radical reactions are also presented in which photocatalysis mediated by achiral metal complexes replaces the metal co-catalyst. Certain privileged structures are revealed and opportunities to develop this exciting field are highlighted. A critical survey of recent synergistic applications of a chiral organocatalyst with an achiral metal to perform stereoselective transformations of synthetic utility.![]()
Collapse
Affiliation(s)
- Christian D-T Nielsen
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| | - Joshua D Linfoot
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| | - Alexander F Williams
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| | - Alan C Spivey
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
25
|
Yesilcimen A, Jiang NC, Gottlieb FH, Wasa M. Enantioselective Organocopper-Catalyzed Hetero Diels-Alder Reaction through in Situ Oxidation of Ethers into Enol Ethers. J Am Chem Soc 2022; 144:6173-6179. [PMID: 35380438 DOI: 10.1021/jacs.2c01656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We disclose a catalytic method for the enantio- and diastereoselective union of alkyl ethers and heterodienes. We demonstrate that a chiral Cu-BOX complex catalyzes the efficient oxidation of ethers into enol ethers in the presence of trityl acetate. Then, the organocopper promotes stereoselective hetero Diels-Alder reaction between the in situ generated enol ethers and β,γ-unsaturated ketoesters, allowing for rapid access to an array of dihydropyran derivatives possessing three vicinal stereogenic centers.
Collapse
Affiliation(s)
- Ahmet Yesilcimen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Na-Chuan Jiang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Felix H Gottlieb
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
26
|
Stereodivergent propargylic alkylation of enals via cooperative NHC and copper catalysis. Nat Commun 2022; 13:1344. [PMID: 35292676 PMCID: PMC8924209 DOI: 10.1038/s41467-022-29059-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/20/2022] [Indexed: 12/02/2022] Open
Abstract
Despite that asymmetric stereodivergent synthesis has experienced great success to provide unusual processes for the creation of chirality complexity, concepts appliable to asymmetric stereodivergent catalysis are still limited. The dependence on the unusual capacity of each catalyst to precisely control the reactive site planar in the region poses unparalleled constraints on this field. Here, we first demonstrate that the chiral Cu-allenylidene species can participate in the stereodivergent propargylic alkylation of enals, in concert with chiral N-heterocyclic carbenes (NHCs). Thus, all four stereoisomers were obtained with excellent enantioselectivity and diastereoselectivity (up to >99% e.e. and >95:5 d.r.) from the same starting materials by simply altering chiral Cu-Pybox complex and NHC combinations. The rich chemistry workable in the products enables the structurally diverse synthesis of chiral functional molecules and holds great potential in alkaloid synthesis, as showcased by the preparation of the key building block to access (-)-perophoramidine. The ability to construct multiple stereocenters in a modular fashion is an important goal of synthetic organic chemistry. Here the authors present a method to construct oxindoles in four stereoisomers with high enantioselectivity and diastereoselectivity from the same starting materials by using cooperative copper- and organocatalysis.
Collapse
|
27
|
Dorn SK, Brown MK. Cooperative Pd/Cu Catalysis for Alkene Arylboration: Opportunities for Divergent Reactivity. ACS Catal 2022; 12:2058-2063. [PMID: 36212545 PMCID: PMC9540610 DOI: 10.1021/acscatal.1c05696] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A preeminent challenge in alkene difunctionalization is the control of regio-, diastereo-, and enantioselectivity. In this Perspective, a Pd/Cu-cooperative catalytic system for alkene arylboration is highlighted that allows for the controlled introduction of substituents. In particular, examples that allowed for divergent reactivity from a single substrate based on the tuning of catalysts and reaction conditions are emphasized.
