1
|
Taylor AJ, Wilmore JT, Beer PD. Halogen bonding BODIPY-appended pillar[5]arene for the optical sensing of dicarboxylates and a chemical warfare agent simulant. Chem Commun (Camb) 2024; 60:11916-11919. [PMID: 39222065 DOI: 10.1039/d4cc03748k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A pillar[5]arene host, functionalised with halogen bonding (XB) recognition sites and BODIPY fluorophores, demonstrates strong binding and optical sensing of environmentally relevant dicarboxylates and a chemical warfare agent simulant, in organic and competitive aqueous-organic media - enabled by the unprecedented combination of fluorophore-conjugated XB interactions with the hydrophobic pillar[5]arene host cavity.
Collapse
Affiliation(s)
- Andrew J Taylor
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Jamie T Wilmore
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
2
|
Trung NT, Chiu CH, Cuc TTK, Khang TM, Jalife S, Nhien PQ, Hue BTB, Wu JI, Li YK, Lin HC. Tunable Nano-Bending Structures of Loosened/Tightened Lassos with Bi-Stable Vibration-Induced Emissions for Multi-Manipulations of White-Light Emissions and Sensor Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311789. [PMID: 38240392 DOI: 10.1002/adma.202311789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/13/2024] [Indexed: 05/18/2024]
Abstract
The first tunable nano-bending structures of [1]rotaxane containing a single-fluorophoric N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC) moiety (i.e., [1]RA) are developed as a loosened lasso structure to feature the bright white-light emission [CIE (0.27, 0.33), Φ = 21.2%] in THF solution, where bi-stable states of bending and twisted structures of DPAC unit in [1]RA produce cyan and orange emissions at 480 and 600 nm, respectively. With acid/base controls, tunable loosened/tightened nano-loops of corresponding [1]rotaxanes (i.e., [1]RA/[1]RB) can be achieved via the shuttling of macrocycles reversibly, and thus to adjust their respective white-light/cyan emissions, where the cyan emission of [1]RB is obtained due to the largest conformational constraint of DPAC moiety in its bending form of [1]RB with a tightened lasso structure. Additionally, the non-interlocked analog M-Boc only shows the orange emission, revealing the twisted form of DPAC fluorophore in M-Boc without any conformational constraint. Moreover, the utilization of solvents (with different viscosities and polarities), temperatures, and water fractions could serve as effective tools to adjust the bi-stable vibration-induced emission (VIE) colors of [1]rotaxanes. Finally, tuning ratiometric emission colors of adaptive conformations of DPAC moieties by altering nano-bending structures in [1]rotaxanes and external stimuli can be further developed as intelligent temperature and viscosity sensor materials.
Collapse
Affiliation(s)
- Nguyen Thanh Trung
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chun-Hao Chiu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Trang Manh Khang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Said Jalife
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Pham Quoc Nhien
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Vietnam
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Vietnam
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
3
|
Zhang Z, Wang Q, Zhang X, Mei J, Tian H. Multimode Stimuli-Responsive Room-Temperature Phosphorescence Achieved by Doping Butterfly-like Fluorogens into Crystalline Small-Molecular Hosts. JACS AU 2024; 4:1954-1965. [PMID: 38818060 PMCID: PMC11134381 DOI: 10.1021/jacsau.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024]
Abstract
Materials with stimuli-responsive purely organic room-temperature phosphorescence (RTP) exempt from exquisite molecular design and complex preparation are highly desirable but still relatively rare. Moreover, most of them work in a single switching mode. Herein, we employ a versatile host-guest-doped strategy to facilely construct efficient RTP systems with multimode stimuli-responsiveness without ingenious molecular design. By conveniently doping butterfly-like guests, namely, N,N'-diphenyl-dihydrodibenzo[a,c]phenazines (DPACs), featured with vibration-induced emission into the small-molecular hosts via various methods, RTP systems with finely tunable photophysical properties are readily obtained. Through systematic mechanistic studies and with the aid of a series of control experiments, we unveil the critical role of the host crystallinity in achieving efficient RTP. By virtue of the inherent environmental sensitivity of both RTP and fluorescence of the DPACs, our systems exhibit multiple-stimuli-responsiveness with the luminescence not only switching between the fluorescence and phosphorescence but also continuously changing in the fluorescence color. Advanced dynamic anticounterfeiting and multilevel information encryption is thereby realized.
Collapse
Affiliation(s)
- Zhaozhi Zhang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qijing Wang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xinyi Zhang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ju Mei
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Xu WT, Peng Z, Wu P, Jiang Y, Li WJ, Wang XQ, Chen J, Yang HB, Wang W. Tuning vibration-induced emission through macrocyclization and catenation. Chem Sci 2024; 15:7178-7186. [PMID: 38756822 PMCID: PMC11095381 DOI: 10.1039/d4sc00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/06/2024] [Indexed: 05/18/2024] Open
Abstract
In order to investigate the effect of macrocyclization and catenation on the regulation of vibration-induced emission (VIE), the typical VIE luminogen 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) was introduced into the skeleton of a macrocycle and corresponding [2]catenane to evaluate their dynamic relaxation processes. As investigated in detail by femtosecond transient absorption (TA) spectra, the resultant VIE systems revealed precisely tunable emissions upon changing the solvent viscosity, highlighting the key effect of the formation of [2]catenane. Notably, the introduction of an additional pillar[5]arene macrocycle featuring unique planar chirality endows the resultant chiral VIE-active [2]catenane with attractive circularly polarized luminescence in different states. This work not only develops a new strategy for the design of new luminescent systems with tunable vibration induced emission, but also provides a promising platform for the construction of smart chiral luminescent materials for practical applications.
