1
|
Richardson JO. Nonadiabatic Tunneling in Chemical Reactions. J Phys Chem Lett 2024; 15:7387-7397. [PMID: 38995660 DOI: 10.1021/acs.jpclett.4c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Quantum tunneling can have a dramatic effect on chemical reaction rates. In nonadiabatic reactions such as electron transfers or spin crossovers, nuclear tunneling effects can be even stronger than for adiabatic proton transfers. Ring-polymer instanton theory enables molecular simulations of tunneling in full dimensionality and has been shown to be far more reliable than commonly used separable approximations. First-principles instanton calculations predict significant nonadiabatic tunneling of heavy atoms even at room temperature and give excellent agreement with experimental measurements for the intersystem crossing of two nitrenes in cryogenic matrix isolation, the spin-forbidden relaxation of photoexcited thiophosgene in the gas phase, and singlet oxygen deactivation in water at ambient conditions. Finally, an outlook of further theoretical developments is discussed.
Collapse
Affiliation(s)
- Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Mardyukov A, Hernández FJ, Song L, Crespo-Otero R, Schreiner PR. Experimentally Delineating the Catalytic Effect of a Single Water Molecule in the Photochemical Rearrangement of the Phenylperoxy Radical to the Oxepin-2(5 H)-one-5-yl Radical. J Am Chem Soc 2024; 146:19070-19076. [PMID: 38968610 DOI: 10.1021/jacs.4c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Catalysis plays a pivotal role in both chemistry and biology, primarily attributed to its ability to stabilize transition states and lower activation free energies, thereby accelerating reaction rates. While computational studies have contributed valuable mechanistic insights, there remains a scarcity of experimental investigations into transition states. In this work, we embark on an experimental exploration of the catalytic energy lowering associated with transition states in the photorearrangement of the phenylperoxy radical-water complex to the oxepin-2(5H)-one-5-yl radical. Employing matrix isolation spectroscopy, density functional theory, and post-HF computations, we scrutinize the (photo)catalytic impact of a single water molecule on the rearrangement. Our computations indicate that the barrier heights for the water-assisted unimolecular isomerization steps are approximately 2-3 kcal mol-1 lower compared to the uncatalyzed steps. This decrease directly coincides with the energy difference in the required wavelength during the transformation (Δλ = λ546 nm - λ579 nm ≡ 52.4-49.4 = 3.0 kcal mol-1), allowing us to elucidate the differential transition state energy in the photochemical rearrangement of the phenylperoxy radical catalyzed by a single water molecule. Our work highlights the important role of water catalysis and has, among others, implications for understanding the mechanism of organic reactions under atmospheric conditions.
Collapse
Affiliation(s)
- Artur Mardyukov
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | | | - Lijuan Song
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Rachel Crespo-Otero
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
3
|
Roque JPL, Nunes CM, Schreiner PR, Fausto R. Hydrogen Tunneling Exhibiting Unexpectedly Small Primary Kinetic Isotope Effects. Chemistry 2024; 30:e202401323. [PMID: 38709063 DOI: 10.1002/chem.202401323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Probing quantum mechanical tunneling (QMT) in chemical reactions is crucial to understanding and developing new transformations. Primary H/D kinetic isotopic effects (KIEs) beyond the semiclassical maximum values of 7-10 (room temperature) are commonly used to assess substantial QMT contributions in one-step hydrogen transfer reactions, because of the much greater QMT probability of protium vs. deuterium. Nevertheless, we report here the discovery of a reaction model occurring exclusively by H-atom QMT with residual primary H/D KIEs. 2-Hydroxyphenylnitrene, generated in N2 matrix, was found to isomerize to an imino-ketone via sequential (domino) QMT involving anti to syn OH-rotamerization (rate determining step) and [1,4]-H shift reactions. These sequential QMT transformations were also observed in the OD-deuterated sample, and unexpected primary H/D KIEs between 3 and 4 were measured at 3 to 20 K. Analogous residual primary H/D KIEs were found in the anti to syn OH-rotamerization QMT of 2-cyanophenol in a N2 matrix. Evidence strongly indicates that these intriguing isotope-insensitive QMT reactivities arise due to the solvation effects of the N2 matrix medium, putatively through coupling with the moving H/D tunneling particle. Should a similar scenario be extrapolated to conventional solution conditions, then QMT may have been overlooked in many chemical reactions.
Collapse
Affiliation(s)
- José P L Roque
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Cláudio M Nunes
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Rui Fausto
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal
- Faculty Sciences and Letters, Department of Physics, Istanbul Kultur University, Bakirkoy, Istanbul, 34158, Turkey
| |
Collapse
|
4
|
García de la Concepción J, Corchado JC, Cintas P, Babiano R. Norcaradiene-Cycloheptatriene Equilibrium: A Heavy-Atom Quantum Tunneling Case. J Org Chem 2024; 89:9336-9343. [PMID: 38888485 PMCID: PMC11232008 DOI: 10.1021/acs.joc.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The equilibrium between norcaradiene and cycloheptatriene, which has captivated chemists for more than half a century, is revisited by state-of-the-art quantum chemical calculations. Our theoretical data significantly deviate from the experimental results (J. Am. Chem. Soc., 1981, 26, 7791-7792), especially at low temperatures, where isomerization is dominated by heavy-atom tunneling. This effect results in an extremely short half-life for norcaradiene, rendering it undetectable. This work sheds light on this equilibrium, updating the kinetic and thermodynamic data while also expanding the repertoire of organic reactions controlled by this exotic quantum effect.
Collapse
Affiliation(s)
- Juan García de la Concepción
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Green Chemistry and Sustainable Development Unit, Universidad de Extremadura, 06006 Badajoz, Spain
| | - José C Corchado
- Departamento de Ingeniería Química y Química Física, Facultad de Ciencias, and ICCAEx, Universidad Extremadura, 06006 Badajoz, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Green Chemistry and Sustainable Development Unit, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Reyes Babiano
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Green Chemistry and Sustainable Development Unit, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
5
|
Frenklach A, Amlani H, Kozuch S. Quantum Tunneling Instability in Pericyclic Reactions: The Cheletropic, Coarctate, and Ene Cases. Org Lett 2024; 26:5157-5161. [PMID: 38847371 DOI: 10.1021/acs.orglett.4c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Some retro-pericyclic reactions, as a result of their high exothermicity and short trajectories, are the perfect ground for heavy atom tunneling molecular decompositions, also known as "quantum tunneling instability" (QTI). Considering this effect, in our first installment [Frenklach, A.; Amlani, H.; Kozuch, S. Quantum Tunneling Instability in Pericyclic Reactions. J. Am. Chem. Soc. 2024, 146 (17), 11823-11834, DOI: 10.1021/jacs.4c00608], we computed several retro-Diels-Alder reactions, predicting that many studied reactants cannot be isolated. Herein, we will explore the QTI of retro-cheletropic, coarctate, and ene exemplars, where again we hypothesize the impossibility to detect their reactants.
