1
|
López-Domene R, Manteca A, Rodriguez-Abetxuko A, Beloqui A, Cortajarena AL. In vitro Production of Hemin-Based Artificial Metalloenzymes. Chemistry 2024; 30:e202303254. [PMID: 38145337 DOI: 10.1002/chem.202303254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 12/26/2023]
Abstract
Developing enzyme alternatives is pivotal to improving and enabling new processes in biotechnology and industry. Artificial metalloenzymes (ArMs) are combinations of protein scaffolds with metal elements, such as metal nanoclusters or metal-containing molecules with specific catalytic properties, which can be customized. Here, we engineered an ArM based on the consensus tetratricopeptide repeat (CTPR) scaffold by introducing a unique histidine residue to coordinate the hemin cofactor. Our results show that this engineered system exhibits robust peroxidase-like catalytic activity driven by the hemin. The expression of the scaffold and subsequent coordination of hemin was achieved by recombinant expression in bulk and through in vitro transcription and translation systems in water-in-oil drops. The ability to synthesize this system in emulsio paves the way to improve its properties by means of droplet microfluidic screenings, facilitating the exploration of the protein combinatorial space to discover improved or novel catalytic activities.
Collapse
Affiliation(s)
- Rocío López-Domene
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, E-20014, Spain
- POLYMAT and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, E-20018, Spain
| | - Aitor Manteca
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, E-20014, Spain
| | - Andoni Rodriguez-Abetxuko
- POLYMAT and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, E-20018, Spain
| | - Ana Beloqui
- POLYMAT and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, E-20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, E-48009, Bilbao, Spain
| | - Aitziber L Cortajarena
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, E-20014, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, E-48009, Bilbao, Spain
| |
Collapse
|
2
|
Chiacchio MA, Legnani L. Density Functional Theory Calculations: A Useful Tool to Investigate Mechanisms of 1,3-Dipolar Cycloaddition Reactions. Int J Mol Sci 2024; 25:1298. [PMID: 38279298 PMCID: PMC10816517 DOI: 10.3390/ijms25021298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
The present review contains a representative sampling of mechanistic studies, which have appeared in the literature in the last 5 years, on 1,3-dipolar cycloaddition reactions, using DFT calculations. Attention is focused on the mechanistic insights into 1,3-dipoles of propargyl/allenyl type and allyl type such as aza-ylides, nitrile oxides and azomethyne ylides and nitrones, respectively. The important role played by various metal-chiral-ligand complexes and the use of chiral eductors in promoting the site-, regio-, diastereo- and enatioselectivity of the reaction are also outlined.
Collapse
Affiliation(s)
- Maria Assunta Chiacchio
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Laura Legnani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
3
|
Besalú-Sala P, Solà M, Luis JM, Torrent-Sucarrat M. Fast and Simple Evaluation of the Catalysis and Selectivity Induced by External Electric Fields. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Josep M. Luis
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Miquel Torrent-Sucarrat
- Department of Organic Chemistry I, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P Manuel Lardizabal 3, E-20018 Donostia/San Sebastián, Euskadi, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Euskadi, Spain
| |
Collapse
|
4
|
Gidley F, Parmeggiani F. Repeat proteins: designing new shapes and functions for solenoid folds. Curr Opin Struct Biol 2021; 68:208-214. [PMID: 33721772 DOI: 10.1016/j.sbi.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 10/21/2022]
Abstract
The modular nature of repeat proteins has inspired the design of regular and completely novel sequences and structures. Research in the past years has provided a broad set of design approaches and new repeat proteins that have found applications in molecular recognition, taking advantage of the natural ability of some of these families to bind proteins, peptides and nucleic acids. Here, we provide an overview on the recent trends in design of repeat proteins, particularly solenoid folds, and their applications. By exploiting the intrinsic modularity of repeats, new architectures have been designed that combine different types of repeat, are easily scalable by changing the number of repeats and can be quickly generated by using existing modular building blocks.
Collapse
Affiliation(s)
- Frances Gidley
- School of Chemistry, School of Biochemistry, Bristol Biodesign Institute, University of Bristol, United Kingdom
| | - Fabio Parmeggiani
- School of Chemistry, School of Biochemistry, Bristol Biodesign Institute, University of Bristol, United Kingdom.
| |
Collapse
|
5
|
Breugst M, Reissig H. The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition. Angew Chem Int Ed Engl 2020; 59:12293-12307. [PMID: 32255543 PMCID: PMC7383714 DOI: 10.1002/anie.202003115] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Indexed: 12/21/2022]
Abstract
The concept of 1,3-dipolar cycloadditions was presented by Rolf Huisgen 60 years ago. Previously unknown reactive intermediates, for example azomethine ylides, were introduced to organic chemistry and the (3+2) cycloadditions of 1,3-dipoles to multiple-bond systems (Huisgen reaction) developed into one of the most versatile synthetic methods in heterocyclic chemistry. In this Review, we present the history of this research area, highlight important older reports, and describe the evolution and further development of the concept. The most important mechanistic and synthetic results are discussed. Quantum-mechanical calculations support the concerted mechanism always favored by R. Huisgen; however, in extreme cases intermediates may be involved. The impact of 1,3-dipolar cycloadditions on the click chemistry concept of K. B. Sharpless will also be discussed.
Collapse
Affiliation(s)
- Martin Breugst
- Department für ChemieUniversität zu KölnGreinstrasse 450939KölnGermany
| | - Hans‐Ulrich Reissig
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| |
Collapse
|
6
|
Beloqui A, Cortajarena AL. Protein-based functional hybrid bionanomaterials by bottom-up approaches. Curr Opin Struct Biol 2020; 63:74-81. [PMID: 32485564 DOI: 10.1016/j.sbi.2020.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
This review aims to summarize the last advances on the field of protein engineering towards functional bionanomaterials. Albeit being this an emerging research field, multidisciplinary perspectives in the design of synthetic protein-based hybrid bionanomaterials have resulted in significant progresses. The review covers the definition of bionanomaterials as such and the description of the main methodological approaches currently employed for their assembly. In this context, special emphasis is placed on the fundamental role of protein design. Then, a general overview of the most recent advances related to the fabrication and application of protein-based bionanomaterials in several applications is provided, with special focus on catalysis. Finally, key aspects to be considered by the research community to establish the path for significant future developments in this promising field are discussed.
Collapse
Affiliation(s)
- Ana Beloqui
- POLYMAT and Department of Applied Chemistry, University of the Basque Country UPV/EHU, Avda. Manuel de Lardizabal 3, E-20018 Donostia - San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain.
| | - Aitziber L Cortajarena
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, E-20014 Donostia - San Sebastian, Spain.
| |
Collapse
|
7
|
Breugst M, Reißig H. Die Huisgen‐Reaktion: Meilensteine der 1,3‐dipolaren Cycloaddition. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003115] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Martin Breugst
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Hans‐Ulrich Reißig
- Institut für Chemie und Biochemie Freie Universität Berlin Takustr. 3 14195 Berlin Deutschland
| |
Collapse
|
8
|
Li M, Wang T, Wang C. Multicomponent Reaction of Pyridinium Salts,
β
‐Nitrostyrenes and Ammonium Acetate under the DBU/Acetic Acid System: Access to 2,4,6‐Triarylpyridine Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202000387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingshuang Li
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Ting Wang
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| |
Collapse
|