1
|
Zhang Z, Zhu BK, Yi ZY, Fang T, Jin Z, He L, Chen BB, Qi X, Wang CJ. Catalytic Asymmetric Synthesis and Applications of Stereogenic β'-Methyl Enones and β,β'-Dimethyl Ketones. Angew Chem Int Ed Engl 2025; 64:e202414449. [PMID: 39658841 DOI: 10.1002/anie.202414449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
The "Magic Methyl" effect has received tremendous interest in medicinal chemistry due to the significant pharmacological and physical modification of properties that have been observed upon introducing a methyl group, especially, a stereogenic methyl group into potential chiral drug candidates. The prevalence of stereogenic β-methyl ketone structural motifs in bioactive compounds and natural products has long motivated the development of enantioselective strategies toward their synthesis. Herein, we have rationally designed a Rh-catalyzed asymmetric monohydrogenation of readily-available β'-methylene conjugated enones with high efficiency and remarkable site-selectivity and enantioselectivity control for the practical construction of enantioenriched β'-methyl unsaturated enones that are difficult to access by other methods. Control experiments revealed that the conjugated C=C bond in β'-methylene conjugated enones plays a significant role in enhancing the reactivity of monohydrogenation. This methodology is applicable for the preparation of chiral β,β'-dimethyl ketones through consecutive double asymmetric hydrogenation of β,β'-dimethylene ketones. Detailed mechanistic investigation and DFT studies further provided strong support for a unique processive catalysis pathway for double asymmetric hydrogenation. The synthetic utilities have been demonstrated in the concise synthesis of several key intermediates for bioactive molecules, asymmetric total synthesis of natural products (S)-(+)-ar-Turmerone and (S)-(+)-dihydro-ar-Turmerone, and two C2-symmetric chiral spirocyclic diol frameworks.
Collapse
Affiliation(s)
- Zongpeng Zhang
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bing-Ke Zhu
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhi-Yuan Yi
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ting Fang
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhuan Jin
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ling He
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo-Bin Chen
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaotian Qi
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Wei H, Luo Y, Li J, Chen J, Gridnev ID, Zhang W. Enantioselective Synthesis of Chiral β 2-Amino Phosphorus Derivatives via Nickel-Catalyzed Asymmetric Hydrogenation. J Am Chem Soc 2025; 147:342-352. [PMID: 39730303 DOI: 10.1021/jacs.4c10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Compared with chiral β3-amino phosphorus compounds, which can be easily derived from natural optically pure α-amino acids, obtaining chiral β2-amino phosphorus derivatives remains a challenge. These derivatives, which cannot be derived from chiral natural amino acids, possess unique biological activities or potential catalytic activities. Herein, highly enantioselective hydrogenation for the preparation of chiral β2-amino phosphorus derivatives from E-β-enamido phosphorus compounds is reported by using a green and low-cost earth-abundant metal nickel catalyst (13 examples of 99% ee). In particular, this catalytic system provides the same enantiomer product from the E- and Z-alkene substrates, and the E/Z-substrate mixtures provide good results (up to 96% ee). The products can be diversely derivatized, and the derivatives exhibit good catalytic activities as novel chiral β2-aminophosphine ligands. Density functional theory calculations reveal that the weak attractive interactions between the nickel catalyst and the substrate are crucial for achieving perfect enantioselectivities. In addition, the different coordination modes between the E- or Z-substrates and the catalyst may result in the formation of the same enantiomer product.
Collapse
Affiliation(s)
- Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Petrone DA, Valette D, Boyd O, Newman J, Plasek E, Shao G, Wang X, Itoh T, Maddess M, Peng F. HTE-Enabled Development of an Ene-Reductase-Catalyzed Desymmetrization: Remote Control of All-Carbon Quaternary γ-Centers. Org Lett 2024; 26:11212-11217. [PMID: 39670812 DOI: 10.1021/acs.orglett.4c04383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
We report the remote stereocontrol of all-carbon quaternary γ-centers via an ene-reductase (ERED)-catalyzed desymmetrization of prochiral cyclohexadienones. By leveraging high-throughput experimentation (HTE) protocols, we were able to rapidly identify EREDs capable of desymmetrizing both spirocyclic cyclohexadienones and non-spirocyclic 2,6-disubstituted cyclohexadienone substrates in up to 85% yield with excellent levels of stereoselectivity (up to >99% ee and >20:1 dr) under mild reaction conditions.