Collapse
Affiliation(s)
- Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Zhiyong Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Peicong Wu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yefei Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University Shanghai 200241 China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| |
Collapse
|
5
|
Xu WT, Li X, Wu P, Li WJ, Wang Y, Xu XQ, Wang XQ, Chen J, Yang HB, Wang W. Dual Stimuli-Responsive [2]Rotaxanes with Tunable Vibration-Induced Emission and Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202319502. [PMID: 38279667 DOI: 10.1002/anie.202319502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Aiming at the construction of novel stimuli-responsive fluorescent system with precisely tunable emissions, the typical 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) luminogen with attractive vibration-induced emission (VIE) behavior has been introduced into [2]rotaxane as a stopper. Taking advantage of their unique dual stimuli-responsiveness towards solvent and anion, the resultant [2]rotaxanes reveal both tunable VIE and switchable circularly polarized luminescence (CPL). Attributed to the formation of mechanical bonds, DPAC-functionalized [2]rotaxanes display interesting VIE behaviors including white-light emission upon the addition of viscous solvent, as evaluated in detail by femtosecond transient absorption (TA) spectra. In addition, ascribed to the regulation of chirality information transmission through anion-induced motions of chiral wheel, the resolved chiral [2]rotaxanes reveal unique switchable CPL upon the addition of anion, leading to significant increase in the dissymmetry factors (glum ) values with excellent reversibility. Interestingly, upon doping the chiral [2]rotaxanes in stretchable polymer, the blend films reveal remarkable emission change from white light to light blue with significant 6.5-fold increase in glum values up to -0.035 under external tensile stresses. This work provides not only a new design strategy for developing molecular systems with fluorescent tunability but also a novel platform for the construction of smart chiral luminescent materials for practical use.
Collapse
Affiliation(s)
- Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Peicong Wu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co. LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
6
|
Chen X, Yuan S, Qiao M, Jin X, Chen J, Guo L, Su J, Qu DH, Zhang Z. Exploring the Depth-Dependent Microviscosity inside a Micelle Using Butterfly-Motion-Based Fluorescent Probes. J Am Chem Soc 2023; 145:26494-26503. [PMID: 38000910 DOI: 10.1021/jacs.3c11482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
The viscosity distribution of micellar interiors from the very center to the outer surface is dramatically varied, which has been distinguished in theoretical models, yet it remains highly challenging to quantify this issue experimentally. Herein, a series of fluorophore-substituted surfactants DPAC-Fn (n = 3, 5, 7, 9, 11, 13, and 15) are developed by functionalizing the different alkyl-trimethylammonium bromides with the butterfly motion-based viscosity sensor, N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC). The immersion depth of DPAC units of DPAC-Fn in cetrimonium bromide (C16TAB) micelles depends on the alkyl chain lengths n. From deep (n = 15) to shallow (n = 3), DPAC-Fn in C16TAB micelles exhibits efficient viscosity-sensitive dynamic multicolor emissions. With external standards for quantification, the viscosity distribution inside a C16TAB micelle with the size of ∼4 nm is changed seriously from high viscosity (∼190 Pa s) in the core center to low viscosity (∼1 Pa s) near the outer surface. This work provides a tailored approach for powerful micelle tools to explore the depth-dependent microviscosity of micellar interiors.
Collapse
Affiliation(s)
- Xuanying Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shideng Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Mengyuan Qiao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiacheng Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lifang Guo
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Zhang Z, Wang Q, Zhang X, Mei D, Mei J. Modulating the Luminescence, Photosensitizing Properties, and Mitochondria-Targeting Ability of D-π-A-Structured Dihydrodibenzo[ a, c]phenazines. Molecules 2023; 28:6392. [PMID: 37687220 PMCID: PMC10490149 DOI: 10.3390/molecules28176392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Herein, pyridinium and 4-vinylpyridinium groups are introduced into the VIE-active N,N'-disubstituted-dihydrodibenzo[a,c]phenazines (DPAC) framework to afford a series of D-π-A-structured dihydrodibenzo[a,c]phenazines in consideration of the aggregation-benefited performance of the DPAC module and the potential mitochondria-targeting capability of the resultant pyridinium-decorated DPACs (DPAC-PyPF6 and DPAC-D-PyPF6). To modulate the properties and elucidate the structure-property relationship, the corresponding pyridinyl/4-vinylpyridinyl-substituted DPACs, i.e., DPAC-Py and DPAC-D-Py, are designed and studied as controls. It is found that the strong intramolecular charge transfer (ICT) effect enables the effective separation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of DPAC-PyPF6 and DPAC-D-PyPF6, which is conducive to the generation of ROS. By adjusting the electron-accepting group and the π-bridge, the excitation, absorption, luminescence, photosensitizing properties as well as the mitochondria-targeting ability can be finely tuned. Both DPAC-PyPF6 and DPAC-D-PyPF6 display large Stokes shifts (70-222 nm), solvent-dependent absorptions and emissions, aggregation-induced emission (AIE), red fluorescence in the aggregated state (λem = 600-650 nm), aggregation-promoted photosensitizing ability with the relative singlet-oxygen quantum yields higher than 1.10, and a mitochondria-targeting ability with the Pearson coefficients larger than 0.85. DPAC-D-PyPF6 shows absorption maximum at a longer wavelength, slightly redder fluorescence and better photosensitivity as compared to DPAC-PyPF6, which consequently leads to the higher photocytotoxicity under the irradiation of white light as a result of the larger π-conjugation.
Collapse
Affiliation(s)
- Zhaozhi Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| | - Qijing Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| | - Xinyi Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| | - Dong Mei
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Ju Mei
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| |
Collapse
|
8
|
Georgiev NI, Bakov VV, Bojinov VB. A Tutorial Review on the Fluorescent Probes as a Molecular Logic Circuit-Digital Comparator. Molecules 2023; 28:6327. [PMID: 37687156 PMCID: PMC10489932 DOI: 10.3390/molecules28176327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The rapid progress in the field of fluorescent probes and fluorescent sensing material extended this research area toward more complex molecular logic gates capable of carrying out a variety of sensing functions simultaneously. These molecules are able to calculate a composite result in which the analysis is not performed by a man but by the molecular device itself. Since the first report by de Silva of AND molecular logic gate, all possible logic gates have been achieved at the molecular level, and currently, utilization of more complicated molecular logic circuits is a major task in this field. Comparison between two digits is the simplest logic operation, which could be realized with the simplest logic circuit. That is why the right understanding of the applied principles during the implementation of molecular digital comparators could play a critical role in obtaining logic circuits that are more complicated. Herein, all possible ways for the construction of comparators on the molecular level were discussed, and recent achievements connected with these devices were presented.