Collapse
Affiliation(s)
- Alexander Frenklach
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| | - Hila Amlani
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| |
Collapse
|
6
|
Rostkowska H, Lapinski L, Nowak MJ. Hydrogen-atom tunneling in small thioamides: N-methylthiourea, thiobenzamide and 2-cyanothioacetamide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124139. [PMID: 38503255 DOI: 10.1016/j.saa.2024.124139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
The most stable thione tautomeric forms of N-methylthiourea, thiobenzamide and 2-cyanothioacetamide were isolated in low-temperature argon matrices. The higher-energy thiol tautomers of these compounds were generated upon irradiation of matrix-isolated monomers with UV (λ > 270 nm) light. For N-methylthiourea and thiobenzamide, kept in the dark at 3.5 K for a long period of time, a spontaneous thiol → thione hydrogen atom tunneling transformation occurred. Only the thiol isomers with the favorably oriented hydrogen atom of the imino group underwent these hydrogen-atom tunneling processes. The other thiol isomers, with the hydrogen atom of the imino group oriented towards the sulfur atom, did not undergo the thiol → thione conversion. For the photogenerated thiol forms of 2-cyanothioacetamide, no spontaneous thiol → thione tautomeric transformation was detected. Instead, only the spontaneous conformational change of one S-H rotamer of the thiol 2-cyanothioacetamide tautomer into the other S-H rotamer was observed.
Collapse
Affiliation(s)
- Hanna Rostkowska
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Leszek Lapinski
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Maciej J Nowak
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
7
|
Pharr CR, Esselman BJ, McMahon RJ. Photochemistry of 1-(2- and 3-Thienyl)diazoethanes: Spectroscopy and Tunneling Reaction of Triplet 1-(3-Thienyl)ethylidene. J Org Chem 2023; 88:16176-16185. [PMID: 37948641 DOI: 10.1021/acs.joc.3c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Photolysis (λ > 613 nm) of 1-(3-thienyl)diazoethane (21) yields the s-E rotamer of triplet 1-(3-thienyl)ethylidene (3), as characterized by UV/vis and EPR spectroscopy. The s-Z rotamer of 3 was not observed. EPR and UV/vis signals attributed to carbene 3 decrease by approximately 50% upon standing in the dark for 68 h at 10 K. Although formally spin-forbidden, an intramolecular [1,2]-hydrogen shift in triplet carbene 3 to afford singlet s-E 3-vinylthiophene (8) is presumed to occur via quantum mechanical tunneling. The behavior of the CD3 analogue supports this interpretation. Photolysis (λ > 613 nm) of 1-(3-thienyl)diazoethane-d3 (21-d3) yields triplet 1-(3-thienyl)ethylidene-d3 (3-d3), as characterized by IR, UV/vis, and EPR spectroscopy. No change in the signal intensity of EPR and UV/vis signals of triplet 3-d3 is observed upon standing in the dark for 68 h at 10 K. In a series of 2-substituted thienyl derivatives, irradiation of 1-(2-thienyl)diazoethane (22), 1-(2-thienyl)diazoethane-d3 (22-d3), or (3-methyl-2-thienyl)diazomethane (23) does not yield triplet carbene intermediates. Positioning and labeling of the methyl group proved to have a large effect on products observed for these species. 1-(2-Thienyl)diazoethane (22) yields the products of [1,2]-hydrogen migration, s-Z and s-E 2-vinylthiophene (7), while 22-d3 and 23 give products derived from opening of the thiophene ring.
Collapse
Affiliation(s)
- Caroline R Pharr
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Brian J Esselman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Robert J McMahon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| |
Collapse
|
8
|
Prado Merini M, Schleif T, Sander W. Heavy-Atom Tunneling in Bicyclo[4.1.0]hepta-2,4,6-trienes. Angew Chem Int Ed Engl 2023; 62:e202309717. [PMID: 37698374 DOI: 10.1002/anie.202309717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Heavy-atom tunneling limits the lifetime and observability of bicyclo[4.1.0]hepta-2,4,6-triene, a key intermediate in the rearrangement of phenylcarbene. Bicyclo[4.1.0]hepta-2,4,6-triene had been proposed as the primary intermediate of the rearrangement of phenylcarbene, but despite many efforts evaded its characterization even in cryogenic matrices. By introducing fluorine substituents into the ortho-positions of the phenyl ring of phenylcarbene, the highly strained cyclopropene 1,5-difluorobicyclo[4.1.0]hepta-2,4,6-triene becomes stable enough to be characterized in argon matrices. However, even at 3 K this cyclopropene is only metastable and rearranges via heavy-atom tunneling to the corresponding cycloheptatetraene. Calculations suggest that fluorination is necessary to slow down the tunneling rearrangement of the bicycloheptatriene. The parent bicycloheptatriene rapidly rearranges via heavy-atom tunneling and therefore cannot be detected under matrix isolation conditions.
Collapse
Affiliation(s)
- Melania Prado Merini
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Tim Schleif
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
9
|
Ma Z, Yan Z, Li X, Chung LW. Quantum Tunneling in Reactions Modulated by External Electric Fields: Reactivity and Selectivity. J Phys Chem Lett 2023; 14:1124-1132. [PMID: 36705472 DOI: 10.1021/acs.jpclett.2c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Quantum tunneling and external electric fields (EEFs) can promote some reactions. However, the synergetic effect of an EEF on a tunneling-involving reaction and its temperature-dependence is not very clear. In this study, we extensively investigated how EEFs affect three reactions that involve hydrogen- or (ground- and excited-state) carbon-tunneling using reliable DFT, DLPNO-CCSD(T1), and variational transition-state theory methods. Our study revealed that oriented EEFs can significantly reduce the barrier and corresponding barrier width (and vice versa) through more electrostatic stabilization in transition states. These EEF effects enhance the nontunneling and tunneling-involving rates. Such EEF effects also decrease the crossover temperatures and quantum tunneling contribution, albeit with lower and thinner barriers. Moreover, EEFs can modulate and switch on/off the tunneling-driven 1,2-H migration of hydroxycarbenes under cryogenic conditions. Furthermore, our study predicts for the first time that EEF/tunneling synergy can control the chemo- or site-selectivity of one molecule bearing two similar/same reactive sites.