Collapse
Affiliation(s)
- David A Petrone
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Damien Valette
- Process Research & Development, MSD (UK) Limited, 120 Moorgate, London EC2M 6UR, U.K
| | - Olivia Boyd
- Discovery Chemistry, MSD (UK) Limited, 120 Moorgate, London EC2M 6UR, U.K
| | - Justin Newman
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Erin Plasek
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Guangxin Shao
- Department of Synthetic Chemistry, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Xiao Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tetsuji Itoh
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew Maddess
- Process Research & Development, MRL, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Feng Peng
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
4
|
Mei P, Ma Z, Chen Y, Wu Y, Hao W, Fan QH, Zhang WX. Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis. Chem Soc Rev 2024; 53:6735-6778. [PMID: 38826108 DOI: 10.1039/d3cs00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Peifeng Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zibin Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Li B, Wang Z, Luo Y, Wei H, Chen J, Liu D, Zhang W. Nickel-catalyzed asymmetric hydrogenation for the preparation of α-substituted propionic acids. Nat Commun 2024; 15:5482. [PMID: 38942809 PMCID: PMC11213955 DOI: 10.1038/s41467-024-49801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Transition metal-catalyzed asymmetric hydrogenation is one of the most efficient methods for the preparation of chiral α-substituted propionic acids. However, research on this method, employing cleaner earth-abundant metal catalysts, is still insufficient in both academic and industrial contexts. Herein, we report an efficient nickel-catalyzed asymmetric hydrogenation of α-substituted acrylic acids affording the corresponding chiral α-substituted propionic acids with up to 99.4% ee (enantiomeric excess) and 10,000 S/C (substrate/catalyst). In particular, this method can be used to obtain (R)-dihydroartemisinic acid with 99.8:0.2 dr (diastereomeric ratio) and 5000 S/C, which is an essential intermediate for the preparation of the antimalarial drug Artemisinin. The reaction mechanism has been investigated via experiments and DFT (Density Functional Theory) calculations, which indicate that the protonolysis of the C-Ni bond of the key intermediate via an intramolecular proton transfer from the carboxylic acid group of the substrate, is the rate-determining step.
Collapse
Affiliation(s)
- Bowen Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiling Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Delong Liu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
6
|
Kattula B, Munakala A, Kashyap R, Nallamilli T, Nagendla NK, Naza S, Mudiam MKR, Chegondi R, Addlagatta A. Strategic enzymatic enantioselective desymmetrization of prochiral cyclohexa-2,5-dienones. Chem Commun (Camb) 2024; 60:6647-6650. [PMID: 38856301 DOI: 10.1039/d4cc02181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Asymmetric desymmetrization through the selective reduction of one double bond of prochiral 2,5-cyclohexadienones is highly challenging. A novel method has been developed for synthesizing chiral cyclohexenones by employing an ene-reductase (Bacillus subtilis YqjM) enzyme that belongs to the OYE family. Our strategy demonstrates high substrate scope and enantioselectivity towards substrates containing all-carbon as well as heteroatom (O, N)-containing quaternary centers. The mechanistic studies (kH/D = ∼1.8) indicate that hydride transfer is probably the rate-limiting step. Mutation of several active site residues did not affect the stereochemical outcomes. This work provides a convenient way of synthesizing various enantioselective γ,γ-disubstituted cyclohexanones using enzymes.
Collapse
Affiliation(s)
- Bhavita Kattula
- Department of Applied Biology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anandarao Munakala
- Department of Organic Synthesis and Process Chemistry, Hyderabad, Telangana, India.
| | | | - Tarun Nallamilli
- Department of Organic Synthesis and Process Chemistry, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Narendra Kumar Nagendla
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Surabhi Naza
- Department of Applied Biology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mohana Krishna Reddy Mudiam
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anthony Addlagatta
- Department of Applied Biology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
7
|
Yang L, Yang T, Qian Y, Zhang X, Wen J. Desymmetric Hydrogenation of meso-Dicarboxylic Acids. J Am Chem Soc 2024; 146:15908-15916. [PMID: 38809425 DOI: 10.1021/jacs.4c02538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Efficient transformation of platform chemicals into key intermediates has been increasingly important for the pharmaceutical industry. The development of the catalytic reduction of abundant carboxylic acids with molecular hydrogen has been of both practical and theoretical value. We herein report the homogeneous hydrogenation of dicarboxylic acids with the strategy of desymmetrization. Using a rhodium/bisphosphine catalyst, one carboxyl group of meso-diacids was selectively reduced to yield chiral lactones with satisfactory enantioselectivity. This method provides a straightforward approach to produce chiral lactone intermediates for the manufacture of biotin, telaprevir, and other antivirus drugs. Both experimental and computational investigations were carried out, revealing a novel neighboring group coordination mechanism in the catalytic cycle.