Collapse
Affiliation(s)
- Nikolai I. Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria;
| | - Ventsislav V. Bakov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria;
| | - Vladimir B. Bojinov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria;
- Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria
| |
Collapse
|
9
|
Nan K, Jiang YN, Li M, Wang B. Recent Progress in Diboronic-Acid-Based Glucose Sensors. BIOSENSORS 2023; 13:618. [PMID: 37366983 DOI: 10.3390/bios13060618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Non-enzymatic sensors with the capability of long-term stability and low cost are promising in glucose monitoring applications. Boronic acid (BA) derivatives offer a reversible and covalent binding mechanism for glucose recognition, which enables continuous glucose monitoring and responsive insulin release. To improve selectivity to glucose, a diboronic acid (DBA) structure design has been explored and has become a hot research topic for real-time glucose sensing in recent decades. This paper reviews the glucose recognition mechanism of boronic acids and discusses different glucose sensing strategies based on DBA-derivatives-based sensors reported in the past 10 years. The tunable pKa, electron-withdrawing properties, and modifiable group of phenylboronic acids were explored to develop various sensing strategies, including optical, electrochemical, and other methods. However, compared to the numerous monoboronic acid molecules and methods developed for glucose monitoring, the diversity of DBA molecules and applied sensing strategies remains limited. The challenges and opportunities are also highlighted for the future of glucose sensing strategies, which need to consider practicability, advanced medical equipment fitment, patient compliance, as well as better selectivity and tolerance to interferences.
Collapse
Affiliation(s)
- Ke Nan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu-Na Jiang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Meng Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Bing Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
- International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| |
Collapse
|
10
|
Shu Z, Sun S, Gu N, Yang Z, Shang Y, Yang Y, Xia M, Lin B, Yang P. An amphiphilic macrocyclic acylhydrazone dimer: Facile synthesis and dual channel detection and removal of phthalate anion. Anal Chim Acta 2023; 1253:341093. [PMID: 36965995 DOI: 10.1016/j.aca.2023.341093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Despite the large number of dicarboxylates' receptors, the dual channel ones capable of recognizing and removing of phthalate anion are rare and the task remains challenging. In this paper, a facilely synthesized amphiphilic macrocyclic acylhydrazone dimer (AMAD) can not only detect phthalate anion selectively, through both color changes and turn-on fluorescence in solution as well as in solid state, but is also able to remove it from either water or organic solvents. The current study paves the way for the search of more multiple functional receptors of dicarboxylates anions.
Collapse
Affiliation(s)
- Zhengning Shu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shitao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ning Gu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhichao Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongxin Shang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingyu Xia
- School of Life Sciences and Biological Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Peng Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
11
|
Hu XL, Gan HQ, Qin ZY, Liu Q, Li M, Chen D, Sessler JL, Tian H, He XP. Phenotyping of Methicillin-Resistant Staphylococcus aureus Using a Ratiometric Sensor Array. J Am Chem Soc 2023; 145:8917-8926. [PMID: 37040584 DOI: 10.1021/jacs.2c12798] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Chemical tools capable of classifying multidrug-resistant bacteria (superbugs) can facilitate early-stage disease diagnosis and help guide precision therapy. Here, we report a sensor array that permits the facile phenotyping of methicillin-resistant Staphylococcus aureus (MRSA), a clinically common superbug. The array consists of a panel of eight separate ratiometric fluorescent probes that provide characteristic vibration-induced emission (VIE) profiles. These probes bear a pair of quaternary ammonium salts in different substitution positions around a known VIEgen core. The differences in the substituents result in varying interactions with the negatively charged cell walls of bacteria. This, in turn, dictates the molecular conformation of the probes and affects their blue-to-red fluorescence intensity ratios (ratiometric changes). Within the sensor array, the differences in the ratiometric changes for the probes result in "fingerprints" for MRSA of different genotypes. This allows them to be identified using principal component analysis (PCA) without the need for cell lysis and nucleic acid isolation. The results obtained with the present sensor array agree well with those obtained using polymerase chain reaction (PCR) analysis.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Zhao-Yang Qin
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital (Eastern), 160 Pujian Rd, Shanghai 200127, China
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital (Eastern), 160 Pujian Rd, Shanghai 200127, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
- The International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| |
Collapse
|
12
|
Hou XF, Chen XM, Bisoyi HK, Qi Q, Xu T, Chen D, Li Q. Light-Driven Aqueous Dissipative Pseudorotaxanes with Tunable Fluorescence Enabling Deformable Nano-Assemblies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11004-11015. [PMID: 36802465 DOI: 10.1021/acsami.2c20276] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing an artificial dynamic nanoscale molecular machine that dissipatively self-assembles far from equilibrium is fundamentally important but is significantly challenging. Herein, we report dissipatively self-assembling light-activated convertible pseudorotaxanes (PRs) that show tunable fluorescence and enable deformable nano-assemblies. A pyridinium-conjugated sulfonato-merocyanine derivative (EPMEH) and cucurbit[8]uril (CB[8]) form the 2EPMEH ⊂ CB[8] [3]PR in a 2:1 stoichiometry, which phototransforms into a transient spiropyran containing 1:1 EPSP ⊂ CB[8] [2]PR when exposed to light. The transient [2]PR thermally relaxes (reversibly) to the [3]PR in the dark accompanied by periodic fluorescence changes that include near-infrared emission. Moreover, octahedral and spherical nanoparticles are formed through the dissipative self-assembly of the two PRs, and the Golgi apparatus is dynamically imaged using fluorescent dissipative nano-assemblies.
Collapse
Affiliation(s)
- Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, United States
| | - Qi Qi
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Tianchi Xu
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
13
|
Li J, Zhang J, Wang J, Wang D, Yan Y, Huang J, Tang BZ. Insights into Self-Assembly of Nonplanar Molecules with Aggregation-Induced Emission Characteristics. ACS NANO 2022; 16:20559-20566. [PMID: 36383407 DOI: 10.1021/acsnano.2c07263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Utilizing nonplanar conjugated molecules as building blocks facilitates the development of self-assembly but is fundamentally challenging. To study the self-assembly behavior, we herein demonstrate the self-assembly process of a nonplanar conjugated molecule with aggregation-induced emission (AIE) feature from an isolated molecule to an irregular cluster to a well-defined vesicle driven by amphiphiles. The superhigh aggregation-sensitive emission affords more precise and detailed information about the self-assembly process than traditional dyes. Meanwhile, the arrangements of the AIE-active molecule change from disordered to well-organized forms by reducing the twisted configuration during the transformation process, and the strong hydrophobicity of amphiphiles is crucial for such configuration and morphology transformations. Owing to the thermophilic bacteria-mimetic membranes, the obtained vesicles exhibit a property of superhigh thermal stability. They also display promising light-harvesting applications. This work not only deciphers the self-assembly of AIE molecules but also provides a strategy for nonplanar molecules to build well-organized self-assemblies.