Collapse
Affiliation(s)
- Stanna K. Dorn
- Indiana University, Department of Chemistry, Bloomington, Indiana 47405, United States
| | - M. Kevin Brown
- Indiana University, Department of Chemistry, Bloomington, Indiana 47405, United States
| |
Collapse
|
28
|
Tang Y, Liu K, Wu Y, Zhou S, Cheng T, Liu G. Single‐Operation Decarboxylative Mannich Reaction/Asymmetric Transfer Hydrogenation Cascade Process Directly Accesses 1,3‐Distereocentered β‐Sulfonamido Alcohols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Tang
- Shanghai Normal University - Xuhui Campus CHINA
| | - Kaihong Liu
- Shanghai Normal University - Xuhui Campus CHINA
| | - Ye Wu
- Shanghai Normal University - Xuhui Campus CHINA
| | - Siyu Zhou
- Shanghai Normal University - Xuhui Campus CHINA
| | | | - Guohua Liu
- Shanghai Normal University - Xuhui Campus CHINA
| |
Collapse
|
29
|
Hu L, Cao W, Wang K, Liu X, Feng X. Asymmetric synthesis of dihydrocarbazoles through a Friedel-Crafts alkylation/annulation sequential reaction of indoles. Chem Commun (Camb) 2021; 57:13138-13141. [PMID: 34807214 DOI: 10.1039/d1cc05099k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective tandem Friedel-Crafts alkylation/annulation of indoles with diazoacetoacetate enones is realized in one pot. A series of dihydrocarbazoles were obtained in moderate yields with good to excellent ee values by using a RhII/ScIII dual-metallic catalyst system. Control experiments revealed that ScIII is critical to both the alkylation and annulation.
Collapse
Affiliation(s)
- Linfeng Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Kaixuan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
30
|
Lv M, Li X. Ni(II)-Catalyzed Asymmetric Nitration of Oxindoles: Construction of Cipargamin Analogues. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingjun Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
31
|
Wasa M, Yesilcimen A. Enantioselective Cooperative Catalysis within Frustrated Lewis Pair Complexes. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center, Boston College
| | | |
Collapse
|
32
|
Genet M, Takfaoui A, Marrot J, Greck C, Moreau X. Construction of Enantioenriched 4,5,6,7‐Tetrahydrofuro[2,3‐
b
]pyridines through a Multicatalytic Sequence Merging Gold and Amine Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Manon Genet
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| | - Abdelilah Takfaoui
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| | - Christine Greck
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| | - Xavier Moreau
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| |
Collapse
|
33
|
Yu C, Ji P, Zhang Y, Meng X, Wang W. Construction of Enantioenriched γ,γ-Disubstituted Butenolides Enabled by Chiral Amine and Lewis Acid Cascade Cocatalysis. Org Lett 2021; 23:7656-7660. [PMID: 34543030 DOI: 10.1021/acs.orglett.1c02916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we report a cascade cocatalysis strategy for the facile construction of chiral γ,γ-disubstituted butenolides. The synthetic manifold employs simple alkynoic acids instead of the preformed silyloxy furans or 5-substituted furan-2(3H)-ones. In situ formed 5-substituted furan-2(3H)-ones by AgNO3 or Ph3PAuCl/AgOTf catalyzed cyclization of alkynoic acids can smoothly engage in the subsequent chiral diphenylprolinol TMS-ether catalyzed Michael and Michael-aldol reactions. The cascade process serves as a general approach to chiral quaternary γ,γ-disubstituted butenolides.
Collapse
Affiliation(s)
- Chenguang Yu
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry and BIO5 Institute, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721-0207, United States.,Calibr at Scripps Research, La Jolla, California 92037, United States
| | - Peng Ji
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry and BIO5 Institute, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721-0207, United States
| | - Yueteng Zhang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry and BIO5 Institute, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721-0207, United States
| | - Xiang Meng
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry and BIO5 Institute, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721-0207, United States
| | - Wei Wang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry and BIO5 Institute, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721-0207, United States
| |
Collapse
|
34
|
Ma H, Feng J, Zhou W, Chen C, Deng Z, Zhou F, Ouyang Y, Zhang X, Cai Q. Copper(i)-catalyzed asymmetric intramolecular C-arylation with ureas as the additives: highly enantioselective formation of spirooxindoles. Org Biomol Chem 2021; 19:7480-7484. [PMID: 34612367 DOI: 10.1039/d1ob01327k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cooperative catalytic strategy is developed for a copper-catalyzed asymmetric intramolecular C-arylation reaction with ureas as the co-catalysts. By forming hydrogen bonds with 1,3-dicarbonyl structures, ureas can activate the substrates, stabilize the carbanion intermediates and the products, and fix the syn-configurations of 1,3-dicarbonyl structures. They help enhance the reactivity, prevent side reactions and improve the enantioselectivities.