Collapse
Affiliation(s)
- Lei Yang
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yu Qian
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jialin Wen
- Department of Chemical Process R&D, Lianyungang Institute of Research, Jiangsu Hengrui Pharmaceuticals Co., Ltd., 7 Kunlunshan Road, Lianyungang 222000, China
| |
Collapse
|
8
|
Li S, Harir M, Bastviken D, Schmitt-Kopplin P, Gonsior M, Enrich-Prast A, Valle J, Hertkorn N. Dearomatization drives complexity generation in freshwater organic matter. Nature 2024; 628:776-781. [PMID: 38658683 PMCID: PMC11043043 DOI: 10.1038/s41586-024-07210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.
Collapse
Affiliation(s)
- Siyu Li
- Research Unit Analytical Biogeochemistry (BGC), Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mourad Harir
- Research Unit Analytical Biogeochemistry (BGC), Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany
| | - David Bastviken
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping, Sweden
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical Biogeochemistry (BGC), Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, USA
| | - Alex Enrich-Prast
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping, Sweden
- Institute of Marine Science, Federal University of São Paulo, Santos, Brazil
| | - Juliana Valle
- Research Unit Analytical Biogeochemistry (BGC), Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Norbert Hertkorn
- Research Unit Analytical Biogeochemistry (BGC), Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping, Sweden.
| |
Collapse
|
9
|
Song X, Bai S, Li Y, Yi T, Long X, Pu Q, Dang T, Ma M, Ren Q, Qin X. Expedient and divergent synthesis of unnatural peptides through cobalt-catalyzed diastereoselective umpolung hydrogenation. SCIENCE ADVANCES 2023; 9:eadk4950. [PMID: 38117889 PMCID: PMC10732522 DOI: 10.1126/sciadv.adk4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
The development of a reliable method for asymmetric synthesis of unnatural peptides is highly desirable and particularly challenging. In this study, we present a versatile and efficient approach that uses cobalt-catalyzed diastereoselective umpolung hydrogenation to access noncanonical aryl alanine peptides. This protocol demonstrates good tolerance toward various functional groups, amino acid sequences, and peptide lengths. Moreover, the versatility of this reaction is illustrated by its successful application in the late-stage functionalization and formal synthesis of various representative chiral natural products and pharmaceutical scaffolds. This strategy eliminates the need for synthesizing chiral noncanonical aryl alanines before peptide formation, and the hydrogenation reaction does not result in racemization or epimerization. The underlying mechanism was extensively explored through deuterium labeling, control experiments, HRMS identification, and UV-Vis spectroscopy, which supported a reasonable CoI/CoIII catalytic cycle. Notably, acetic acid and methanol serve as safe and cost-effective hydrogen sources, while indium powder acts as the terminal electron source.
Collapse
Affiliation(s)
- Xinjian Song
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Shuangyi Bai
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Yuan Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Tong Yi
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Xinyu Long
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Qinghua Pu
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Ting Dang
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Mengjie Ma
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Qiao Ren
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Xurong Qin
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, No. 94 Wei Jin Road, Tianjin, 300071, P. R. China
| |
Collapse
|
10
|
Zeng L, Zhao M, Lin B, Song J, Tucker JHR, Wen J, Zhang X. Cobalt-Catalyzed Enantioselective Hydrogenation of Diaryl Ketones with Ferrocene-Based Secondary Phosphine Oxide Ligands. Org Lett 2023; 25:6228-6233. [PMID: 37585346 DOI: 10.1021/acs.orglett.3c02530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
A new class of cobalt catalytic system for asymmetric hydrogenation of ketones was herein reported, involving the development of novel ferrocene-based secondary phosphine oxide ligands. An unusual P-O bidentate coordination pattern with cobalt was confirmed by an X-ray diffraction study. The bichelating tetrahedral cobalt(II) complexes afforded high reactivities (up to 99% yield) and good to excellent enantioselectivities (up to 92% ee) in the AH of various ortho-substituted diaryl ketones. In addition, the diferrocenyl cobalt complex was characterized with intriguing UV-vis absorption and electrochemical properties.