Collapse
Affiliation(s)
- Zhifeng Ma
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Zeyin Yan
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Xin Li
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| |
Collapse
|
10
|
Bernhardt B, Schauermann M, Solel E, Eckhardt AK, Schreiner PR. Equilibrating parent aminomercaptocarbene and CO 2 with 2-amino-2-thioxoacetic acid via heavy-atom quantum tunneling. Chem Sci 2022; 14:130-135. [PMID: 36605744 PMCID: PMC9769125 DOI: 10.1039/d2sc05388h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
The search for methods to bind CO2 and use it synthetically as a C1-building block under mild conditions is an ongoing endeavor of great urgency. The formation of heterocyclic carbene-carbon dioxide adducts occurs rapidly when the carbene is generated in solution in the presence of CO2. Here we demonstrate the reversible formation of a complex of the hitherto unreported aminomercaptocarbene (H2N-C̈-SH) with CO2 isolated in solid argon by photolysis of 2-amino-2-thioxoacetic acid. Remarkably, the complex disappears in the dark as deduced by time-dependent matrix infrared measurements, and equilibrates back to the covalently bound starting material. This kinetically excluded process below ca. 8 K is made possible through heavy-atom quantum mechanical tunneling, as also evident from density functional theory and ab initio computations at the CCSD(T)/cc-pVTZ level of theory. Our results provide insight into CO2 activation using a carbene and emphasize the role of quantum mechanical tunneling in organic processes, even involving heavy atoms.
Collapse
Affiliation(s)
- Bastian Bernhardt
- Institute of Organic Chemistry, Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Markus Schauermann
- Institute of Organic Chemistry, Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Ephrath Solel
- Institute of Organic Chemistry, Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - André K Eckhardt
- Institute of Organic Chemistry, Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| |
Collapse
|
11
|
Nunes CM, Doddipatla S, Loureiro GF, Roque JPL, Pereira NAM, Pinho e Melo TMVD, Fausto R. Differential Tunneling-Driven and Vibrationally-Induced Reactivity in Isomeric Benzazirines. Chemistry 2022; 28:e202202306. [PMID: 36066476 PMCID: PMC10092225 DOI: 10.1002/chem.202202306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 11/08/2022]
Abstract
Quantum mechanical tunneling of heavy-atoms and vibrational excitation chemistry are unconventional and scarcely explored types of reactivity. Once fully understood, they might bring new avenues to conduct chemical transformations, providing access to a new world of molecules or ways of exquisite reaction control. In this context, we present here the discovery of two isomeric benzazirines exhibiting differential tunneling-driven and vibrationally-induced reactivity, which constitute exceptional results for probing into the nature of these phenomena. The isomeric 6-fluoro- and 2-fluoro-4-hydroxy-2H-benzazirines (3-a and 3'-s) were generated in cryogenic krypton matrices by visible-light irradiation of the corresponding triplet nitrene 3 2-a, which was produced by UV-light irradiation of its azide precursor. The 3'-s was found to be stable under matrix dark conditions, whereas 3-a spontaneously rearranges (τ1/2 ∼64 h at 10 and 20 K) by heavy-atom tunneling to 3 2-a. Near-IR-light irradiation at the first OH stretching overtone frequencies (remote vibrational antenna) of the benzazirines induces the 3'-s ring-expansion reaction to a seven-member cyclic ketenimine, but the 3-a undergoes 2H-azirine ring-opening reaction to triplet nitrene 3 2-a. Computations demonstrate that 3-a and 3'-s have distinct reaction energy profiles, which explain the different experimental results. The spectroscopic direct measurement of the tunneling of 3-a to 3 2-a constitutes a unique example of an observation of a species reacting only by nitrogen tunneling. Moreover, the vibrationally-induced sole activation of the most favorable bond-breaking/bond-forming pathway available for 3-a and 3'-s provides pioneer results regarding the selective nature of such processes.
Collapse
Affiliation(s)
- Cláudio M. Nunes
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | - Srinivas Doddipatla
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | - Gonçalo F. Loureiro
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | - José P. L. Roque
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | | | | | - Rui Fausto
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| |
Collapse
|
12
|
Nunes CM, Roque JP, Doddipatla S, Wood SA, McMahon RJ, Fausto R. Simultaneous Tunneling Control in Conformer-Specific Reactions. J Am Chem Soc 2022; 144:20866-20874. [PMID: 36321916 PMCID: PMC9776521 DOI: 10.1021/jacs.2c09026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present here a new example of chemical reactivity governed by quantum tunneling, which also highlights the limitations of the classical theories. The syn and anti conformers of a triplet 2-formylphenylnitrene, generated in a nitrogen matrix, were found to spontaneously rearrange to the corresponding 2,1-benzisoxazole and imino-ketene, respectively. The kinetics of both transformations were measured at 10 and 20 K and found to be temperature-independent, providing clear evidence of concomitant tunneling reactions (heavy-atom and H-atom). Computations confirm the existence of these tunneling reaction pathways. Although the energy barrier between the nitrene conformers is lower than any of the observed reactions, no conformational interconversion was observed. These results demonstrate an unprecedented case of simultaneous tunneling control in conformer-specific reactions of the same chemical species. The product outcome is impossible to be rationalized by the conventional kinetic or thermodynamic control.
Collapse
Affiliation(s)
- Cláudio M. Nunes
- University
of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal,
| | - José P.
L. Roque
- University
of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Srinivas Doddipatla
- University
of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Samuel A. Wood
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706-1322, United States
| | - Robert J. McMahon
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706-1322, United States
| | - Rui Fausto
- University
of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
13
|
Schleif T. Transformations of Strained Three-Membered Rings a Common, Yet Overlooked, Motif in Heavy-Atom Tunneling Reactions. Chemistry 2022; 28:e202201775. [PMID: 35762788 PMCID: PMC9804509 DOI: 10.1002/chem.202201775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/05/2023]
Abstract
Quantum mechanical tunneling has long been recognized as an important phenomenon when considering transformations dominated by a lightweight hydrogen atom. Tunneling of heavier atoms like carbon, initially dismissed as negligible, has seen a quickly increasing number of computationally predicted and/or experimentally confirmed examples over the last decade, thus highlighting its importance for a wide variety of reactions. However, no common structural motif has been pointed out within these seemingly unconnected examples, strongly limiting the predictability of the impact of heavy-atom tunneling on a given reaction. This Concept article will provide this perspective and showcase how the recognition of the formation and cleavage of three-membered rings as common motif can inform the prediction of and research into heavy-atom tunneling reactions.