Collapse
Affiliation(s)
- Haowen Ma
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Manavi B, Tejeneki HZ, Rominger F, Armaghan M, Frank W, Bijanzadeh HR, Balalaie S. Copper(I)‐Catalyzed Intramolecular Cyclization of
o
‐Propargyloxy Diketopiperazines to Access Diverse Diazabicyclic and Spiro‐Diketopiperazinochromanes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bita Manavi
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Hossein Zahedian Tejeneki
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Mahsa Armaghan
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Walter Frank
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences Tarbiat Modares University Tehran Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
- Medical Biology Research Center Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
36
|
Zhou P, Shao X, Malcolmson SJ. A Diastereodivergent and Enantioselective Approach to syn- and anti-Diamines: Development of 2-Azatrienes for Cu-Catalyzed Reductive Couplings with Imines That Furnish Allylic Amines. J Am Chem Soc 2021; 143:13999-14008. [PMID: 34424694 DOI: 10.1021/jacs.1c07707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We introduce a new reagent class, 2-azatrienes, as a platform for catalytic enantioselective synthesis of allylic amines. Herein, we demonstrate their promise by a diastereodivergent synthesis of syn- and anti-1,2-diamines through their Cu-bis(phosphine)-catalyzed reductive couplings with imines. With Ph-BPE as the supporting ligand, anti-diamines are obtained (up to 91% yield, >20:1 dr, and >99:1 er), and with the rarely utilized t-Bu-BDPP, syn-diamines are generated (up to 76% yield, 1:>20 dr, and 97:3 er).
Collapse
Affiliation(s)
- Pengfei Zhou
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Xinxin Shao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P. R. China
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
37
|
Sciortino G, Maseras F. Computational Study of Homogeneous Multimetallic Cooperative Catalysis. Top Catal 2021. [DOI: 10.1007/s11244-021-01493-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Yang G, Pan J, Ke Y, Liu Y, Zhao Y. Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiaoting Pan
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Ya‐Ming Ke
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yongbing Liu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
39
|
Yang G, Pan J, Ke YM, Liu Y, Zhao Y. Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angew Chem Int Ed Engl 2021; 60:20689-20694. [PMID: 34236747 DOI: 10.1002/anie.202106514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Indexed: 12/24/2022]
Abstract
An efficient tandem catalysis method is achieved for the direct conversion of alcohol-containing alkynyl anilines to valuable chiral 2,3-fused tricyclic indoles. This method relies on a tandem indolization followed by enantioconvergent substitution of alcohols via borrowing hydrogen to construct two rings in one step, enabled by relay and cooperative catalysis of a chiral iridium complex with a chiral phosphoric acid. Highly diastereoselective transformations of the tricyclic indole products also provide efficient access to a diverse array of complex polycyclic indoline compounds.
Collapse
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jiaoting Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ya-Ming Ke
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongbing Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
40
|
Masson-Makdissi J, Prieto L, Abel-Snape X, Lautens M. Enantio- and Diastereodivergent Sequential Catalysis Featuring Two Transition-Metal-Catalyzed Asymmetric Reactions. Angew Chem Int Ed Engl 2021; 60:16932-16936. [PMID: 34046992 DOI: 10.1002/anie.202105800] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 11/10/2022]
Abstract
This study demonstrates the feasibility and inherent benefits of combining two distinct asymmetric transition-metal-catalyzed reactions in one pot. The reported transformation features a Pd-catalyzed asymmetric allylic alkylation and a Rh-catalyzed enantioselective 1,4-conjugate addition, effectively converting simple allyl enol carbonate precursors into enantioenriched cyclic ketones with two remote stereocenters. Despite the anticipated challenges associated with controlling stereoselectivity in such a complex system, the products are obtained in enantiomeric excesses ranging up to >99 % ee, exceeding those obtained from either of the individual asymmetric reactions. In addition, since the stereoselectivity of both steps is under catalyst control, this one-pot reaction is enantio- and diastereodivergent, enabling facile access to all stereoisomers from the same set of starting materials.