Collapse
Affiliation(s)
- Liyao Zeng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Menglong Zhao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Bijin Lin
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jingyuan Song
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jialin Wen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Xumu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
11
|
Hu Y, Zou Y, Yang H, Ji H, Jin Y, Zhang Z, Liu Y, Zhang W. Precise Synthesis of Chiral Z-Allylamides by Cobalt-Catalyzed Asymmetric Sequential Hydrogenations. Angew Chem Int Ed Engl 2023; 62:e202217871. [PMID: 36753391 DOI: 10.1002/anie.202217871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Asymmetric sequential hydrogenations of conjugated enynes have been developed using a Ph-BPE-CoI catalyst for the precise synthesis of chiral Z-allylamides in high activity (up to 1000 substrate/catalyst (S/C)) and with excellent enantioselectivity (up to >99 % enantiomeric excess (ee)). Mechanism experiments and theoretical calculations support a cationic CoI /CoIII redox catalytic cycle. The catalytic activity difference between cobalt complexes of Ph-BPE and QuinoxP* was explained by the process decomposition of rate-determining step in the second hydrogenation.
Collapse
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huiwen Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haotian Ji
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yue Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
12
|
Wei H, Chen H, Chen J, Gridnev ID, Zhang W. Nickel-Catalyzed Asymmetric Hydrogenation of α-Substituted Vinylphosphonates and Diarylvinylphosphine Oxides. Angew Chem Int Ed Engl 2023; 62:e202214990. [PMID: 36507919 DOI: 10.1002/anie.202214990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Chiral α-substituted ethylphosphonate and ethylphosphine oxide compounds are widely used in drugs, pesticides, and ligands. However, their catalytic asymmetric synthesis is still rare. Of the only asymmetric hydrogenation methods available at present, all cases use rare metal catalysts. Herein, we report an efficient earth-abundant transition-metal nickel catalyzed asymmetric hydrogenation affording the corresponding chiral ethylphosphine products with up to 99 % yield, 96 % ee (enantiomeric excess) (99 % ee, after recrystallization) and 1000 S/C (substrate/catalyst); this is also the first study on the asymmetric hydrogenation of terminal olefins using a nickel catalyst under a hydrogen atmosphere. The catalytic mechanism was investigated via deuterium-labelling experiments and calculations which indicate that the two added hydrogen atoms of the products come from hydrogen gas. Additionally, it is believed that the reaction involves a NiII rather than Ni0 cyclic process based on the weak attractive interactions between the Ni catalyst and terminal olefin substrate.
Collapse
Affiliation(s)
- Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Hao Chen
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jianzhong Chen
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
13
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese-Catalyzed Asymmetric Hydrogenation of 3H-Indoles. Angew Chem Int Ed Engl 2022; 61:e202202814. [PMID: 35238455 DOI: 10.1002/anie.202202814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/21/2022]
Abstract
The asymmetric hydrogenation (AH) of 3H-indoles represents an ideal approach to the synthesis of useful chiral indoline scaffolds. However, very few catalytic systems based on precious metals have been developed to realize this challenging reaction. Herein, we report a Mn-catalyzed AH of 3H-indoles with excellent yields and enantioselectivities. The kinetic resolution of racemic 3H-indoles by AH was also achieved with high s-factors to construct quaternary stereocenters. Many acid-sensitive functional groups, which cannot be tolerated when using a state-of-the-art ruthenium catalyst, were compatible with manganese catalysis. This new process expands the scope of this transformation and highlights the uniqueness of earth-abundant metal catalysis. The reaction could proceed with catalyst loadings at the parts per million (ppm) level with an exceptional turnover number of 72 350. This is the highest value yet reported for an earth-abundant metal-catalyzed AH reaction.