Collapse
Affiliation(s)
- Jie Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jianyu Zhang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianxing Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
14
|
Zong Z, Zhang Q, Qu DH. Dynamic Timing Control of Molecular Photoluminescent Systems. Chemistry 2022; 28:e202202462. [PMID: 36045479 DOI: 10.1002/chem.202202462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 12/13/2022]
Abstract
Dynamic control of molecular photoluminescence offers chemical solutions to designing functional emissive materials. Although stimuli-switchable molecular luminescent systems are well established, how to encode these dynamic emissive systems with a "timing" feature, that is, time-dependent luminescent properties, remains challenging. This Concept aims to summarize the design principles of dynamic timing molecular photoluminescent systems by discussing the state-of-the-art of this topic and the shaping of fabrication strategies at both the molecular and supramolecular levels. An outlook and perspectives are given to outline the future opportunities and challenges in the rational design and potential applications of these smart emissive systems.
Collapse
Affiliation(s)
- Zezhou Zong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
15
|
Ma CS, Yu C, Zhao CX, Zhou SW, Gu R. Multicolor emission based on a N, N'-Disubstituted dihydrodibenzo [a, c] phenazine crown ether macrocycle. Front Chem 2022; 10:1087610. [PMID: 36545215 PMCID: PMC9760862 DOI: 10.3389/fchem.2022.1087610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 12/10/2022] Open
Abstract
Dynamic fluorophore 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) affords a new platform to produce diverse emission outputs. In this paper, a novel DPAC-containing crown ether macrocycle D-6 is synthesized and characterized. Host-guest interactions of D-6 with different ammonium guests produced a variety of fluorescence with hypsochromic shifts up to 130 nm, which are found to be affected by choice of solvent or guest and host/guest stoichiometry. Formation of supramolecular complexes were confirmed by UV-vis titration, 1H NMR and HRMS spectroscopy.
Collapse
|
16
|
Zhang Z, Jin X, Sun X, Su J, Qu DH. Vibration-induced emission: Dynamic multiple intrinsic luminescence. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Hirao T. Macromolecular architectures constructed by biscalix[5]arene–[60]fullerene host–guest interactions. Polym J 2022. [DOI: 10.1038/s41428-022-00732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Bakov VV, Georgiev NI, Bojinov VB. A Novel Fluorescent Probe for Determination of pH and Viscosity Based on a Highly Water-Soluble 1,8-Naphthalimide Rotor. Molecules 2022; 27:molecules27217556. [PMID: 36364383 PMCID: PMC9657100 DOI: 10.3390/molecules27217556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
A novel highly water-soluble 1,8-naphthalimide with pH and viscosity-sensing fluorescence was synthesized and investigated. The synthesized compound was designed as a molecular device in which a molecular rotor and molecular “off-on” switcher were integrated. In order to obtain a TICT driven molecular motion at C-4 position of the 1,8-naphthalimide fluorophore, a 4-methylpiperazinyl fragment was introduced. The molecular motion was confirmed after photophysical investigation in solvents with different viscosity; furthermore, the fluorescence-sensing properties of the examined compound were investigated in 100% aqueous medium and it was found that it could be used as an efficient fluorescent probe for pH. Due to the non-emissive deexcitation nature of the TICT fluorophore, the novel system showed low yellow–green emission, which represented “power-on”/“rotor-on” state. The protonation of the methylpiperazine amine destabilized the TICT process, which was accompanied by fluorescence enhancement indicating a “power-on”/“rotor-off” state of the system. The results obtained clearly illustrated the great potential of the synthesized compound to serve as pH- and viscosity-sensing material in aqueous solution.
Collapse
Affiliation(s)
- Ventsislav V. Bakov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
| | - Nikolai I. Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +359-2-8163207 (N.I.G.); +359-2-8163206 (V.B.B.)
| | - Vladimir B. Bojinov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
- Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +359-2-8163207 (N.I.G.); +359-2-8163206 (V.B.B.)
| |
Collapse
|
19
|
Van Craen D, Kalarikkal MG, Holstein JJ. A Charge-Neutral Self-Assembled L 2Zn 2 Helicate as Bench-Stable Receptor for Anion Recognition at Nanomolar Concentration. J Am Chem Soc 2022; 144:18135-18143. [PMID: 36137546 DOI: 10.1021/jacs.2c08579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The field of anion recognition chemistry is dominated by two fundamental approaches to design receptors. One relies on the formation of covalent bonds resulting in organic and often neutral host species, while the other one utilizes metal-driven self-assembly for the formation of charged receptors with well-defined nanocavities. Yet, the combination of their individual advantages in the form of charge-neutral metal-assembled bench-stable anion receptors is severely lacking. Herein, we present a fluorescent and uncharged double-stranded hydroxyquinoline-based zinc(II) helicate with the ability to bind environmentally relevant dicarboxylate anions with high fidelity in dimethyl sulfoxide (DMSO) at nanomolar concentrations. These dianions are pinned between zinc(II) centers with binding constants up to 145 000 000 M-1. The presented investigation exemplifies a pathway to bridge the two design approaches and combine their strength in one structural motif as an efficient anion receptor.
Collapse
Affiliation(s)
- David Van Craen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Malavika G Kalarikkal
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
20
|
Muranaka A, Ban H, Naito M, Miyagawa S, Ueda M, Yamamoto S, Harada M, Takaya H, Kimura M, Kobayashi N, Uchiyama M, Tokunaga Y. Naked-Eye-Detectable Supramolecular Sensing System for Glutaric Acid and Isophthalic Acid. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
| | - Hayato Ban
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507 Japan
| | - Masaya Naito
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507 Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507 Japan
| | - Masahiro Ueda
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507 Japan
| | - Shin Yamamoto
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507 Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hikaru Takaya
- Department of Life Science, Faculty of Life & Environmental Sciences, Teikyo University of Science, Main Buld #15-05, 2-2-1 Senjyusakuragi, Adachi-ku, Tokyo 120-0045 Japan
- Division of Photo-Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Masaki Kimura
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507 Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Tokida, Ueda, Nagano 386-8567 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507 Japan
| |
Collapse
|
21
|
Qiao M, Zhang R, Liu S, Liu J, Ding L, Fang Y. Imidazolium-Modified Bispyrene-Based Fluorescent Aggregates for Discrimination of Multiple Anions in Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32706-32718. [PMID: 35817757 DOI: 10.1021/acsami.2c07047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A great number of anions exist in biological systems and natural environment, and are highly relevant to human health and environment quality. It is necessary to develop simple and effective sensors to differentiate and identify those similar or different anions. Here, an imidazolium-modified bispyrene-based fluorescent amphiphilic probe DPyDIM was synthesized and its aggregates were applied to detect and discriminate various anions. The fluorescent aggregates exhibit ratiometric responses to different types of anions. Moreover, the ratiometric responses to different types of anions are featured with multiple-wavelength cross-reactivity. The collection of fluorescence variation at four typical wavelengths can generate distinct recognition patterns to specific anions. The heat map and principal component analysis results verify that this single fluorescent sensor system can effectively and sensitively identify 16 kinds of anions that belong to phosphorus-containing, sulfur-containing anions, and anionic surfactants. The cross-reactive sensing of the amphiphilic fluorescent aggregates was attributed to the different influences on the aggregation behaviors of the probes by different anions. The present work provides a promising strategy for effective detection and discrimination of multiple anions by employing dynamic fluorescent aggregates as a sensing platform.