Collapse
Affiliation(s)
- Jeanne Masson-Makdissi
- Department of Chemistry, University of Toronto, 80 St. George Street., Toronto, Ontario, M5S 3H6, Canada
| | - Liher Prieto
- Department of Chemistry, University of Toronto, 80 St. George Street., Toronto, Ontario, M5S 3H6, Canada.,Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Xavier Abel-Snape
- Department of Chemistry, University of Toronto, 80 St. George Street., Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto, 80 St. George Street., Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
41
|
Masson‐Makdissi J, Prieto L, Abel‐Snape X, Lautens M. Enantio‐ and Diastereodivergent Sequential Catalysis Featuring Two Transition‐Metal‐Catalyzed Asymmetric Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jeanne Masson‐Makdissi
- Department of Chemistry University of Toronto 80 St. George Street. Toronto Ontario M5S 3H6 Canada
| | - Liher Prieto
- Department of Chemistry University of Toronto 80 St. George Street. Toronto Ontario M5S 3H6 Canada
- Department of Organic and Inorganic Chemistry University of the Basque Country (UPV/EHU) P.O. Box 644 48080 Bilbao Spain
| | - Xavier Abel‐Snape
- Department of Chemistry University of Toronto 80 St. George Street. Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Department of Chemistry University of Toronto 80 St. George Street. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
42
|
Lainer B, Lichosyt D, Aleksandrova M, Dydio P. Enantioselective α-Arylation of Primary Alcohols under Sequential One-Pot Catalysis. J Org Chem 2021; 86:9253-9262. [PMID: 34114458 DOI: 10.1021/acs.joc.1c00983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secondary benzylic alcohols and diarylmethanols are common structural motifs of biologically active and medicinally relevant compounds. Here we report their enantioselective synthesis by α-arylation of primary aliphatic and benzylic alcohols under sequential catalysis integrating a Ru-catalyzed hydrogen transfer oxidation and a Ru-catalyzed nucleophilic addition. The method can be applied to various alcohols and aryl nucleophiles tolerating a range of functional groups, including secondary alcohols, ketones, alkenes, esters, NH amides, tertiary amines, aryl halides, and heterocycles.
Collapse
Affiliation(s)
- Bruno Lainer
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Dawid Lichosyt
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Maiia Aleksandrova
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Paweł Dydio
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
43
|
Zhu DX, Liu JG, Xu MH. Stereodivergent Synthesis of Enantioenriched 2,3-Disubstituted Dihydrobenzofurans via a One-Pot C-H Functionalization/Oxa-Michael Addition Cascade. J Am Chem Soc 2021; 143:8583-8589. [PMID: 34061536 DOI: 10.1021/jacs.1c03498] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A one-pot rhodium-catalyzed C-H functionalization/organocatalyzed oxa-Michael addition cascade reaction has been developed. This methodology enables the stereodivergent synthesis of diverse 2,3-disubstituted dihydrobenzofurans with broad functional group compatibility in good yields with high levels of stereoselectivity under exceptionally mild conditions. The full complement of stereoisomers of chiral 2,3-disubstituted dihydrobenzofurans and 3,4-disubstituted isochromans could be accessed at will by appropriate permutations of the two chiral catalysts. The current work provides a rare example of two chiral catalysts independently controlling two contiguous stereogenic centers subsequently via a two-step reaction in a single operation.
Collapse
Affiliation(s)
- Dong-Xing Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jian-Guo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| |
Collapse
|
44
|
Synergistic Dual Catalytic System and Kinetics for the Alcoholysis of Poly(Lactic Acid). Processes (Basel) 2021. [DOI: 10.3390/pr9060921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Plastic pollution is a global issue that is approaching crisis levels as plastic production is projected to reach 1.1 GT annually by 2050. The bioplastic industry along with a circular production economy are solutions to this problem. One promising bioplastic polylactic acid (PLA) has mechanical properties comparable to polystyrene (PS), so it could replace PS in its applications as a more environmentally sustainable material. However, since the bioplastic PLA also suffers from long biodegradation times in the environment, to ensure that it does not add to the current pollution problem, it should instead be chemically recycled. In this work, PLA was chemically recycled via alcoholysis, using either methanol or ethanol to generate the value-added products methyl lactate and ethyl lactate respectively. Two catalysts, zinc acetate dihydrate (ZnAc) and 4-(dimethylamino)pyridine (DMAP), were tested both individually and in mixtures. A synergistic effect was exhibited on the reaction rate when both catalysts were used in an equal ratio. The methanolysis reaction was determined to be two-step, with the activation energy estimated to be 73 kJ mol−1 for the first step and 40.16 kJ mol−1 for the second step. Both catalysts are cheap and commercially available, their synergistic effect could be exploited for large-scale PLA recycling.