Collapse
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yihan Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yibiao Li
- School of Biotechnology and Health, Wuyi University, Jiangmen, Guangdong, 529090, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Deng CQ, Deng J. Ni-Catalyzed Asymmetric Hydrogenation of Aromatic Ketoacids for the Synthesis of Chiral Lactones. Org Lett 2022; 24:2494-2498. [PMID: 35349293 DOI: 10.1021/acs.orglett.2c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A highly efficient Ni-catalyzed asymmetric hydrogenation of aromatic γ- and δ-ketoacids has been developed, affording a series of γ- and δ-aryl lactones in high yields and excellent enantioselectivities (≤98% ee). The hydrogenation could occur smoothly on a gram scale with 0.05 mol % catalyst loading (S/C = 2000). This protocol provides an efficient and practical approach for accessing chiral lactones with important potential applications in organic synthesis and the pharmaceutical industry.
Collapse
Affiliation(s)
- Chen-Qiang Deng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Deng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of 3H‐Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Yihan Xu
- Tsinghua University Department of Chemistry CHINA
| | - Yibiao Li
- Wuyi University Department of Chemistry CHILE
| | - Qiang Liu
- Tsinghua University Department of Chemistry Tsinghuayuan 1 100084 Beijing CHINA
| |
Collapse
|
16
|
Qiao Y, Bai S, Wu XF, Yang Y, Meng H, Ming J. Rhodium-Catalyzed Desymmetric Arylation of γ,γ-Disubsituted Cyclohexadienones: Asymmetric Synthesis of Chiral All-Carbon Quaternary Centers. Org Lett 2022; 24:1556-1560. [PMID: 35142218 DOI: 10.1021/acs.orglett.2c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The desymmetric arylation of prochiral cyclohexadienones with ArZnCl in the presence of an (R)-segphos-rhodium catalyst gave high yields of the corresponding cyclohexenones, which contain a chiral arylated carbon center at the β-position and a chiral all-carbon quaternary center at the γ-position, with high diastereo- and enantioselectivities. This catalytic system was also applied to the arylation of spirocarbocyclic cyclohexadienones and afforded the corresponding cyclohexenones bearing a chiral spiro quaternary carbon with high dr and ee.
Collapse
Affiliation(s)
- Yu Qiao
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Shiming Bai
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Xiao-Feng Wu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Ying Yang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - He Meng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| |
Collapse
|
17
|
Liu X, Rong X, Liu S, Lan Y, Liu Q. Cobalt-Catalyzed Desymmetric Isomerization of Exocyclic Olefins. J Am Chem Soc 2021; 143:20633-20639. [PMID: 34870975 DOI: 10.1021/jacs.1c11343] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chiral cyclic olefins, 1-methylcyclohexenes, are versatile building blocks for the synthesis of pharmaceuticals and natural products. Despite the prevalence of these structural motifs, the development of efficient synthetic methods remains an unmet challenge. Herein we report a novel desymmetric isomerization of exocyclic olefins using a series of newly designed chiral cobalt catalysts, which enables a straightforward construction of chiral 1-methylcyclohexenes with diversified functionalities. The synthetic utility of this methodology is highlighted by a concise and enantioselective synthesis of a natural product, β-bisabolene. The versatility of the reaction products is further demonstrated by multifarious derivatizations.
Collapse
Affiliation(s)
- Xufang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xianle Rong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People's Republic of China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People's Republic of China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
18
|
Zhang D, Li M, Li J, Lin A, Yao H. Rhodium-catalyzed intermolecular enantioselective Alder-ene type reaction of cyclopentenes with silylacetylenes. Nat Commun 2021; 12:6627. [PMID: 34785658 PMCID: PMC8595345 DOI: 10.1038/s41467-021-26955-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
The Alder-ene type reaction between alkenes and alkynes provides an efficient and atom-economic method for the construction of C-C bond, which has been widely employed in the synthesis of natural products and other functional molecules. The intramolecular enantioselective Alder-ene cycloisomerization reactions of 1,n-enynes have been extensively investigated. However, the intermolecular asymmetric version has not been reported, and remains a challenging task. Herein, we describe a rhodium-catalyzed intermolecular enantioselective Alder-ene type reaction of cyclopentenes with silylacetylenes. A variety of chiral (E)-vinylsilane tethered cyclopentenes bearing one quaternary carbon and one tertiary carbon stereocenters are achieved in high yields and enantioselectivities. The reaction undergoes carbonyl-directed migratory insertion, β-H elimination and desymmetrization of prochiral cyclopentenes processes.
