1
|
Morris PT, Watanabe K, Albanese KR, Kent GT, Gupta R, Gerst M, Read de Alaniz J, Hawker CJ, Bates CM. Scalable Synthesis of Degradable Copolymers Containing α-Lipoic Acid via Miniemulsion Polymerization. J Am Chem Soc 2024; 146:30662-30667. [PMID: 39466272 DOI: 10.1021/jacs.4c12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
A robust method is described to synthesize degradable copolymers under aqueous miniemulsion conditions using α-lipoic acid as a cheap and scalable building block. Simple formulations of α-lipoic acid (up to 10 mol %), n-butyl acrylate, a surfactant, and a costabilizer generate stable micelles in water with particle sizes <200 nm. The ready availability of these starting materials facilitated performing polymerization reactions at large scales (4 L), yielding 600 g of poly(n-butyl acrylate-stat-α-lipoic acid) latexes that degrade under reducing conditions (250 kg mol-1 → 20 kg mol-1). Substitution of α-lipoic acid with ethyl lipoate further improves the solubility of dithiolane derivatives in n-butyl acrylate, resulting in copolymers that degrade to even lower molecular weights after polymerization and reduction. In summary, this convenient and scalable strategy provides access to large quantities of degradable copolymers and particles using cheap and commercially available starting materials.
Collapse
Affiliation(s)
- Parker T Morris
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kodai Watanabe
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kaitlin R Albanese
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Greggory T Kent
- Leeta Materials, Inc., Santa Barbara, California 93106, United States
| | - Rohini Gupta
- BASF Corporation California Research Alliance, Berkeley, California 94720, United States
| | - Matthias Gerst
- Polymers for Adhesives, BASF SE, Ludwigshafen am Rhein 67056, Germany
| | - Javier Read de Alaniz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Christopher M Bates
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Wu Z, Wang X, Zhang L. Biomass and Transparent Supramolecular Elastomers for Green Electronics Enabled by the Controlled Growth and Self-Assembly of Dynamic Polymer Networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404484. [PMID: 39022916 DOI: 10.1002/smll.202404484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Determining the optimal method for preparing supramolecular materials remains a profound challenge. This process requires a combination of renewable raw materials to create supramolecular materials with multiple functions and properties, including simple fabrication, sustainability, a dynamic nature, good toughness, and transparency. In this work, a strategy is presented for toughening supramolecular networks based on solid-phase chain extension. This toughening strategy is simple and environmentally friendly. In addition, a series of biobased elastomers are designed and prepared with adjustable performance characteristics. This strategy can significantly improve the transparency, tensile strength, and toughness of the synthesized elastomer. The synthesized biobased elastomers have great ductility, repairability, and recyclability, and they show good adhesion and dielectric properties. A biobased ionic skin is assembled from these biobased elastomers. Assembled ionic skin can sensitively detect external stimuli (such as stretching, bending, compression, or temperature changes) and monitor human movement. The conductive and dielectric layers of the biobased ionic skin are both obtained from renewable raw materials. This research provides novel molecular design approaches and material selection methods for promoting the development of green electronic devices and biobased elastomers.
Collapse
Affiliation(s)
- Zhaolin Wu
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiufen Wang
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liqun Zhang
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Santra S, Molla MR. Small molecule-based core and shell cross-linked nanoassemblies: from self-assembly and programmed disassembly to biological applications. Chem Commun (Camb) 2024; 60:12101-12117. [PMID: 39301871 DOI: 10.1039/d4cc03515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Supramolecular assemblies of stimuli-responsive amphiphilic molecules have been of utmost interest in targeted drug delivery applications, owing to their capability of sequestering drug molecules in one set of conditions and releasing them in another. To minimize undesired disassembly and stabilize noncovalently encapsulated drug molecules, the strategy of core or shell cross-linking has become a fascinating approach to constructing cross-linked polymeric or small molecule-based nanoassemblies. In this article, we discuss the design and synthetic strategies for cross-linked nanoassemblies from small molecule-based amphiphiles, with robust stability and enhanced drug encapsulation capability. We highlight their potential biomedical applications, particularly in drug or gene delivery, and cell imaging. This feature article offers a comprehensive overview of the recent developments in the application of small molecule-based covalently cross-linked nanocarriers for materials and biomedical applications, which may inspire the use of these materials as a potential drug delivery system for future chemotherapeutic applications.