Collapse
Affiliation(s)
- Min Qiao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Ruowen Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Shanshan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| |
Collapse
|
22
|
Yelda Ünlü F, Aydogan A. An AB 2 -Type Hyperbranched Supramolecular Polymer Based on Calix[4]pyrrole Anion Recognition: Construction, Stimuli-Responsiveness, and Morphology Tuning. Macromol Rapid Commun 2022; 43:e2200447. [PMID: 35858488 DOI: 10.1002/marc.202200447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/01/2022] [Indexed: 11/10/2022]
Abstract
An AB2 -type monomer comprised of a calix[4]pyrrole skeleton and alternating bis-carboxylate units is reported and used for the construction of a novel supramolecular hyperbranched polymer based on anion recognition ability of calix[4]pyrrole. 1 H-, DOSY-NMR spectroscopy, viscosity measurements, and dynamic light scattering techniques are used for the characterization of the supramolecular hyperbranched polymer exhibiting thermo-, pH-, and chemical responsiveness, as well as concentration dependent morphology tune as inferred from electron microscopy analyses. The present study enriches the field of supramolecular polymers with a new construction motif, building block, and provides a simple approach for the fabrication of smart polymer material with multi-responsiveness and -morphologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fatma Yelda Ünlü
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Abdullah Aydogan
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
23
|
Hollstein S, Shyshov O, Hanževački M, Zhao J, Rudolf T, Jäger CM, von Delius M. Dynamic Covalent Self-Assembly of Chloride- and Ion-Pair-Templated Cryptates. Angew Chem Int Ed Engl 2022; 61:e202201831. [PMID: 35384202 PMCID: PMC9400851 DOI: 10.1002/anie.202201831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 12/17/2022]
Abstract
While supramolecular hosts capable of binding and transporting anions and ion pairs are now widely available, self-assembled architectures are still rare, even though they offer an inherent mechanism for the release of the guest ion(s). In this work, we report the dynamic covalent self-assembly of tripodal, urea-based anion cryptates that are held together by two orthoester bridgeheads. These hosts exhibit affinity for anions such as Cl- , Br- or I- in the moderate range that is typically advantageous for applications in membrane transport. In unprecedented experiments, we were able to dissociate the Cs⋅Cl ion pair by simultaneously assembling suitably sized orthoester hosts around the Cs+ and the Cl- ion.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Oleksandr Shyshov
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marko Hanževački
- Department of Chemical and Environmental EngineeringUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Jie Zhao
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tamara Rudolf
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Christof M. Jäger
- Department of Chemical and Environmental EngineeringUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
24
|
Lu K, Wang Y, Zhang H, Tian C, Wang W, Yang T, Qi B, Wu S. Rational Design of a Theranostic Agent Triggered by Endogenous Nitric Oxide in a Cellular Model of Alzheimer's Disease. J Med Chem 2022; 65:9193-9205. [PMID: 35729801 DOI: 10.1021/acs.jmedchem.2c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative damage caused by upregulated nitric oxide (NO) plays an important role in the pathogenesis of Alzheimer's disease (AD). Currently, stimulus-triggered theranostic agents have received much attention due to benefits on disease imaging and targeted therapeutic effects. However, the development of a theranostic agent triggered by NO for AD remains unexplored. Herein, through the mechanism analysis of the reaction between a fluorophore of 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) and NO, which we occasionally found and thereafter structure optimization of DPAC, a theranostic agent DPAC-(peg)4-memantine was fabricated. In an AD cellular model, DPAC-(peg)4-memantine exhibits NO sensing ability for AD imaging. Meanwhile, DPAC-(peg)4-memantine shows improved therapeutic by targeted drug release triggered by NO and sustained therapeutic effects owing to the synergetic antioxidative abilities via the anti-AD drug and NO scavenging. This work provides an unprecedented avenue for the studies on not only AD but also other diseases with NO upregulation.