Collapse
Affiliation(s)
- Dongquan Zhang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Miaomiao Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jiajia Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.
| |
Collapse
|
19
|
Ye S, Banwell MG. Chemoenzymatic and Enantiomeric Switching Regimes Enabling the Synthesis of Homochiral Cyclohexa-2,5-dienones Incorporating All-Carbon Quaternary Centers. J Org Chem 2021; 86:15403-15412. [PMID: 34617772 DOI: 10.1021/acs.joc.1c01931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enantiomerically pure, bromobenzene-derived metabolite 5 has been transformed into enone 20 using a reaction sequence involving Suzuki-Miyaura cross-coupling and Eschenmoser-Claisen rearrangement processes. Treatment of compound 20 with lithium hydroxide results in an acetonide fragmentation reaction that delivers the 4,4-disubstituted cyclohexa-2,5-dienone 21, reductive de-oxygenation of which leads to congener 22. A closely related sequence of reactions can be used to convert the same homochiral starting material 5 into compound ent-22.
Collapse
Affiliation(s)
- Sebastian Ye
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Wu H, Su H, Schulze EJ, Peters BBC, Nolan MD, Yang J, Singh T, Ahlquist MSG, Andersson PG. Site- and Enantioselective Iridium-Catalyzed Desymmetric Mono-Hydrogenation of 1,4-Dienes. Angew Chem Int Ed Engl 2021; 60:19428-19434. [PMID: 34137493 PMCID: PMC8456900 DOI: 10.1002/anie.202107267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 01/22/2023]
Abstract
The control of site selectivity in asymmetric mono-hydrogenation of dienes or polyenes remains largely underdeveloped. Herein, we present a highly efficient desymmetrization of 1,4-dienes via iridium-catalyzed site- and enantioselective hydrogenation. This methodology demonstrates the first iridium-catalyzed hydrogenative desymmetriation of meso dienes and provides a concise approach to the installation of two vicinal stereogenic centers adjacent to an alkene. High isolated yields (up to 96 %) and excellent diastereo- and enantioselectivities (up to 99:1 d.r. and 99 % ee) were obtained for a series of divinyl carbinol and divinyl carbinamide substrates. DFT calculations reveal that an interaction between the hydroxy oxygen and the reacting hydride is responsible for the stereoselectivity of the desymmetrization of the divinyl carbinol. Based on the calculated energy profiles, a model that simulates product distribution over time was applied to show an intuitive kinetics of this process. The usefulness of the methodology was demonstrated by the synthesis of the key intermediates of natural products zaragozic acid A and (+)-invictolide.
Collapse
Affiliation(s)
- Haibo Wu
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Hao Su
- School of BiotechnologyKTH Royal Institute of Technology10691StockholmSweden
| | - Erik J. Schulze
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Bram B. C. Peters
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Mark D. Nolan
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Jianping Yang
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Thishana Singh
- School of Chemistry and PhysicsUniversity of Kwazulu-NatalPrivate Bag X54001Durban4000South Africa
| | | | - Pher G. Andersson
- Department of Organic ChemistryStockholm University10691StockholmSweden
- School of Chemistry and PhysicsUniversity of Kwazulu-NatalPrivate Bag X54001Durban4000South Africa
| |
Collapse
|
21
|
Wu H, Su H, Schulze EJ, Peters BBC, Nolan MD, Yang J, Singh T, Ahlquist MSG, Andersson PG. Site‐ and Enantioselective Iridium‐Catalyzed Desymmetric Mono‐Hydrogenation of 1,4‐Dienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haibo Wu
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Hao Su
- School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Erik J. Schulze
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Bram B. C. Peters
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Mark D. Nolan
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Jianping Yang
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Thishana Singh
- School of Chemistry and Physics University of Kwazulu-Natal Private Bag X54001 Durban 4000 South Africa
| | | | - Pher G. Andersson
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
- School of Chemistry and Physics University of Kwazulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
22
|
Lu P, Ren X, Xu H, Lu D, Sun Y, Lu Z. Iron-Catalyzed Highly Enantioselective Hydrogenation of Alkenes. J Am Chem Soc 2021; 143:12433-12438. [PMID: 34343425 DOI: 10.1021/jacs.1c04773] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we reported for the first time an iron-catalyzed highly enantioselective hydrogenation of minimally functionalized 1,1-disubstituted alkenes to access chiral alkanes with full conversion and excellent ee. A novel chiral 8-oxazoline iminoquinoline ligand and its iron complex have been designed and synthesized. This protocol is operationally simple by using 1 atm of hydrogen gas and shows good functional group tolerance. A primary mechanism has been proposed by the deuterium-labeling experiments.