Collapse
Affiliation(s)
- Subrata Santra
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
4
|
Zhang J, Wang M, Yao X, Liu J, Yan B. Thioctic Acid-Based Solvent-Free and Recoverable Adhesive for Dry/Wet Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54685-54692. [PMID: 39316760 DOI: 10.1021/acsami.4c13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Metal adhesive synthesis typically involves heating and solvents, and the resultant adhesives lack degradability and suffer from recycling and sustainable problems. Herein, we developed a solvent-free and chemically degradable biobased adhesive (p(Elp-TA)+PVP) from thioctic acid (TA), its derivative (Elp), and polyvinylpyrrolidone (PVP). Through a rapid acid-triggered cationic ring-opening polymerization of dithiolane at ambient conditions, p(Elp-TA)+PVP adhesive could build up a strong lap shear strength of 1123 kPa in air and an underwater lap shear strength of 534 kPa to the copper plate. Molecular dynamics simulations show that compared to p(Elp-TA), the presence of an appropriate amount of PVP can significantly enhance the binding energy of the adhesive molecules to the metal substrate, and the rapid adhesion of p(Elp-TA)+PVP molecules to metal substrates was achieved through a synergistically dynamic adaptive network enhanced by hydrogen bonding, reversible dynamic bonding, and metal coordination bonding at 40 ps. More importantly, the applied p(Elp-TA)+PVP adhesive could be easily degraded and reverted to its small-molecular-weight lipoic acid species. Upon exposure to dithiothreitol, a green reducing agent, the average molecular weight of the adhesive could quickly decrease from 1603 kDa to 274 Da. This green adhesive constructed by a simple method provides a promising general strategy for developing a controlled degradable and recoverable adhesive from natural resources.
Collapse
Affiliation(s)
- Jiaxing Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mengyue Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xingyuan Yao
- Sinopec, Shengli Oilfield, Chunliang Oil Prod Plant, Dongying, Shandong 256600, China
| | - Jing Liu
- X-IET@Shanghai Institute for Engineering and Technology (Shanghai), Xinxing Cathay International Group, 3F, Building 35, 50 Maoyuan Road, Fengxian, Shanghai 201403, China
| | - Bin Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Yang S, Du S, Zhu J, Ma S. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization-depolymerization cycle. Chem Soc Rev 2024; 53:9609-9651. [PMID: 39177226 DOI: 10.1039/d4cs00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The extensive utilization of plastic, as a symbol of modern technological society, has consumed enormous amounts of finite and non-renewable fossil resources and produced huge amounts of plastic wastes in the land or ocean, and thus recycling and reuse of the plastic wastes have great ecological and economic benefits. Closed-loop recyclable polymers with inherent recyclability can be readily depolymerized into monomers with high selectivity and purity and repolymerized into polymers with the same performance. They are deemed to be the next generation of recyclable polymers and have captured great and increasing attention from academia and industry. Herein, we provide an overview of readily closed-loop recyclable polymers based on monomer and polymer design and no-other-reactant-involved reversible ring-opening and addition polymerization reactions. The state-of-the-art of circular polymers is separately summarized and discussed based on different monomers, including lactones, thiolactones, cyclic carbonates, hindered olefins, cycloolefins, thermally labile olefin comonomers, cyclic disulfides, cyclic (dithio) acetals, lactams, Diels-Alder addition monomers, Michael addition monomers, anhydride-secondary amide monomers, and cyclic anhydride-aldehyde monomers, and polymers with activatable end groups. The polymerization and depolymerization mechanisms are clearly disclosed, and the evolution of the monomer structure, the polymerization and depolymerization conditions, the corresponding polymerization yield, molecular weight, performance of the polymers, monomer recovery, and depolymerization equipment are also systematically summarized and discussed. Furthermore, the challenges and future prospects are also highlighted.