Collapse
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum44780BochumGermany
- Present address: Sterling Chemistry LaboratoryYale UniversityNew HavenCT 06520USA
| |
Collapse
|
14
|
Schleif T, Prado Merini M, Henkel S, Sander W. Solvation Effects on Quantum Tunneling Reactions. Acc Chem Res 2022; 55:2180-2190. [PMID: 35730754 DOI: 10.1021/acs.accounts.2c00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A decisive factor for obtaining high yields and selectivities in organic synthesis is the choice of the proper solvent. Solvent selection is often guided by the intuitive understanding of transition state-solvent interactions. However, quantum-mechanical tunneling can significantly contribute to chemical reactions, circumventing the transition state and thus depriving chemists of their intuitive handle on the reaction kinetics. In this Account, we aim to provide rationales for the effects of solvation on tunneling reactions derived from experiments performed in cryogenic matrices.The tunneling reactions analyzed here cover a broad range of prototypical organic transformations that are subject to strong solvation effects. Examples are the hydrogen tunneling probability for the cis-trans isomerization of formic acid which is strongly reduced upon formation of hydrogen-bonded complexes and the [1,2]H-shift in methylhydroxycarbene where a change in product selectivity is predicted upon interaction with hydrogen bond acceptors.Not only hydrogen but also heavy atom tunneling can exhibit strong solvent effects. The direction of the nearly degenerate valence tautomerization between benzene oxide and oxepin was found to reverse upon formation of a halogen or hydrogen bond with ICF3 or H2O. But even in the absence of strong noncovalent interactions such as hydrogen or halogen bonding, solvation can have a decisive effect on tunneling as evidenced by the Cope rearrangement of semibullvalenes via heavy-atom tunneling. Can quantum tunneling be catalyzed? The acceleration of the ring expansion of 1H-bicyclo[3.1.0.]-hexa-3,5-dien-2-one by complexation with Lewis acids provides a proof-of-concept for tunneling catalysis.Two concepts are central for the explanation and prediction of solvation effects on tunneling phenomena: a simple approach expands the Born-Oppenheimer approximation by separating nuclear degrees of freedom into intra- and intermolecular degrees. Intermolecular movements represent the slowest motions within molecular aggregates, thus effectively freezing the position of the solvent in relation to the reactant during the tunneling process. Another useful approach is to treat reactants and products by separate single-well potentials, where the intersection represents the transition state. Thus, stabilization of the reactants via solvation should result in an increase in barrier heights and widths which in turn lowers tunneling probabilities. These simple models can predict trends in tunneling kinetics and provide a rational basis for controlling tunneling reactions via solvation.
Collapse
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Melania Prado Merini
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Stefan Henkel
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
15
|
Roque JPL, Nunes CM, Fausto R. Matrix Isolation in Heterocyclic Chemistry. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Greer EM, Siev V, Segal A, Greer A, Doubleday C. Computational Evidence for Tunneling and a Hidden Intermediate in the Biosynthesis of Tetrahydrocannabinol. J Am Chem Soc 2022; 144:7646-7656. [PMID: 35451301 DOI: 10.1021/jacs.1c11981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantum tunneling is computed for a reaction sequence that models the conversion of the ortho-quinone methide of cannabigerolic acid 1 to the decarboxylated product (-)-trans-Δ9-tetrahydrocannabinol (THC, 3). This calculation is the first to evaluate multidimensional tunneling in this sequence. Computations were carried out with POLYRATE and GAUSSRATE using B3LYP/6-31G(d,p) to examine the mechanism of THC 3 formation. The pentyl chain on THC 3 and its precursors were replaced with a methyl group to compute tunneling contributions to the rates of four separate steps: (i) initial Diels-Alder reaction of the quinone methide with the trisubstituted alkene end-group of the geranyl 1Z-CH3 to give 2Z-CH3, (ii) acid-catalyzed keto-enol tautomerization, which converts 2rZ-CH3 to 4rZ-CH3, (iii) carboxyl rotamerization converting 4rZ-CH3 to 4E-CH3, and (iv) decarboxylation that converts 4E-CH3 to 3-CH3. Tunneling contributions to the rate constants of steps (i)-(iv) are between 19 and 76% at 293 K. In step (ii), nonuniform changes in the zero-point vibrational energy along the reaction path created a shallow minimum in the 0 K free energy. It is a hidden intermediate because it is not a minimum on the potential energy surface and is detectable only when zero-point energy is taken into account along the reaction path. Predicted kinetic isotope effects would be experimentally observable at temperatures that are convenient to use. This is particularly relevant in the decarboxylation stage of the reaction sequence and has important implications because of its role in THC 3 formation.
Collapse
Affiliation(s)
- Edyta M Greer
- Department of Natural Sciences, Baruch College of the City University of New York, 17 Lexington Avenue, New York, New York 10010, United States
| | - Victor Siev
- Department of Natural Sciences, Baruch College of the City University of New York, 17 Lexington Avenue, New York, New York 10010, United States
| | - Ayelet Segal
- Department of Natural Sciences, Baruch College of the City University of New York, 17 Lexington Avenue, New York, New York 10010, United States
| | - Alexander Greer
- Department of Chemistry and Graduate Center, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, New York 11210, United States.,PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Charles Doubleday
- Department of Chemistry, Columbia University, 3000 Broadway, MC 3142, New York, New York 10027, United States
| |
Collapse
|
17
|
Nunes CM, Pereira NAM, Fausto R. Photochromism of a Spiropyran in Low-Temperature Matrices: Unprecedented Bidirectional Switching between a Merocyanine and an Allene Intermediate. J Phys Chem A 2022; 126:2222-2233. [PMID: 35362982 DOI: 10.1021/acs.jpca.2c01105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photochromism of spiropyrans has attracted much attention due to its potential in many light-controlled system applications. However, several fundamental aspects regarding the structure, energetics, and mechanistic details of the transformations of spiropyrans are still not well understood. Here, we report the study of the photochromism of a 6-hydroxy-spiropyran (HBPS) under conditions of matrix isolation, where monomers of the compound are frozen in a solidified noble gas (krypton, at 15 K). The structure of the matrix-isolated HBPS was first elucidated by infrared (IR) spectroscopy supported by density functional theory computations. Then, the photochromism of HBPS, from the colorless spiropyran to the colored merocyanine, was induced by ultraviolet (UV) irradiation at 310 nm. The analysis of the IR spectrum of the photoproduced species revealed the exclusive formation of the most stable merocyanine MC-TTC stereoisomer. Subsequent visible-light (550 nm) irradiation of MC-TTC generated a new colorless allenic isomeric species ALN, where the UV irradiation (310 nm) of ALN was found to convert this species back to MC-TTC. This constitutes an unprecedented bidirectional transformation between a colored merocyanine and a colorless allene species. The newly observed photoswitching reaction (or photochromism) occurs along an intramolecular hydrogen bond existing in both merocyanine and allenic species, thus suggesting that it might be generally feasible in the chemistry of spiropyrans. On the other hand, the usual assumption that, as a general rule, merocyanines photochemically revert to spiropyrans is not supported in this work.
Collapse
Affiliation(s)
- Cláudio M Nunes
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal
| | - Nelson A M Pereira
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal
| | - Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal
| |
Collapse
|
18
|
Fausto R, Ildiz GO, Nunes CM. IR-induced and tunneling reactions in cryogenic matrices: the (incomplete) story of a successful endeavor. Chem Soc Rev 2022; 51:2853-2872. [PMID: 35302145 DOI: 10.1039/d1cs01026c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this article, IR-induced and tunneling-driven reactions observed in cryogenic matrices are described in a historical perspective, the entangling of the two types of processes being highlighted. The story of this still ongoing fascinating scientific endeavor is presented here following closely our own involvement in the field for more than 30 years, and thus focuses mostly on our work. It is, because of this reason, also an incomplete story. Nevertheless, it considers a large range of examples, from very selective IR-induced conformational isomerizations to IR-induced bond-breaking/bond-forming reactions and successful observations of rare heavy atom tunneling processes. As a whole, this article provides a rather general overview of the major progress achieved in the field.