Collapse
Affiliation(s)
- Peng Lu
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Xiang Ren
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Haofeng Xu
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Dongpo Lu
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Yufeng Sun
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
23
|
Zou C, Yang L, Zhang L, Liu C, Ma Y, Song G, Liu Z, Cheng R, Ye J. Enantioselective Vinylogous Conia-Ene Reaction Catalyzed by a Disilver(I)/Bisdiamine Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chuncheng Zou
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Lei Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Lei Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Chengyu Liu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Yueyue Ma
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemistry and Biology. East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Ruihua Cheng
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
24
|
Wang W, Dai J, Yang Q, Deng YH, Peng F, Shao Z. Palladium-Catalyzed Asymmetric Direct Intermolecular Allylation of α-Aryl Cyclic Vinylogous Esters: Divergent Synthesis of (+)-Oxomaritidine and (−)-Mesembrine. Org Lett 2021; 23:920-924. [DOI: 10.1021/acs.orglett.0c04125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wei Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jun Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qiqiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
25
|
Wen J, Wang F, Zhang X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes. Chem Soc Rev 2021; 50:3211-3237. [DOI: 10.1039/d0cs00082e] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on asymmetric direct and transfer hydrogenation with first-row transition metal complexes. The reaction mechanisms and the models of enantiomeric induction were summarized and emphasized.
Collapse
Affiliation(s)
- Jialin Wen
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Fangyuan Wang
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Xumu Zhang
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
26
|
Chen B, He CY, Chu WD, Liu QZ. Recent advances in the asymmetric transformations of achiral cyclohexadienones. Org Chem Front 2021. [DOI: 10.1039/d0qo01358g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review describes recent developments in the asymmetric transformations of achiral cyclohexadienones, including enantioselective desymmetrization of prochiral cyclohexadienones and kinetic resolution of racemic cyclohexadienones.
Collapse
Affiliation(s)
- Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| |
Collapse
|
27
|
Wu L, Wei H, Chen J, Zhang W. Development of Nickel-Catalyzed Cross-Coupling of Alcohol Derivatives to Construct Carbon-Carbon Bonds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Wang F, Tan X, Wu T, Zheng LS, Chen GQ, Zhang X. Ni-Catalyzed asymmetric reduction of α-keto-β-lactams via DKR enabled by proton shuttling. Chem Commun (Camb) 2020; 56:15557-15560. [PMID: 33244528 DOI: 10.1039/d0cc05599a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chiral α-hydroxy-β-lactams are key fragments of many bioactive compounds and antibiotics, and the development of efficient synthetic methods for these compounds is of great value. The highly enantioselective dynamic kinetic resolution (DKR) of α-keto-β-lactams was realized via a novel proton shuttling strategy. A wide range of α-keto-β-lactams were reduced efficiently and enantioselectively by Ni-catalyzed asymmetric hydrogenation, providing the corresponding α-hydroxy-β-lactam derivatives with high yields and enantioselectivities (up to 92% yield, up to 94% ee). Deuterium-labelling experiments indicate that phenylphosphinic acid plays a pivotal role in the DKR of α-keto-β-lactams by promoting the enolization process. The synthetic potential of this protocol was demonstrated by its application in the synthesis of a key intermediate of Taxol and (+)-epi-Cytoxazone.
Collapse
Affiliation(s)
- Fangyuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Ye XY, Liang ZQ, Jin C, Lang QW, Chen GQ, Zhang X. Design of oxa-spirocyclic PHOX ligands for the asymmetric synthesis of lorcaserin via iridium-catalyzed asymmetric hydrogenation. Chem Commun (Camb) 2020; 57:195-198. [PMID: 33300017 DOI: 10.1039/d0cc06311h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphine-oxazoline (PHOX) ligands are a very important class of privileged ligands in asymmetric catalysis. A series of highly rigid oxa-spiro phosphine-oxazoline (O-SIPHOX) ligands based on O-SPINOL was synthesized efficiently, and their iridium complexes were synthesized by coordination of the O-SIPHOX ligands to [Ir(cod)Cl]2 in the presence of sodium tetrakis-3,5-bis(trifluoromethyl)phenylborate (NaBArF). The cationic iridium complexes showed high reactivity and excellent enantioselectivity in the asymmetric hydrogenation of 1-methylene-tetrahydro-benzo[d]azepin-2-ones (up to 99% yield and up to 99% ee). A key intermediate of the anti-obesity drug lorcaserin could be efficiently synthesized using this protocol.