Collapse
Affiliation(s)
- Shuaiqi Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Shuai Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
6
|
Shi CY, Zhang XP, Zhang Q, Chen M, Tian H, Qu DH. Closed-loop chemically recyclable covalent adaptive networks derived from elementary sulfur. Chem Sci 2024:d4sc05031b. [PMID: 39371464 PMCID: PMC11447730 DOI: 10.1039/d4sc05031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
The development of sulfur-rich polymers derived from elementary sulfur provides an innovative approach to industrial waste valorization. Despite significant advancements in polymerization techniques and promising applications beyond traditional polymers, polysulfide networks are still primarily stabilized by diene crosslinkers, forming robust C-S bonds that hinder the degradation of sulfur-based polymers. In this study, the anionic ring-opening copolymerization of chemically homologous S8 and cyclic disulfides was explored to yield robust sulfur-rich copolymers with high molecular weight. The incorporation of polysulfide segments not only efficiently activated the crosslinked networks for excellent reprocessability and mechanical adaptability but also endowed the resulting copolymer with high optical transparency in the near-infrared region. More importantly, the dynamic disulfide crosslinking sites promoted the chemical closed-loop recyclability of the polysulfide networks via reversible S-S cleavage. This innovative inverse vulcanization strategy utilizing dynamic disulfide crosslinkers offers a promising pathway for the advanced applications and upcycling of high-performance sulfur-rich polymers.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xiao-Ping Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
7
|
Keyser SP, Trujillo-Lemon M, Sias AN, Fairbanks BD, McLeod RR, Bowman CN. High Refractive Index, Low Birefringence Holographic Materials via the Homopolymerization of 1,2-Dithiolanes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45577-45588. [PMID: 39136733 DOI: 10.1021/acsami.4c09324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
High refractive index, low birefringence photopolymers were created via the radical-mediated, ring opening homopolymerization of 1,2-dithiolane functionalized monomers and were subsequently evaluated as holographic recording media. This investigation systematically characterized the reaction kinetics, thermodynamics, and volume shrinkage of the 1,2-dithiolane homopolymerization as well as the optical transparency, refractive index, birefringence, and holographic performance of multifunctional 1,2-dithiolane functionalized monomers and their resultant polymers. Real-time kinetic and thermodynamic analyses of a monofunctional 1,2-dithiolane monomer, lipoic acid methyl ester (LipOMe), indicated rapid monomer conversion, exceeding 90% in 60 s, with an overall enthalpy of reaction of 18 ± 1 kJ/mol. The ring-opening polymerization resulted in low shrinkage (10.6 ± 0.3 cm3/mol dithiolane) and a significant bulk refractive index increase (0.030 ± 0.003). The resulting photopolymers exhibited high optical transparency, minimal haze, and negligible birefringence, suggesting the potential of 1,2-homopolymers as optical materials. To further explore the specific capabilities for use as high-performance holographic recording applications, several multifunctional monomers were synthesized with the ethanedithiol lipoic acid monomer (EDT-Lip2) selected for experimentation. Holographic diffraction gratings written using this monomer achieved a peak-to-mean refractive index modulation of 0.008 with minimal haze and birefringence.
Collapse
Affiliation(s)
- Sean P Keyser
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Marianela Trujillo-Lemon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Andrew N Sias
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Robert R McLeod
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N Bowman
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Pal S, Shin J, DeFrates K, Arslan M, Dale K, Chen H, Ramirez D, Messersmith PB. Recyclable surgical, consumer, and industrial adhesives of poly(α-lipoic acid). Science 2024; 385:877-883. [PMID: 39172835 DOI: 10.1126/science.ado6292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Polymer adhesives play an important role in many medical, consumer, and industrial products. Polymers of α-lipoic acid (αLA) have the potential to fulfill the need for versatile and environmentally friendly adhesives, but their performance is plagued by spontaneous depolymerization. We report a family of stabilized αLA polymer adhesives that can be tailored for a variety of medical or nonmedical uses and sustainably sourced and recycled in a closed-loop manner. Minor changes in monomer composition afforded a pressure-sensitive adhesive that functions well in dry and wet conditions, as well as a structural adhesive with strength equivalent to that of conventional epoxies. αLA surgical superglue successfully sealed murine amniotic sac ruptures, increasing fetal survival from 0 to 100%.