Collapse
Affiliation(s)
- Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Gulce O Ildiz
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal. .,Department of Physics, Faculty of Sciences and Letters, Istanbul Kultur University, 34158 Bakirkoy, Istanbul, Turkey
| | - Cláudio M Nunes
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
19
|
Nandi A, Martin JML. Heavy-Atom Tunneling in the Covalent/Dative Bond Complexation of Cyclo[18]carbon-Piperidine. J Phys Chem B 2022; 126:1799-1804. [PMID: 35180344 PMCID: PMC8900127 DOI: 10.1021/acs.jpcb.2c00218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Recent quantum chemical
computations demonstrated the electron-acceptance
behavior of this highly reactive cyclo[18]carbon (C18)
ring with piperidine (pip). The C18–pip complexation
exhibited a double-well potential along the N–C reaction coordinate,
forming a van der Waals (vdW) adduct and a more stable, strong covalent/dative
bond (DB) complex by overcoming a low activation barrier. By means
of direct dynamical computations using canonical variational transition
state theory (CVT), including the small-curvature tunneling (SCT),
we show the conspicuous role of heavy atom quantum mechanical tunneling
(QMT) in the transformation of vdW to DB complex in the solvent phase
near absolute zero. Below 50 K, the reaction is entirely driven by
QMT, while at 30 K, the QMT rate is too rapid (kT ∼ 0.02 s–1), corresponding to a
half-life time of 38 s, indicating that the vdW adduct will have a
fleeting existence. We also explored the QMT rates of other cyclo[n]carbon–pip systems. This study sheds light on the
decisive role of QMT in the covalent/DB formation of the C18–pip complex at cryogenic temperatures.
Collapse
Affiliation(s)
- Ashim Nandi
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| | - Jan M L Martin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| |
Collapse
|
20
|
Mandal N, Das A, Hajra C, Datta A. Stereoelectronic and dynamical effects dictate nitrogen inversion during valence isomerism in benzene imine. Chem Sci 2022; 13:704-712. [PMID: 35173935 PMCID: PMC8769061 DOI: 10.1039/d1sc04855d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023] Open
Abstract
Non-classical processes such as heavy-atom tunneling and post transition-state dynamics govern stereoselectivity for benzene imine ⇌ 1H-azepine.
Collapse
Affiliation(s)
- Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Ankita Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Chandralekha Hajra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
21
|
Heller ER, Richardson JO. Spin Crossover of Thiophosgene via Multidimensional Heavy-Atom Quantum Tunneling. J Am Chem Soc 2021; 143:20952-20961. [PMID: 34846871 DOI: 10.1021/jacs.1c10088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The spin-crossover reaction of thiophosgene has drawn broad attention from both experimenters and theoreticians as a prime example of radiationless intramolecular decay via intersystem crossing. Despite multiple attempts over 20 years, theoretical predictions have typically been orders of magnitude in error relative to the experimentally measured triplet lifetime. We address the T1 → S0 transition by the first application of semiclassical golden-rule instanton theory in conjunction with on-the-fly electronic-structure calculations based on multireference perturbation theory. Our first-principles approach provides excellent agreement with the experimental rates. This was only possible because instanton theory goes beyond previous methods by locating the optimal tunneling pathway in full dimensionality and thus captures "corner cutting" effects. Since the reaction is situated in the Marcus inverted regime, the tunneling mechanism can be interpreted in terms of two classical trajectories, one traveling forward and one backward in imaginary time, which are connected by particle-antiparticle creation and annihilation events. The calculated mechanism indicates that the spin crossover is sped up by many orders of magnitude due to multidimensional quantum tunneling of the carbon atom even at room temperature.
Collapse
Affiliation(s)
- Eric R Heller
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
22
|
M Nunes C, Pereira NAM, Viegas LP, Pinho E Melo TMVD, Fausto R. Inducing molecular reactions by selective vibrational excitation of a remote antenna with near-infrared light. Chem Commun (Camb) 2021; 57:9570-9573. [PMID: 34546241 DOI: 10.1039/d1cc03574f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate here that selective vibrational excitation of a moiety, remotely attached in relation to the molecular reaction site, might offer a generalized strategy for inducing bond-breaking/bond-forming reactions with exquisite precision. As a proof-of-principle, the electrocyclic ring-expansion of a benzazirine to a ketenimine was induced, in a cryogenic matrix, by near-IR light tuned at the overtone stretching frequency of its OH remote antenna. This accomplishment paves the way for harnessing IR vibrational excitation as a tool to guide a variety of molecular structure manipulations in an exceptional highly-selective manner.
Collapse
Affiliation(s)
- Cláudio M Nunes
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Nelson A M Pereira
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Luís P Viegas
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | | | - Rui Fausto
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal.
| |
Collapse
|
23
|
Feldman VI, Ryazantsev SV, Kameneva SV. Matrix isolation in laboratory astrochemistry: state-of-the-art, implications and perspective. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Henkel S, Merini MP, Mendez-Vega E, Sander W. Lewis acid catalyzed heavy atom tunneling - the case of 1 H-bicyclo[3.1.0]-hexa-3,5-dien-2-one. Chem Sci 2021; 12:11013-11019. [PMID: 34522298 PMCID: PMC8386641 DOI: 10.1039/d1sc02853g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
For many thermal reactions, the effects of catalysis or the influence of solvents on reaction rates can be rationalized by simple transition state models. This is not the case for reactions controlled by quantum tunneling, which do not proceed via transition states, and therefore lack the simple concept of transition state stabilization. 1H-Bicyclo[3.1.0]-hexa-3,5-dien-2-one is a highly strained cyclopropene that rearranges to 4-oxocyclohexa-2,5-dienylidene via heavy-atom tunneling. H2O, CF3I, or BF3 form Lewis acid–base complexes with both reactant and product, and the influence of these intermolecular complexes on the tunneling rates for this rearrangement was studied. The tunneling rate increases by a factor of 11 for the H2O complex, by 23 for the CF3I complex, and is too fast to be measured for the BF3 complex. These observations agree with quantum chemical calculations predicting a decrease in both barrier height and barrier width upon complexation with Lewis acids, resulting in the observed Lewis acid catalysis of the tunneling rearrangement. The ring-opening of a highly strained cyclopropene to a carbene proceeds via heavy-atom tunneling. This rearrangement is accelerated in the presence of H2O, ICF3 or BF3, resulting in a novel Lewis-acid catalyzed tunneling reaction.![]()
Collapse
Affiliation(s)
- Stefan Henkel
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| | - Melania Prado Merini
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| |
Collapse
|
25
|
Pereira NAM, Nunes CM, Reva I, Fausto R. Evidence of IR-Induced Chemistry in a Neat Solid: Tautomerization of Thiotropolone by Thermal, Electronic, and Vibrational Excitations. J Phys Chem A 2021; 125:6394-6403. [PMID: 34275275 DOI: 10.1021/acs.jpca.1c04081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiotropolone isolated in argon and xenon matrices (as monomers) or in a neat solid (as the crystalline or amorphous state) at low temperature was found to exist only in the thione-enol form. Visible light irradiation (λ ≥ 400 nm) leads to thione-enol → thiol-keto tautomerization in matrices and under neat solid conditions at 15 K. The assignment of the IR spectra of the two thiotropolone tautomers (thione-enol and thiol-keto) was carried out with the support of B3LYP/6-311+G(2d,p) computations. The thiol-keto form generated in situ in a neat solid was found to tautomerize back to the thione-enol upon annealing up to 100 K. Gaussian-4 (G4) computations estimate that such a tautomerization process has an energy barrier of ∼25 kJ mol-1, which is consistent with the observations. Moreover, it was found that narrowband IR irradiation of the thiol-keto form in a neat solid, at the frequency of its CH stretching overtones/combination modes, also induces tautomerization to the thione-enol form. Such a result constitutes an important demonstration of vibrationally induced chemistry under neat solid conditions.