Collapse
|
45
|
Quintard A. Copper Catalyzed Decarboxylative Functionalization of Ketoacids. CHEM REC 2021; 21:3382-3393. [PMID: 33750015 DOI: 10.1002/tcr.202100045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Abstract
Selective copper catalyzed activation of ketoacids and notably bio-sourced 1,3-acetonedicarboxylic acid, represents an attractive strategy to solve key synthetic challenges. Condensation with aldehydes under exceedingly mild conditions can create more rapidly known natural products scaffolds such as 1,3 polyols. In this account, the recent progress in this field, notably through multicatalytic combination with organocatalysis is described. In addition to the rapid preparation of natural product fragments, cascade incorporation of fluorine also provided new type of synthetic analogues of improved properties in a broad range of applications.
Collapse
Affiliation(s)
- Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
46
|
Affiliation(s)
- Sebastián Martínez
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Lukas Veth
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Bruno Lainer
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Paweł Dydio
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
47
|
Boit TB, Mehta MM, Kim J, Baker EL, Garg NK. Reductive Arylation of Amides via a Nickel‐Catalyzed Suzuki–Miyaura‐Coupling and Transfer‐Hydrogenation Cascade. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Timothy B. Boit
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Milauni M. Mehta
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Junyong Kim
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Emma L. Baker
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
48
|
Boit TB, Mehta MM, Kim J, Baker EL, Garg NK. Reductive Arylation of Amides via a Nickel-Catalyzed Suzuki-Miyaura-Coupling and Transfer-Hydrogenation Cascade. Angew Chem Int Ed Engl 2021; 60:2472-2477. [PMID: 33029868 PMCID: PMC7855255 DOI: 10.1002/anie.202012048] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/26/2020] [Indexed: 12/11/2022]
Abstract
We report a means to achieve the addition of two disparate nucleophiles to the amide carbonyl carbon in a single operational step. Our method takes advantage of non-precious-metal catalysis and allows for the facile conversion of amides to chiral alcohols via a one-pot Suzuki-Miyaura cross-coupling/transfer-hydrogenation process. This study is anticipated to promote the development of new transformations that allow for the conversion of carboxylic acid derivatives to functional groups bearing stereogenic centers via cascade processes.
Collapse
Affiliation(s)
- Timothy B Boit
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Milauni M Mehta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Junyong Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Emma L Baker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
49
|
Chang Y, Cao M, Chan JZ, Zhao C, Wang Y, Yang R, Wasa M. Enantioselective Synthesis of N-Alkylamines through β-Amino C-H Functionalization Promoted by Cooperative Actions of B(C 6F 5) 3 and a Chiral Lewis Acid Co-Catalyst. J Am Chem Soc 2021; 143:2441-2455. [PMID: 33512998 DOI: 10.1021/jacs.0c13200] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We disclose a catalytic method for β-C(sp3)-H functionalization of N-alkylamines for the synthesis of enantiomerically enriched β-substituted amines, entities prevalent in pharmaceutical compounds and used to generate different families of chiral catalysts. We demonstrate that a catalyst system comprising of seemingly competitive Lewis acids, B(C6F5)3, and a chiral Mg- or Sc-based complex, promotes the highly enantioselective union of N-alkylamines and α,β-unsaturated compounds. An array of δ-amino carbonyl compounds was synthesized under redox-neutral conditions by enantioselective reaction of a N-alkylamine-derived enamine and an electrophile activated by the chiral Lewis acid co-catalyst. The utility of the approach is highlighted by late-stage β-C-H functionalization of bioactive amines. Investigations in regard to the mechanistic nuances of the catalytic processes are described.
Collapse
Affiliation(s)
- Yejin Chang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Min Cao
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jessica Z Chan
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Cunyuan Zhao
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yuankai Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Rose Yang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
50
|
Bi W, Yang Y, Ye S, Wang C. Umpolung coupling of pyridine-2-carboxaldehydes and propargylic carbonates via N-heterocyclic carbene/palladium synergetic catalysis. Chem Commun (Camb) 2021; 57:4452-4455. [PMID: 33949494 DOI: 10.1039/d1cc01311d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The umpolung cross-coupling reaction of pyridine-2-carboxaldehydes and propargylic carbonates has been developed for the first time through N-heterocyclic carbene/palladium cooperative catalysis with the judicious selection of the palladium catalyst, ligand and N-heterocyclic carbene, giving the propargylic ketones regioselectively.
Collapse
Affiliation(s)
- Weiyang Bi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| |
Collapse
|