Collapse
Affiliation(s)
- Subhajit Pal
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Jisoo Shin
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Kelsey DeFrates
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Mustafa Arslan
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, Faculty of Science and Letters, Kirklareli University, Kirklareli 39100, Türkiye
| | - Katelyn Dale
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Hannah Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Dominic Ramirez
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Phillip B Messersmith
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Guan Z. Sustainable polymers that stick inside and out. Science 2024; 385:829-830. [PMID: 39172855 DOI: 10.1126/science.adr5857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A naturally occurring fatty acid yields a set of adhesives with different properties.
Collapse
Affiliation(s)
- Zhibin Guan
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Lee D, Wang H, Jiang SY, Verduzco R. Versatile Light-Mediated Synthesis of Degradable Bottlebrush Polymers Using α-Lipoic Acid. Angew Chem Int Ed Engl 2024:e202409323. [PMID: 39150823 DOI: 10.1002/anie.202409323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/18/2024]
Abstract
Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self-assembly. However, the translation of bottlebrushes to real-world applications is limited by complex, multi-step synthetic pathways and polymerization reactions that rely on air-sensitive catalysts. Additionally, most bottlebrushes are non-degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the "grafting-through" polymerization of α-lipoic acid (LA)-functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst-free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side-chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA-functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA-functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side-chain chemistries and provides insight into the light-mediated grafting-through polymerization of dithiolane-functionalized macromonomers.
Collapse
Affiliation(s)
- Dongjoo Lee
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| | - Hanqing Wang
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| | - Shu-Yan Jiang
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| |
Collapse
|
11
|
Zhang Y, Yi W, Pan J, Liu S, Dong S. An organic/inorganic hybrid soft material for supramolecular adhesion. SOFT MATTER 2024; 20:5670-5674. [PMID: 38978461 DOI: 10.1039/d4sm00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Thioctic acid (TA) has been widely used to construct soft materials via supramolecular copolymerization with organic chemicals. In this study, TA and the inorganic compound MoS2 are used to fabricate poly[TA-MoS2] via dynamic covalent and supramolecular interactions. Poly[TA-MoS2] exhibits good and long-lasting adhesion performance on various artificial surfaces, with an adhesion strength up to 3.72 MPa (15 days). Further, it exhibits tough adhesion effects in an aqueous environment. Moreover, poly[TA-MoS2] displays good thermal processing behavior, thus enabling its molding through 3D printing.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Wenchang Yi
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jia Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Song Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
12
|
Wang L, Wang D, Lei W, Sun T, Gu B, Dong H, Taniguchi Y, Liu Y, Ling Y. Trigonometric Bundling Disulfide Unit Starship Synergizes More Effectively to Promote Cellular Uptake. Int J Mol Sci 2024; 25:7518. [PMID: 39062760 PMCID: PMC11277142 DOI: 10.3390/ijms25147518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
A small molecule disulfide unit technology platform based on dynamic thiol exchange chemistry at the cell membrane has the potential for drug delivery. However, the alteration of the CSSC dihedral angle of the disulfide unit caused by diverse substituents directly affects the effectiveness of this technology platform as well as its own chemical stability. The highly stable open-loop relaxed type disulfide unit plays a limited role in drug delivery due to its low dihedral angle. Here, we have built a novel disulfide unit starship based on the 3,4,5-trihydroxyphenyl skeleton through trigonometric bundling. The intracellular delivery results showed that the trigonometric bundling of the disulfide unit starship effectively promoted cellular uptake without any toxicity, which is far more than 100 times more active than that of equipment with a single disulfide unit in particular. Then, the significant reduction in cell uptake capacity (73-93%) using thiol erasers proves that the trigonometric bundling of the disulfide starship is an endocytosis-independent internalization mechanism via a dynamic covalent disulfide exchange mediated by thiols on the cell surface. Furthermore, analysis of the molecular dynamics simulations demonstrated that trigonometric bundling of the disulfide starship can significantly change the membrane curvature while pushing lipid molecules in multiple directions, resulting in a significant distortion in the membrane structure and excellent membrane permeation performance. In conclusion, the starship system we built fully compensates for the inefficiency deficiencies induced by poor dihedral angles.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Dezhi Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Wenzhuo Lei
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Tiantian Sun
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Bei Gu
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Han Dong
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Yosuke Taniguchi
- School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Yichang Liu
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Yong Ling
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| |
Collapse
|
13
|
Su YL, Xiong W, Yue L, Paul MK, Otte KS, Bacsa J, Qi HJ, Gutekunst WR. Michael Addition-Elimination Ring-Opening Polymerization. J Am Chem Soc 2024; 146:18074-18082. [PMID: 38906845 PMCID: PMC11228986 DOI: 10.1021/jacs.4c05054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
A cyclic thioenone system capable of controlled ring-opening polymerization (ROP) is presented that leverages a reversible Michael addition-elimination (MAE) mechanism. The cyclic thioenone monomers are easy to access and modify and for the first time incorporate the dynamic reversibility of MAE with chain-growth polymerization. This strategy features mild polymerization conditions, tunable functionalities, controlled molecular weights (Mn), and narrow dispersities. The obtained polythioenones exhibit excellent optical transparency and good mechanical properties and can be depolymerized to recover the original monomers. Density functional theory (DFT) calculations of model reactions offer insights into the role of monomer conformation in the polymerization process, as well as explaining divergent reactivity observed in seven-membered thiepane (TP) and eight-membered thiocane (TC) ring systems. Collectively, these findings demonstrate the feasibility of MAE mechanisms in ring-opening polymerization and provide important guidelines toward future monomer designs.