Collapse
Affiliation(s)
- Nelson A M Pereira
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Cláudio M Nunes
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Igor Reva
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.,CIEPQPF, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Rui Fausto
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
26
|
Kozuch S, Schleif T, Karton A. Quantum mechanical tunnelling: the missing term to achieve sub-kJ mol -1 barrier heights. Phys Chem Chem Phys 2021; 23:10888-10898. [PMID: 33908522 DOI: 10.1039/d1cp01275d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To predict barrier heights at low temperatures, it is not enough to employ highly accurate electronic structure methods. We discuss the influence of quantum tunnelling on the comparison of experimental and theoretical activation parameters (Ea, ΔH‡, ΔG‡, or ΔS‡), since the slope-based experimental techniques to obtain them completely neglect the tunnelling component. The intramolecular degenerate rearrangement of four fluxional molecules (bullvalene, barbaralane, semibullvalene, and norbornadienylidene) were considered, systems that cover the range between fast deep tunneling and small but significant shallow tunnelling correction. The barriers were computed with the composite W3lite-F12 method at the CCSDT(Q)/CBS level, and the tunnelling contribution with small curvature tunnelling. While at room temperature the effect is small (∼1 kJ mol-1), at low temperatures it can be considerable (in the order of tens of kJ mol-1 at ∼80 K).
Collapse
Affiliation(s)
- Sebastian Kozuch
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, 841051, Israel.
| | | | | |
Collapse
|
27
|
Viegas LP, M. Nunes C, Fausto R. Spin-forbidden heavy-atom tunneling in the ring-closure of triplet cyclopentane-1,3-diyl. Phys Chem Chem Phys 2021; 23:5797-5803. [DOI: 10.1039/d1cp00076d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The putative spin-forbidden heavy-atom tunneling process for the ring closure of cyclopentane-1,3-diyl at cryogenic temperatures is confirmed with calculations employing the weak-coupling formulation of nonadiabatic transition state theory.
Collapse
Affiliation(s)
- Luís P. Viegas
- University of Coimbra
- CQC
- Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Cláudio M. Nunes
- University of Coimbra
- CQC
- Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Rui Fausto
- University of Coimbra
- CQC
- Department of Chemistry
- 3004-535 Coimbra
- Portugal
| |
Collapse
|
28
|
Mosquera-Lois I, Ferro-Costas D, Fernández-Ramos A. Chemical reactivity from the vibrational ground-state level. The role of the tunneling path in the tautomerization of urea and derivatives. Phys Chem Chem Phys 2020; 22:24951-24963. [PMID: 33140774 DOI: 10.1039/d0cp04857g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent developments of low-temperature techniques are providing valuable knowledge about chemical processes that manifest in the quantum regimen. The tunneling effect from the vibrational ground-state is the main mechanism of these reactions, which usually involves the motion or transfer of hydrogen atoms. Theoretical methods can enrich the information supplied by these experimental methods through an insightful analysis of the tunneling process. In this context, canonical variational transition state theory with multidimensional tunneling corrections (CVT/MT) can handle this type of reaction, and it has been applied to several systems within the small-curvature approximation for tunneling (SCT). This method is of proven reliability for polyatomic reactions occurring at room temperature and above, but no tests have been performed to check its performance when only the lowest energy level is populated. In this work, we compare SCT against the least-action tunneling (LAT) method to study the tautomerization and cis-trans interconversion reactions in the enol forms of urea, thiourea, and selenourea. To the best of our knowledge, this is the first time that the LAT method is applied to a polyatomic reaction occurring in the deep-tunneling region. The theoretical results indicate that the reaction mechanisms are controlled by tunneling. The SCT and LAT tautomerization reaction times are in good agreement with the experimental values; however, LAT seems superior to SCT for reactions (tautomerizations) that involve moderate reaction path curvature, whereas the opposite is true for reactions with small curvature (interconversions). These results led us to introduce and recommend the microcanonically optimized tunneling path that selects the tunneling probability as the maximum between the SCT and LAT tunneling probabilities.
Collapse
Affiliation(s)
- Irea Mosquera-Lois
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
29
|
Sarkar S, Chandra S, Suryaprasad B, Ramanathan N, Sundararajan K, Suresh A. Conformational topography of tris(2-methylbutyl) phosphate and the influence of methyl branching at the non-hyperconjugative carbon on the conformational landscape: insights from matrix isolation infrared spectroscopy and DFT computations. Phys Chem Chem Phys 2020; 22:24372-24392. [PMID: 33084659 DOI: 10.1039/d0cp03403g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The branching of a methyl group in a linear chain has a profound influence on the conformational morphology as it wields a strong control in reducing a large number of conformations. To unravel the effect of branching on the second non-hyperconjugative carbon atom on the conformational landscape, the conformations of tris(2-methylbutyl)phosphate (T2MBP) were studied using Density Functional Theory (DFT) computations and matrix isolation infrared spectroscopy. Experimentally, T2MBP along with N2/Ar/Kr/Xe gases was effusively expanded and deposited at a low temperature of 12 K, which was subsequently probed using infrared spectroscopy. The computations of all the conformations were accomplished using the B3LYP level of theory with the 6-311++G(d,p) basis set. A dimethyl(2-methylbutyl) phosphate (DM2MBP) prototype, a molecule containing a single 2-methylbutyl moiety, was examined for its conformations. Computations predicted 18 and 9 conformations each for the 'gauche' and 'trans' families, respectively, in which the third branched carbon completely influences the orientation of the fourth carbon, which simplifies the conformational problem of DM2MBP. Of the 18 and 9 bunches each in the 'gauche' and 'trans' families, only 7 and 3 conformations, respectively, became energetically important, which when extrapolated to T2MBP resulted in 343 and 147 conformational possibilities. The factor of degeneracy further reduced these numbers and a total of 168 conformations effectively contribute to the conformational composition of T2MBP in the gas phase. The role of stereo electronic and steric factors prevalent in the conformational clusters of T2MBP was unravelled respectively using natural bond orbital and non-covalent interaction analyses.