Collapse
Affiliation(s)
- Kang Lu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yu Wang
- Department of Orthopaedic Trauma, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Hao Zhang
- Department of Orthopaedic Trauma, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Cuiqing Tian
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Wenxiang Wang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Tian Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Baiwen Qi
- Department of Orthopaedic Trauma, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Song Wu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
25
|
Liu H, Hu Z, Zhang H, Li Q, Lou K, Ji X. A Strategy Based on Aggregation-Induced Ratiometric Emission to Differentiate Molecular Weight of Supramolecular Polymers. Angew Chem Int Ed Engl 2022; 61:e202203505. [PMID: 35332640 DOI: 10.1002/anie.202203505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 02/06/2023]
Abstract
Molecular weight has an important bearing on the properties of supramolecular polymers. However, the intuitive differentiation of the molecular weight of supramolecular polymers remains challenging. Given this situation, establishing a reliable relationship between fluorescence properties and molecular weight may be a promising strategy. Herein, we prepared a supramolecular monomer M1 with aggregation-induced ratiometric emission characteristics. With the increasing M1 concentration (0.100-100 mM), the average degree of polymerization (DPDOSY ) rose from 1.00 to 293. Meanwhile, the color changed from dark blue to cyan, finally to yellow-green in the same concentration range. Hence, the intuitive relationship between DPDOSY and fluorescence colors was constructed, allowing the visual differentiation of molecular weight. Moreover, the fluorescence color could be regulated by introducing a competitive molecule to induce the depolymerization of supramolecular polymers.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ziqing Hu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hanwei Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qingyun Li
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kai Lou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaofan Ji
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
26
|
Wang Y, Wu H, Hu W, Stoddart JF. Color-Tunable Supramolecular Luminescent Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105405. [PMID: 34676928 DOI: 10.1002/adma.202105405] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Constructing multicolor photoluminescent materials with tunable properties is an attractive research objective on account of their abundant applications in materials science and biomedical engineering. By comparison with covalent synthesis, supramolecular chemistry has provided a more competitive and promising strategy for the production of organic materials and the regulation of their photophysical properties. By taking advantage of dynamic and reversible noncovalent bonding interactions, supramolecular strategies can, not only simplify the design and fabrication of organic materials, but can also endow them with dynamic reversibility and stimuli responsiveness, making it much easier to adjust the superstructures and properties of the materials. Occasionally, it is possible to introduce emergent properties into these materials, which are absent in their precursor compounds, broadening their potential applications. In an attempt to highlight the state-of-the-art noncovalent strategies available for the construction of smart luminescent materials, an overview of color-tunable materials is presented in this Review, with the emphasis being placed on the examples drawn from host-guest complexes, supramolecular assemblies and crystalline materials. The noncovalent synthesis of room-temperature phosphorescent materials and the modulation of their luminescent properties are also described. Finally, future directions and scientific challenges in the emergent field of color-tunable supramolecular emissive materials are discussed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
27
|
Hollstein S, Shyshov O, Hanževački M, Zhao J, Rudolf T, Jäger CM, Delius M. Dynamisch kovalente Selbstassemblierung von Chlorid‐ und Ionenpaar‐templierten Kryptaten. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Selina Hollstein
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Oleksandr Shyshov
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Marko Hanževački
- Department of Chemical and Environmental Engineering University of Nottingham University Park Nottingham NG7 2RD Großbritannien
| | - Jie Zhao
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Tamara Rudolf
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Christof M. Jäger
- Department of Chemical and Environmental Engineering University of Nottingham University Park Nottingham NG7 2RD Großbritannien
| | - Max Delius
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
28
|
Lou K, Li Q, Zhang R, Sun H, Ji X. Metal-ligand Interactions and Oligo(p-Phenylene Vinylene) Derivatives Based Supramolecular Polymer Possessing Variable Fluorescence Colors. Macromol Rapid Commun 2022; 43:e2200242. [PMID: 35411978 DOI: 10.1002/marc.202200242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Indexed: 11/09/2022]
Abstract
Fluorescent supramolecular polymers combine the benefits of supramolecular polymers in terms of dynamic nature with the optoelectronic features of incorporated fluorophores. However, the majority of fluorescent supramolecular polymers can only exhibit a single fluorescent state, restricting their applications. Incorporating J-type dyes into supramolecular monomers is expected to impart supramolecular polymers with variable fluorescence colors, because the aggregation mode of J-type dyes is closely related to the formation of supramolecular polymers. Herein, we report a supramolecular polymer [M1·Zn(OTf)2 ]n , in which the monomer M1 contains a J-type dye, oligo(p-phenylene vinylene) (OPV) derivative, and two terpyridine ends. The M1 + Zn(OTf)2 solutions exhibit fluorescence color changes varying from cyan to yellow-green in the monomer concentration ranging from 0.04 to 1.00 mM. Moreover, based on the outputs from laser scanning confocal microscopy (LSCM), the fluorescence color transition during the formation of supramolecular polymers is intuitively proven. Additionally, considering the close relationship between the supramolecular polymer structure and the fluorescence color, the fluorescence color can be regulated by introducing tetraethylammonium hydroxide (TBAOH) that can bind with Zn2+ competitively to break up the structure of the supramolecular polymer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kai Lou
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingyun Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruiyan Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haibo Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
29
|
Liu H, Hu Z, Zhang H, Li Q, Lou K, Ji X. A Strategy Based on Aggregation‐Induced Ratiometric Emission to Differentiate Molecular Weight of Supramolecular Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Ziqing Hu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Hanwei Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Qingyun Li
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Kai Lou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Xiaofan Ji
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
30
|
Zong Z, Zhang Q, Qiu SH, Wang Q, Zhao C, Zhao CX, Tian H, Qu DH. Dynamic Timing Control over Multicolor Molecular Emission by Temporal Chemical Locking. Angew Chem Int Ed Engl 2022; 61:e202116414. [PMID: 35072333 DOI: 10.1002/anie.202116414] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Dynamic control over molecular emission, especially in a time-dependent manner, holds great promise for the development of smart luminescent materials. Here we report a series of dynamic multicolor fluorescent systems based on the time-encoded locking and unlocking of individual vibrational emissive units. The intramolecular cyclization reaction driven by adding chemical fuel acts as a chemical lock to decrease the conformational freedom of the emissive units, thus varying the fluorescence wavelength, while the resulting chemically locked state can be automatically unlocked by the hydrolysis reaction with water molecules. The dynamic molecular system can be driven by adding chemical fuels for multiple times. The emission wavelength and lifetime of the locking states can be readily controlled by elaborating the molecular structures, indicating this strategy as a robust and versatile way to modulate multi-color molecular emission in a time-encoded manner.
Collapse
Affiliation(s)
- Zezhou Zong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shu-Hai Qiu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qian Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Cai-Xin Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
31
|
Yu C, Wang X, Zhao CX, Yang S, Gan J, Wang Z, Cao Z, Qu DH. Optically probing molecular shuttling motion of [2]rotaxane by a conformation-adaptive fluorophore. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
|
33
|
Visualizing molecular weights differences in supramolecular polymers. Proc Natl Acad Sci U S A 2022; 119:2121746119. [PMID: 35197296 PMCID: PMC8892509 DOI: 10.1073/pnas.2121746119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Abstract
Molecular weight determinations play a vital role in the characterization of supramolecular polymers. They are essential to assessing the degree of polymerization, which in turn can have a significant impact on the properties of the polymer. While numerous characterization methods have been developed to estimate the number-average molecular weight (Mn) of supramolecular polymers, a simple visual method could provide advantages in terms of ease of use. We have now developed a system wherein differences in the fluorescent signature, including changes in color, allow variations in the Mn of an anion-responsive supramolecular polymer [M1·Zn(OTf)2]n to be readily monitored. The present visual differentiation strategy provides a tool that may be used to characterize supramolecular polymers. Issues of molecular weight determination have been central to the development of supramolecular polymer chemistry. Whereas relationships between concentration and optical features are established for well-behaved absorptive and emissive species, for most supramolecular polymeric systems no simple correlation exists between optical performance and number-average molecular weight (Mn). As such, the Mn of supramolecular polymers have to be inferred from various measurements. Herein, we report an anion-responsive supramolecular polymer [M1·Zn(OTf)2]n that exhibits monotonic changes in the fluorescence color as a function of Mn. Based on theoretical estimates, the calculated average degree of polymerization (DPcal) increases from 16.9 to 84.5 as the monomer concentration increases from 0.08 mM to 2.00 mM. Meanwhile, the fluorescent colors of M1 + Zn(OTf)2 solutions were found to pass from green to yellow and to orange, corresponding to a red shift in the maximum emission band (λmax). Therefore, a relationship between DPcal and λmax could be established. Additionally, the anion-responsive nature of the present system meant that the extent of supramolecular polymerization could be regulated by introducing anions, with the resulting change in Mn being readily monitored via changes in the fluorescent emission features.