Collapse
Affiliation(s)
- Yong-Liang Su
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Wei Xiong
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Liang Yue
- School
of Mechanical Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Mckinley K. Paul
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Kaitlyn S. Otte
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - John Bacsa
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - H. Jerry Qi
- School
of Mechanical Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Will R. Gutekunst
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Sathe D, Yoon S, Wang Z, Chen H, Wang J. Deconstruction of Polymers through Olefin Metathesis. Chem Rev 2024; 124:7007-7044. [PMID: 38787934 DOI: 10.1021/acs.chemrev.3c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The consumption of synthetic polymers has ballooned; so has the amount of post-consumer waste generated. The current polymer economy, however, is largely linear with most of the post-consumer waste being either landfilled or incinerated. The lack of recycling, together with the sizable carbon footprint of the polymer industry, has led to major negative environmental impacts. Over the past few years, chemical recycling technologies have gained significant traction as a possible technological route to tackle these challenges. In this regard, olefin metathesis, with its versatility and ease of operation, has emerged as an attractive tool. Here, we discuss the developments in olefin-metathesis-based chemical recycling technologies, including the development of new materials and the application of olefin metathesis to the recycling of commercial materials. We delve into structure-reactivity relationships in the context of polymerization-depolymerization behavior, how experimental conditions influence deconstruction outcomes, and the reaction pathways underlying these approaches. We also look at the current hurdles in adopting these technologies and relevant future directions for the field.
Collapse
Affiliation(s)
- Devavrat Sathe
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Seiyoung Yoon
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Zeyu Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Hanlin Chen
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
15
|
Yu Q, Fang Z, Luan S, Wang L, Shi H. Biological applications of lipoic acid-based polymers: an old material with new promise. J Mater Chem B 2024; 12:4574-4583. [PMID: 38683108 DOI: 10.1039/d4tb00581c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Lipoic acid (LA) is a versatile antioxidant that has been used in the treatment of various oxidation-reduction diseases over the past 70 years. Owing to its large five-membered ring tension, the dynamic disulfide bond of LA is highly active, enabling the formation of poly(lipoic acid) (PLA) via ring-opening polymerization (ROP). Herein, we first summarize disulfide-mediated ROP polymerization strategies, providing basic routes for designing and preparing PLA-based materials. PLA, as a biologically derived, low toxic, and easily modified material, possesses dynamic disulfide bonds and universal non-covalent carboxyl groups. We also shed light on the biomedical applications of PLA-based materials based on their biological and structural features and further divide recent works into six categories: antibacterial, anti-inflammation, anticancer, adhesive, flexible electronics, and 3D-printed tissue scaffolds. Finally, the challenges and future prospects associated with the biomedical applications of PLA are discussed.