Collapse
Affiliation(s)
- Subramee Sarkar
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|
30
|
Schleif T, Prado Merini M, Sander W. The Mystery of the Benzene-Oxide/Oxepin Equilibrium-Heavy-Atom Tunneling Reversed by Solvent Interactions. Angew Chem Int Ed Engl 2020; 59:20318-20322. [PMID: 32816382 PMCID: PMC7702039 DOI: 10.1002/anie.202010452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 11/24/2022]
Abstract
The equilibrium between benzene oxide (1) and oxepin (2) is of large importance for understanding the degradation of benzene in biological systems and in the troposphere. Our studies reveal that at cryogenic temperatures, this equilibration is governed by rare heavy-atom tunneling. In solid argon at 3 K, 1 rearranges to 2 via tunneling with a rate constant of approximately 5.3×10-5 s-1 . Thus, in a nonpolar environment, 2 is slightly more stable than 1, in agreement with calculations at the CCSD(T) level of theory. However, if the argon is doped with 1 % of H2 O or CF3 I as typical hydrogen or halogen bond donors, respectively, weak complexes of 1 and 2 are formed, and now 2 is tunneling back to form 1. Thus, by forming non-covalent complexes, 1 becomes slightly more stable than 2 and the direction of the heavy-atom tunneling is reversed.
Collapse
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie IIRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Melania Prado Merini
- Lehrstuhl für Organische Chemie IIRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie IIRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
31
|
Schleif T, Prado Merini M, Sander W. The Mystery of the Benzene‐Oxide/Oxepin Equilibrium—Heavy‐Atom Tunneling Reversed by Solvent Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie II Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Melania Prado Merini
- Lehrstuhl für Organische Chemie II Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
32
|
|
33
|
Das A, Hessin C, Ren Y, Desage-El Murr M. Biological concepts for catalysis and reactivity: empowering bioinspiration. Chem Soc Rev 2020; 49:8840-8867. [PMID: 33107878 DOI: 10.1039/d0cs00914h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological systems provide attractive reactivity blueprints for the design of challenging chemical transformations. Emulating the operating mode of natural systems may however not be so easy and direct translation of structural observations does not always afford the anticipated efficiency. Metalloenzymes rely on earth-abundant metals to perform an incredibly wide range of chemical transformations. To do so, enzymes in general have evolved tools and tricks to enable control of such reactivity. The underlying concepts related to these tools are usually well-known to enzymologists and bio(inorganic) chemists but may be a little less familiar to organometallic chemists. So far, the field of bioinspired catalysis has greatly focused on the coordination sphere and electronic effects for the design of functional enzyme models but might benefit from a paradigm shift related to recent findings in biological systems. The goal of this review is to bring these fields closer together as this could likely result in the development of a new generation of highly efficient bioinspired systems. This contribution covers the fields of redox-active ligands, entatic state reactivity, energy conservation through electron bifurcation, and quantum tunneling for C-H activation.
Collapse
Affiliation(s)
- Agnideep Das
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
34
|
Nunes CM, Viegas LP, Wood SA, Roque JPL, McMahon RJ, Fausto R. Heavy‐Atom Tunneling Through Crossing Potential Energy Surfaces: Cyclization of a Triplet 2‐Formylarylnitrene to a Singlet 2,1‐Benzisoxazole. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cláudio M. Nunes
- University of Coimbra CQC Department of Chemistry 3004-535 Coimbra Portugal
| | - Luís P. Viegas
- University of Coimbra CQC Department of Chemistry 3004-535 Coimbra Portugal
| | - Samuel A. Wood
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706-1322 USA
| | - José P. L. Roque
- University of Coimbra CQC Department of Chemistry 3004-535 Coimbra Portugal
| | - Robert J. McMahon
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706-1322 USA
| | - Rui Fausto
- University of Coimbra CQC Department of Chemistry 3004-535 Coimbra Portugal
| |
Collapse
|
35
|
Comment on “Computational evidence for sulfur atom tunneling in the ring flipping reaction of S4N4”. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Schleif T, Tatchen J, Rowen JF, Beyer F, Sanchez‐Garcia E, Sander W. Heavy-Atom Tunneling in Semibullvalenes: How Driving Force, Substituents, and Environment Influence the Tunneling Rates. Chemistry 2020; 26:10452-10458. [PMID: 32293763 PMCID: PMC7496793 DOI: 10.1002/chem.202001202] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 12/21/2022]
Abstract
The Cope rearrangement of selectively deuterated isotopomers of 1,5-dimethylsemibullvalene 2 a and 3,7-dicyano-1,5-dimethylsemibullvalene 2 b were studied in cryogenic matrices. In both semibullvalenes the Cope rearrangement is governed by heavy-atom tunneling. The driving force for the rearrangements is the small difference in the zero-point vibrational energies of the isotopomers. To evaluate the effect of the driving force on the tunneling probability in 2 a and 2 b, two different pairs of isotopomers were studied for each of the semibullvalenes. The reaction rates for the rearrangement of 2 b in cryogenic matrices were found to be smaller than the ones of 2 a under similar conditions, whereas differences in the driving force do not influence the rates. Small curvature tunneling (SCT) calculations suggest that the reduced tunneling rate of 2 b compared to that of 2 a results from a change in the shape of the potential energy barrier. The tunneling probability of the semibullvalenes strongly depends on the matrix environment; however, for 2 a in a qualitatively different way than for 2 b.