Collapse
Affiliation(s)
- Xiang-Yu Ye
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
30
|
Feng S, Tang Y, Yang C, Shen C, Dong K. Synthesis of Enantioenriched α,α-Difluoro-β-arylbutanoic Esters by Pd-Catalyzed Asymmetric Hydrogenation. Org Lett 2020; 22:7508-7512. [PMID: 32945684 DOI: 10.1021/acs.orglett.0c02700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Synthesis of optically active gem-difluorinated organic molecules attracts a great deal of interest due to their unique properties in pharmaceutical and agrochemical areas. Herein, a series of enantioenriched α,α-difluoro-β-arylbutanoic esters were prepared in high yields (83-99%) with moderate to excellent enantioselectivities (≤97:3 er) by palladium-catalyzed asymmetric hydrogenation.
Collapse
Affiliation(s)
- Sitian Feng
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Yitian Tang
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Chenjue Yang
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Chaoren Shen
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
31
|
Wei Z, Wang Y, Li Y, Ferraccioli R, Liu Q. Bidentate NHC-Cobalt Catalysts for the Hydrogenation of Hindered Alkenes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zeyuan Wei
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yibiao Li
- School of Biotechnology and Health, Wuyi University, Jiangmen, Guangdong 529090, People’s Republic of China
| | - Raffaella Ferraccioli
- CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM) Via C. Golgi 19, 20133 Milan, Italy
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
32
|
Wu T, Kang X, Bai H, Xiong W, Xu G, Tang W. Enantioselective Construction of Spiro Quaternary Carbon Stereocenters via Pd-Catalyzed Intramolecular α-Arylation. Org Lett 2020; 22:4602-4607. [DOI: 10.1021/acs.orglett.0c01129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Xuehua Kang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Heng Bai
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Wenrui Xiong
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Guangqing Xu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
33
|
Hu Y, Chen J, Li B, Zhang Z, Gridnev ID, Zhang W. Nickel‐Catalyzed Asymmetric Hydrogenation of 2‐Amidoacrylates. Angew Chem Int Ed Engl 2020; 59:5371-5375. [DOI: 10.1002/anie.201916534] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yawen Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jianzhong Chen
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Bowen Li
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Ilya D. Gridnev
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki 3-6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
34
|
Song L, Ni D, Jia S, Pi R, Dong S, Yang F, Tang J, Liu S. C(sp2)–H Bond Multiple Functionalization in Air for Construction of Tetrahydrocarbazoles with Continuous Quaternary Carbons and Polycyclic Diversification. Org Lett 2020; 22:1846-1851. [DOI: 10.1021/acs.orglett.0c00145] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Longlong Song
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dan Ni
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shikun Jia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Rou Pi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
35
|
Fan D, Zhang J, Hu Y, Zhang Z, Gridnev ID, Zhang W. Asymmetric Hydrogenation of α-Boryl Enamides Enabled by Nonbonding Interactions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongyang Fan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yanhua Hu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ilya D. Gridnev
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki 3-6, Aoba-ku, Sendai 980-8578, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
36
|
Hu Y, Chen J, Li B, Zhang Z, Gridnev ID, Zhang W. Nickel‐Catalyzed Asymmetric Hydrogenation of 2‐Amidoacrylates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yawen Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jianzhong Chen
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Bowen Li
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Ilya D. Gridnev
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki 3-6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
37
|
Wei Q, Cai J, Hu XD, Zhao J, Cong H, Zheng C, Liu WB. Enantioselective Access to γ-All-Carbon Quaternary Center-Containing Cyclohexanones by Palladium-Catalyzed Desymmetrization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qiang Wei
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Jinhui Cai
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Xu-Dong Hu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Jing Zhao
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Hengjiang Cong
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|