Collapse
Affiliation(s)
- Qing Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhiyue Fang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
16
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Machado TO, Stubbs CJ, Chiaradia V, Alraddadi MA, Brandolese A, Worch JC, Dove AP. A renewably sourced, circular photopolymer resin for additive manufacturing. Nature 2024; 629:1069-1074. [PMID: 38750360 PMCID: PMC11136657 DOI: 10.1038/s41586-024-07399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/09/2024] [Indexed: 05/31/2024]
Abstract
The additive manufacturing of photopolymer resins by means of vat photopolymerization enables the rapid fabrication of bespoke 3D-printed parts. Advances in methodology have continually improved resolution and manufacturing speed, yet both the process design and resin technology have remained largely consistent since its inception in the 1980s1. Liquid resin formulations, which are composed of reactive monomers and/or oligomers containing (meth)acrylates and epoxides, rapidly photopolymerize to create crosslinked polymer networks on exposure to a light stimulus in the presence of a photoinitiator2. These resin components are mostly obtained from petroleum feedstocks, although recent progress has been made through the derivatization of renewable biomass3-6 and the introduction of hydrolytically degradable bonds7-9. However, the resulting materials are still akin to conventional crosslinked rubbers and thermosets, thus limiting the recyclability of printed parts. At present, no existing photopolymer resin can be depolymerized and directly re-used in a circular, closed-loop pathway. Here we describe a photopolymer resin platform derived entirely from renewable lipoates that can be 3D-printed into high-resolution parts, efficiently deconstructed and subsequently reprinted in a circular manner. Previous inefficiencies with methods using internal dynamic covalent bonds10-17 to recycle and reprint 3D-printed photopolymers are resolved by exchanging conventional (meth)acrylates for dynamic cyclic disulfide species in lipoates. The lipoate resin platform is highly modular, whereby the composition and network architecture can be tuned to access printed materials with varied thermal and mechanical properties that are comparable to several commercial acrylic resins.
Collapse
Affiliation(s)
- Thiago O Machado
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Connor J Stubbs
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Maher A Alraddadi
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Arianna Brandolese
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Joshua C Worch
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
- Department of Chemistry, Macromolecules Innovation Institute, Blacksburg, VA, USA.
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
18
|
Shu Z, Qi M, Fang LF, Yi Z, Gao CJ. Reversibly Cross-Linked Isoporous Membranes Fabricated by the Recyclable Block Copolymer with Pendent Dithiolane Groups. ACS Macro Lett 2024; 13:389-394. [PMID: 38488582 DOI: 10.1021/acsmacrolett.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The reversible formation and cleavage of disulfide bonds under physical/chemical stimuli make it a valuable motif in constructing dynamically cross-linked materials. In the present work, the block copolymer bearing pendent dithiolanes was synthesized and fabricated into isoporous membranes by the combination of self-assembly and nonsolvent-induced phase separation strategy. The cross-linking within the membrane was realized by the thiol-initiated ring-opening cascades of cyclic disulfides. Successful formation of disulfide bond networks within the isoporous membranes was proved by the Raman spectra, UV-vis diffuse reflectance spectroscopy, differential scanning calorimetry, and rheological analysis. The cross-linking in membranes was further demonstrated by the notably improved toughness and obviously enhanced swelling resistance to acid/alkaline solution as well as organic solvents. Importantly, the cross-linked isoporous membranes were fully dissolvable in solution containing dithiothreitol, which enabled the complete cleavage of disulfide bonds and successful recovery of the block copolymer that was able to be repeatedly fabricated into isoporous membranes with pore sizes identical to membranes prepared from the freshly synthesized copolymer. Our results indicate that dynamically cross-linked isoporous membranes with improved durability and good recyclability can be custom-made by simply incorporating active dithiolane moieties into self-assembling block copolymers.