Collapse
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum47780BochumGermany
| | - Jörg Tatchen
- Computational BiochemistryUniversität Duisburg-Essen45117EssenGermany
| | - Julien F. Rowen
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum47780BochumGermany
| | - Frederike Beyer
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum47780BochumGermany
| | | | - Wolfram Sander
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum47780BochumGermany
| |
Collapse
|
37
|
Nunes CM, Viegas LP, Wood SA, Roque JPL, McMahon RJ, Fausto R. Heavy‐Atom Tunneling Through Crossing Potential Energy Surfaces: Cyclization of a Triplet 2‐Formylarylnitrene to a Singlet 2,1‐Benzisoxazole. Angew Chem Int Ed Engl 2020; 59:17622-17627. [PMID: 32558100 DOI: 10.1002/anie.202006640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Cláudio M. Nunes
- University of Coimbra CQC Department of Chemistry 3004-535 Coimbra Portugal
| | - Luís P. Viegas
- University of Coimbra CQC Department of Chemistry 3004-535 Coimbra Portugal
| | - Samuel A. Wood
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706-1322 USA
| | - José P. L. Roque
- University of Coimbra CQC Department of Chemistry 3004-535 Coimbra Portugal
| | - Robert J. McMahon
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706-1322 USA
| | - Rui Fausto
- University of Coimbra CQC Department of Chemistry 3004-535 Coimbra Portugal
| |
Collapse
|
38
|
Heavy-Atom Tunneling Processes during Denitrogenation of 2,3-Diazabicyclo[2.2.1]hept-2-ene and Ring Closure of Cyclopentane-1,3-diyl Diradical. Stereoselectivity in Tunneling and Matrix Effect. J Org Chem 2020; 85:8881-8892. [DOI: 10.1021/acs.joc.0c00763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Liu J, Wu Z, Yang Y, Qian W, Wang L, Zeng X. 3-Nitrene-2-formylthiophene and 3-Nitrene-2-formylfuran: Matrix Isolation, Conformation, and Rearrangement Reactions. J Phys Chem A 2020; 124:3786-3794. [PMID: 32309952 DOI: 10.1021/acs.jpca.9b11638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two new heteroarylnitrenes, 3-nitrene-2-formylthiophene (15/15') and 3-nitrene-2-formylfuran (16/16'), in the triplet ground state have been generated in solid Ar (10.0 K) and N2 (15.0 K) matrices by the 266 nm laser photolysis of 3-azido-2-formylthiophene (13) and 3-azido-2-formylfuran (14), respectively. According to the characterization with matrix-isolation IR spectroscopy and quantum chemical calculations at the B3LYP/6-311++G(3df,3pd) level, both nitrenes exhibit two conformations depending on the orientation of the formyl groups. Upon subsequent green-light irradiation (532 nm), both the nitrenes 15/15' and 16/16' undergo ring closure to form 3,2-thienoisoxazole (17) and 3,2-furoisoxazole (18), respectively. Traces of 3-imino-4,5-dihydrothiophene-2-ketene (19), formally formed through the intramolecular 1,4-H shift in the corresponding nitrenes 15/15', have been also identified among the laser photolysis products of the azide 13. In sharp contrast to the photochemistry, the high-vacuum flash pyrolysis (HVFP) of the azide 13 at ca. 1000 K mainly yields imino ketene in two conformations 19/19' together with traces of isoxazole 17. In addition to the reversible conformational interconversion in the imino ketene 19 ↔ 19', the photoisomerization from isoxazole 17 to imino ketene 19 has also been observed. The HVFP of the azide 14 at ca. 1000 K results in complete dissociation to HCN, C2H2, CO, CO2, H2O, and N2. Unlike the recently disclosed hydrogen-atom tunneling (HAT) in the transformation from the structurally related 2-formyl phenylnitrene (2) to imino ketene 3 in a cryogenic Ar-matrix, the absence of HAT in nitrenes 15 and 16 can be reasonably explained by the higher barrier heights and also larger barrier widths in the isomerization reactions.
Collapse
Affiliation(s)
- Jie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Zhuang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Yang Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Weiyu Qian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Lina Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.,Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
40
|
Castro C, Karney WL. Heavy‐Atom Tunneling in Organic Reactions. Angew Chem Int Ed Engl 2020; 59:8355-8366. [DOI: 10.1002/anie.201914943] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/03/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Claire Castro
- Department of Chemistry University of San Francisco 2130 Fulton St. San Francisco CA 94117 USA
| | - William L. Karney
- Department of Chemistry University of San Francisco 2130 Fulton St. San Francisco CA 94117 USA
| |
Collapse
|
41
|
Affiliation(s)
- Claire Castro
- Department of Chemistry University of San Francisco 2130 Fulton St. San Francisco CA 94117 USA
| | - William L. Karney
- Department of Chemistry University of San Francisco 2130 Fulton St. San Francisco CA 94117 USA
| |
Collapse
|
42
|
Schleif T, Mieres-Perez J, Henkel S, Mendez-Vega E, Inui H, McMahon RJ, Sander W. Conformer-Specific Heavy-Atom Tunneling in the Rearrangement of Benzazirines to Ketenimines. J Org Chem 2019; 84:16013-16018. [PMID: 31730349 DOI: 10.1021/acs.joc.9b02482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Methoxy-2H-benzazirine was prepared via irradiation of the corresponding phenyl azide, isolated in an argon matrix at cryogenic temperatures. It undergoes ring expansion to the corresponding ketenimine in the dark at T < 30 K despite a calculated activation barrier of 4.9 kcal mol-1 [B3LYP/6-311++G(d,p)]. Since this rearrangement proceeds with a rate constant in the order of 10-4 s-1, exhibiting only a shallow temperature dependence, the results are interpreted in terms of heavy-atom tunneling. Of the four isomeric benzazirines resulting from the initial photolysis, only one can be observed to rearrange; this conformer specificity is explained by the other potentially observable rearrangements being either too fast or too slow to be detected due to the differences in heights and widths of their respective activation barriers.
Collapse
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie II , Ruhr-Universität Bochum , 44801 Bochum , Germany
| | - Joel Mieres-Perez
- Lehrstuhl für Organische Chemie II , Ruhr-Universität Bochum , 44801 Bochum , Germany
| | - Stefan Henkel
- Lehrstuhl für Organische Chemie II , Ruhr-Universität Bochum , 44801 Bochum , Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II , Ruhr-Universität Bochum , 44801 Bochum , Germany
| | - Hiroshi Inui
- Department of Chemistry, School of Science , Kitasato University , 1-15-1 Kitasato, Minami-ku , Sagamihara , Kanagawa 252-0373 , Japan
| | - Robert J McMahon
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706-1322 , United States
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II , Ruhr-Universität Bochum , 44801 Bochum , Germany
| |
Collapse
|
43
|
Arbitman JK, Michel CS, Castro C, Karney WL. Calculations Predict That Heavy-Atom Tunneling Dominates Möbius Bond Shifting in [12]- and [16]Annulene. Org Lett 2019; 21:8587-8591. [PMID: 31613106 DOI: 10.1021/acs.orglett.9b03185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The contribution of heavy-atom tunneling to reactions of [12]- and [16]annulene was probed using small-curvature tunneling rate calculations. At the CCSD(T)/cc-pVDZ//M06-2X/cc-pVDZ level, tunneling is predicted to account for more than 50% of the rate for Möbius bond shifting and ca. 35% of the rate for electrocyclization in [12]annulene, and over 80% of the rate for Möbius bond shifting in [16]annulene, at temperatures at which these reactions have been observed experimentally.
Collapse
Affiliation(s)
- Jessica K Arbitman
- Department of Chemistry , University of San Francisco , 2130 Fulton Street , San Francisco , California 94117 , United States
| | - Cameron S Michel
- Department of Chemistry , University of San Francisco , 2130 Fulton Street , San Francisco , California 94117 , United States
| | - Claire Castro
- Department of Chemistry , University of San Francisco , 2130 Fulton Street , San Francisco , California 94117 , United States
| | - William L Karney
- Department of Chemistry , University of San Francisco , 2130 Fulton Street , San Francisco , California 94117 , United States
| |
Collapse
|