Collapse
|
34
|
Zong Z, Zhang Q, Qiu SH, Wang Q, Zhao C, Zhao CX, Tian H, Qu DH. Dynamic timing control over multicolor molecular emission by temporal chemical locking. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zezhou Zong
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Laboratory for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Qi Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Shu-Hai Qiu
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Qian Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Chengxi Zhao
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Laboratory for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Cai-Xin Zhao
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Da-Hui Qu
- Key Labs for Advanced Materials Institute of Fine Chemicals, East China University of Science and Technology Meilong Road 130 200237 Shanghai CHINA
| |
Collapse
|
35
|
Macreadie LK, Gilchrist AM, McNaughton DA, Ryder WG, Fares M, Gale PA. Progress in anion receptor chemistry. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Liu X, Tang J, Yang J, Zhang H, Fang Y. Conformationally tunable calix[4]pyrrole-based nanofilms for efficient molecular separation. J Colloid Interface Sci 2021; 610:368-375. [PMID: 34923274 DOI: 10.1016/j.jcis.2021.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
Preparation of nanofilms which are able to reject water-soluble low molecular weight organic compounds in nanofiltration remains to be a challenge. Herein, we report a new kind of self-standing, defect-free, robust, centimeter-sized and thickness controllable calix[4]pyrrole (C[4]P)-based nanofilms with excellent molecular sieving performance in nanofiltration. The nanofilms were prepared via confined dynamic condensation of the tetra-benzoyl-hydrazine derivative of calix[4]pyrrole (CPTBH) with 1,3,5-benzenetricarboxaldehyde (BTC) at the air/dimethyl sulfoxide (DMSO) interface. Nanofiltration tests under 2 bar pressure with porous polyethylene terephthalate (PET) as the support and a CsF treated CPTBH-BTC nanofilm (∼100 nm) as the selective layer depicted a water permeance of 15 L m-2h-1 bar-1 and a methanol permeance of 45 L m-2h-1 bar-1. High rejection rates (>95%) were found in aqueous solution for most of the tested dyes and pharmaceuticals. Remarkably, the composite membrane also demonstrated good separation performance in aqueous phase to some amino acids and organic dyes with molecular weights around 200 g/mol. High-performance nanofiltration in methanol was also realized. In this case, the molecular weight cutoff value is ∼ 800 g/mol. These findings showed that introduction of macrocyclic hosts is an effective way to develop nanofilms with high solvent permeance but low molecular weight cutoff value.
Collapse
Affiliation(s)
- Xiangquan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Jiaqi Tang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Jinglun Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Helan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
37
|
Wu B, Guo Z, Li G, Zhao J, Liu Y, Wang J, Wang H, Yan X. Synergistic combination of ACQ and AIE moieties to enhance the emission of hexagonal metallacycles. Chem Commun (Camb) 2021; 57:11056-11059. [PMID: 34609386 DOI: 10.1039/d1cc03787k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we show the synergistic combination of aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) units into two hexagonal metallacycles. The resultant metallacycles displayed emergent photophysical properties including tunable fluorescence using the polarity and solubility of the solvents as well as enhanced emissive efficacy. Our work demonstrates the synergistic enhancement of these two orthogonal effects via coordination-driven self-assembly.
Collapse
Affiliation(s)
- Bingzhao Wu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China. .,School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Guangfeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jinbing Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Centre for Oral Disease, Shanghai, 200011, P. R. China.
| | - Huigang Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
38
|
Hu R, Zhang G, Qin A, Tang BZ. Aggregation-induced emission (AIE): emerging technology based on aggregate science. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Functional materials serve as the basic elements for the evolution of technology. Aggregation-induced emission (AIE), as one of the top 10 emerging technologies in chemistry, is a scientific concept coined by Tang, et al. in 2001 and refers to a photophysical phenomenon with enhanced emission at the aggregate level compared to molecular states. AIE-active materials generally present new properties and performance that are absent in the molecular state, providing endless possibilities for the development of technological applications. Tremendous achievements based on AIE research have been made in theoretical exploration, material development and practical applications. In this review, AIE-active materials with triggered luminescence of circularly polarized luminescence, aggregation-induced delayed fluorescence, room-temperature phosphorescence, and clusterization-triggered emission at the aggregate level are introduced. Moreover, high-tech applications in optoelectronic devices, responsive systems, sensing and monitoring, and imaging and therapy are briefly summarized and discussed. It is expected that this review will serve as a source of inspiration for innovation in AIE research and aggregate science.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
| | - Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong , Shenzhen 518172 , China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
| |
Collapse
|
39
|
Kusukawa T, Matoba K, Hoshihara Y, Tanaka S, Nakajima A. Carboxylic acid recognition of an N-ethyl-substituted diamidine having a diphenylnaphthalene unit in competing protic solvents. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Chen X, Chen J, Sun G, Guo L, Su J, Zhang Z. Combination of Two Colorless Fluorophores for Full-Color Red-Green-Blue Luminescence. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38629-38636. [PMID: 34374285 DOI: 10.1021/acsami.1c12229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, a molecular pixel system for full-color luminescence reproduction is achieved by adjusting the colorless mixtures of two matching fluorophores, i.e., polarity-insensitive 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) as the fixed red primary color and polarity-sensitive dansylamide (DSA) as dynamic blue to green primary colors. DPAC and DSA possess independent emission properties free from electron and energy transfer crosstalk between them because of their close frontier molecular orbitals as well as similar absorptions below 400 nm. According to the additive color theory, under diverse mixing ratios and various polarities, a smooth emission color change is realized in the triangle surrounded by the luminophores in the chromaticity diagram with accurate prediction and expedient reproduction. The principle of this system may open an innovative route for the development of powerful full-color luminescent materials, for example, ratiometric fluorescent polarity sensors and invisible fluorescent crayons.