Collapse
Affiliation(s)
- Zhe Shu
- Center for Membrane and Water Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Min Qi
- Center for Membrane and Water Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Feng Fang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuan Yi
- Center for Membrane and Water Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water Treatment, Hong Feng Road, Huzhou 313000, China
| | - Cong-Jie Gao
- Center for Membrane and Water Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
19
|
Lou Y, Palermo EF. Dynamic Antimicrobial Poly(disulfide) Coatings Exfoliate Biofilms On Demand Via Triggered Depolymerization. Adv Healthc Mater 2024; 13:e2303359. [PMID: 38288658 DOI: 10.1002/adhm.202303359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 02/13/2024]
Abstract
Bacterial biofilms are notoriously problematic in applications ranging from biomedical implants to ship hulls. Cationic, amphiphilic antibacterial surface coatings delay the onset of biofilm formation by killing microbes on contact, but they lose effectiveness over time due to non-specific binding of biomass and biofilm formation. Harsh treatment methods are required to forcibly expel the biomass and regenerate a clean surface. Here, a simple, dynamically reversible method of polymer surface coating that enables both chemical killing on contact, and on-demand mechanical delamination of surface-bound biofilms, by triggered depolymerization of the underlying antimicrobial coating layer, is developed. Antimicrobial polymer derivatives based on α-lipoic acid (LA) undergo dynamic and reversible polymerization into polydisulfides functionalized with biocidal quaternary ammonium salt groups. These coatings kill >99.9% of Staphylococcus aureus cells, repeatedly for 15 cycles without loss of activity, for moderate microbial challenges (≈105 colony-forming units (CFU) mL-1, 1 h), but they ultimately foul under intense challenges (≈107 CFU mL-1, 5 days). The attached biofilms are then exfoliated from the polymer surface by UV-triggered degradation in an aqueous solution at neutral pH. This work provides a simple strategy for antimicrobial coatings that can kill bacteria on contact for extended timescales, followed by triggered biofilm removal under mild conditions.
Collapse
Affiliation(s)
- Yang Lou
- Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Edmund F Palermo
- Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
- Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| |
Collapse
|
20
|
Ahmad M, Grayson SM. Understanding zwitterionic ring-expansion polymerization through mass spectrometry. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38556789 DOI: 10.1002/mas.21877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/28/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Zwitterionic ring-expansion polymerization (ZREP) is a polymerization method in which a cyclic monomer is converted into a cyclic polymer through a zwitterionic intermediate. In this review, we explored the ZREP of various cyclic polymers and how mass spectrometry assists in identifying the product architectures and understanding their intricate reaction mechanism. For the majority of polymers (from a few thousand to a few million Da) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is the most effective mass spectrometry technique to determine the true molecular weight (MW) of the resultant product, but only when the dispersity is low (approximately below 1.2). The key topics covered in this study were the ZREP of cyclic polyesters, cyclic polyamides, and cyclic ethers. In addition, this study also addresses a number of other preliminary topics, including the ZREP of cyclic polycarbonates, cyclic polysiloxanes, and cyclic poly(alkylene phosphates). The purity and efficiency of those syntheses largely depend on the catalyst. Among several catalysts, N-heterocyclic carbenes have exhibited high efficiency in the synthesis of cyclic polyesters and polyamides, whereas tris(pentafluorophenyl)borane [B(C6F5)3] is the most optimal catalyst for cyclic polyether synthesis.
Collapse
Affiliation(s)
- Mahi Ahmad
- Department of Chemistry, Tulane University, New Orleans, Louisiana, USA
| | - Scott M Grayson
- Department of Chemistry, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
21
|
Zhu Y, Tao Y. Stereoselective Ring-opening Polymerization of S-Carboxyanhydrides Using Salen Aluminum Catalysts: A Route to High-Isotactic Functionalized Polythioesters. Angew Chem Int Ed Engl 2024; 63:e202317305. [PMID: 38179725 DOI: 10.1002/anie.202317305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Polythioesters are important sustainable polymers with broad applications. The ring-opening polymerization (ROP) of S-Carboxyanhydrides (SCAs) can afford polythioesters with functional groups that are typically difficult to prepare by ROP of thiolactones. Typical methods involving organocatalysts, like dimethylaminopyridine (DMAP) and triethylamine (Et3 N), have been plagued by uncontrolled polymerization, including epimerization for most SCAs resulting in the loss of isotacticity. Here, we report the use of salen aluminum catalysts for the selective ROP of various SCAs without epimerization, affording functionalized polythioester with high molecular weight up to 37.6 kDa and the highest Pm value up to 0.99. Notably, the ROP of TlaSCA (SCA prepared from thiolactic acid) generates the first example of a isotactic crystalline poly(thiolactic acid), which exhibited a distinct Tm value of 152.6 °C. Effective ligand tailoring governs the binding affinity between the sulfide chain-end and the metal center, thereby maintaining the activity of organometallic catalysts and reducing the occurrence of epimerization reactions.