Collapse
Affiliation(s)
- Xuanying Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Jiacheng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Guangchen Sun
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Lifang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
41
|
Ramos‐Soriano J, Benitez‐Benitez SJ, Davis AP, Galan MC. A Vibration‐Induced‐Emission‐Based Fluorescent Chemosensor for the Selective and Visual Recognition of Glucose. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Anthony P. Davis
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - M. Carmen Galan
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
42
|
Ramos‐Soriano J, Benitez‐Benitez SJ, Davis AP, Galan MC. A Vibration-Induced-Emission-Based Fluorescent Chemosensor for the Selective and Visual Recognition of Glucose. Angew Chem Int Ed Engl 2021; 60:16880-16884. [PMID: 33857348 PMCID: PMC8362141 DOI: 10.1002/anie.202103545] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The development of chemosensors to detect analytes in biologically relevant solutions is a challenging task. We report the synthesis of a fluorescent receptor that combines vibration-induced emission (VIE) and dynamic covalent chemistry for the detection of glucose in aqueous media. We show that the bis-2-(N-methylaminomethyl)phenylboronic acid-decorated N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC) receptor 1 can detect glucose and discriminate between closely related monosaccharides including those commonly found in blood. Preliminary studies suggest monosaccharides bind to the DPAC-receptor with a 1:1 stoichiometry to produce pseudomacrocyclic complexes, which in turn leads to distinct optical changes in the fluorescent emission of the receptor for each host. Moreover, the complexation-induced change in emission can be detected visually and quantified in a ratiometric way. Our results highlight the potential of VIE-type receptors for the quantitative determination of saccharides in biological samples.
Collapse
Affiliation(s)
| | | | - Anthony P. Davis
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - M. Carmen Galan
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| |
Collapse
|
43
|
Kusukawa T, Hoshihara Y, Yamana K. Carboxylic acid recognition of a tetraamidine having a tetraphenylethylene unit based on aggregation-induced emission. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
|
45
|
Budak A, Aydogan A. A calix[4]pyrrole-based linear supramolecular polymer constructed by orthogonal self-assembly. Chem Commun (Camb) 2021; 57:4186-4189. [PMID: 33908473 DOI: 10.1039/d1cc01003d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A calix[4]pyrrole having a ureidopyrimidinone unit was successfully synthesized from its alcohol-functionalized congener and further used for the first time to obtain a thermo- and chemical-responsive linear supramolecular polymer via orthogonal self-assembly comprising a combination of quadruple hydrogen bonding and anion recognition.
Collapse
Affiliation(s)
- Aysegul Budak
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.
| | - Abdullah Aydogan
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.
| |
Collapse
|
46
|
Bozkurt S, Halay E, Durmaz M, Topkafa M, Ceylan Ö. A novel turn‐on fluorometric “reporter‐spacer‐receptor” chemosensor based on calix[4]arene scaffold for detection of cyanate anion. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Selahattin Bozkurt
- Scientific Analysis Technological Application and Research Center Usak University Usak Turkey
- Vocational School of Health Services Usak University Usak Turkey
| | - Erkan Halay
- Scientific Analysis Technological Application and Research Center Usak University Usak Turkey
- Department of Chemistry and Chemical Processing Technologies, Banaz Vocational School Usak University Usak Turkey
| | - Mustafa Durmaz
- Department of Chemistry Education, Ahmet Kelesoglu Education Faculty Necmettin Erbakan University Konya Turkey
| | - Mustafa Topkafa
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences Konya Technical University Konya Turkey
| | - Özgür Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational Scholl Mugla Sitki Kocman University Mugla Turkey
| |
Collapse
|
47
|
Petroselli M, Rebek J, Yu Y. Highly Selective Radical Monoreduction of Dihalides Confined to a Dynamic Supramolecular Host. Chemistry 2021; 27:3284-3287. [PMID: 33301606 DOI: 10.1002/chem.202004953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/03/2020] [Indexed: 12/26/2022]
Abstract
Reduction of alkyl dihalide guests (2-5 and 7) with trialkylsilanes (R3 SiH) was performed in water-soluble host 1 to investigate the effects of confinement on fast radical reactions (k≥103 m-1 s-1 ). High selectivity (>95 %) for mono-reduced products was observed for primary and secondary dihalide guests under mild conditions. The results highlight the importance of host-guest complexation rates to modulate the product selectivity in radical reactions.
Collapse
Affiliation(s)
- Manuel Petroselli
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, P. R. China
| | - Julius Rebek
- The Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute for Chemical Biology and Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, P. R. China
| |
Collapse
|
48
|
Guo C, Sedgwick AC, Hirao T, Sessler JL. Supramolecular Fluorescent Sensors: An Historical Overview and Update. Coord Chem Rev 2021; 427:213560. [PMID: 34108734 PMCID: PMC8184024 DOI: 10.1016/j.ccr.2020.213560] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since as early as 1867, molecular sensors have been recognized as being intelligent "devices" capable of addressing a variety of issues related to our environment and health (e.g., the detection of toxic pollutants or disease-related biomarkers). In this review, we focus on fluorescence-based sensors that incorporate supramolecular chemistry to achieve a desired sensing outcome. The goal is to provide an illustrative overview, rather than a comprehensive listing of all that has been done in the field. We will thus summarize early work devoted to the development of supramolecular fluorescent sensors and provide an update on recent advances in the area (mostly from 2018 onward). A particular emphasis will be placed on design strategies that may be exploited for analyte sensing and corresponding molecular platforms. Supramolecular approaches considered include, inter alia, binding-based sensing (BBS) and indicator displacement assays (IDAs). Because it has traditionally received less treatment, many of the illustrative examples chosen will involve anion sensing. Finally, this review will also include our perspectives on the future directions of the field.
Collapse
Affiliation(s)
- Chenxing Guo
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
49
|
|
50
|
Tay HM, Beer P. Optical sensing of anions by macrocyclic and interlocked hosts. Org Biomol Chem 2021; 19:4652-4677. [DOI: 10.1039/d1ob00601k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarises recent developments in the use of macrocyclic and mechanically-interlocked host molecules as optical sensors for anions.
Collapse
Affiliation(s)
- Hui Min Tay
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Paul Beer
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|