Collapse
Affiliation(s)
- Yinuo Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
22
|
Lu J, Dai Y, He Y, Zhang T, Zhang J, Chen X, Jiang C, Lu H. Organ/Cell-Selective Intracellular Delivery of Biologics via N-Acetylated Galactosamine-Functionalized Polydisulfide Conjugates. J Am Chem Soc 2024; 146:3974-3983. [PMID: 38299512 DOI: 10.1021/jacs.3c11914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Biologics, including proteins and antisense oligonucleotides (ASOs), face significant challenges when it comes to achieving intracellular delivery within specific organs or cells through systemic administrations. In this study, we present a novel approach for delivering proteins and ASOs to liver cells, both in vitro and in vivo, using conjugates that tether N-acetylated galactosamine (GalNAc)-functionalized, cell-penetrating polydisulfides (PDSs). The method involves the thiol-bearing cargo-mediated ring-opening polymerization of GalNAc-functionalized lipoamide monomers through the so-called aggregation-induced polymerization, leading to the formation of site-specific protein/ASO-PDS conjugates with narrow dispersity. The hepatocyte-selective intracellular delivery of the conjugates arises from a combination of factors, including first GalNAc binding with ASGPR receptors on liver cells, leading to cell immobilization, and the subsequent thiol-disulfide exchange occurring on the cell surface, promoting internalization. Our findings emphasize the critical role of the close proximity of the PDS backbone to the cell surface, as it governs the success of thiol-disulfide exchange and, consequently, cell penetration. These conjugates hold tremendous potential in overcoming the various biological barriers encountered during systemic and cell-specific delivery of biomacromolecular cargos, opening up new avenues for the diagnosis and treatment of a range of liver-targeting diseases.
Collapse
Affiliation(s)
- Jianhua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yuanhao Dai
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yahui He
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Jing Zhang
- Department of Microbiology & Infectious Disease Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
23
|
Toader G, Diacon A, Axinte SM, Mocanu A, Rusen E. State-of-the-Art Polyurea Coatings: Synthesis Aspects, Structure-Properties Relationship, and Nanocomposites for Ballistic Protection Applications. Polymers (Basel) 2024; 16:454. [PMID: 38399832 PMCID: PMC10893384 DOI: 10.3390/polym16040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review presents polyurea (PU) synthesis, the structure-properties relationship, and characterization aspects for ballistic protection applications. The synthesis of polyurea entails step-growth polymerization through the reaction of an isocyanate monomer/prepolymer and a polyamine, each component possessing a functionality of at least two. A wide range of excellent properties such as durability and high resistance against atmospheric, chemical, and biological factors has made this polymer an outstanding option for ballistic applications. Polyureas are an extraordinary case because they contain both rigid segments, which are due to the diisocyanates used and the hydrogen points formed, and a flexible zone, which is due to the chemical structure of the polyamines. These characteristics motivate their application in ballistic protection systems. Polyurea-based coatings have also demonstrated their abilities as candidates for impulsive loading applications, affording a better response of the nanocomposite-coated metal sheet at the action of a shock wave or at the impact of a projectile, by suffering lower deformations than neat metallic plates.
Collapse
Affiliation(s)
- Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39-49 George Coșbuc Boulevard, 050141 Bucharest, Romania; (G.T.); (A.D.)
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39-49 George Coșbuc Boulevard, 050141 Bucharest, Romania; (G.T.); (A.D.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica Bucharest, Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Sorin Mircea Axinte
- S.C. Daily Sourcing & Research SRL, 95-97 Calea Griviței, 010705 Bucharest, Romania;
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica Bucharest, Gh. Polizu Street, 011061 Bucharest, Romania;
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica Bucharest, Gh. Polizu Street, 011061 Bucharest, Romania;
| |
Collapse
|
24
|
Yun H, Wang K, Zhang J, Peng G, Zhao H. Construction of Peptide-Lipoic Acid Cationic Polymers with Redox Responsiveness and Low Toxicity for Gene Delivery. ACS OMEGA 2024; 9:3499-3506. [PMID: 38284089 PMCID: PMC10809251 DOI: 10.1021/acsomega.3c07194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024]
Abstract
As gene therapy continues to evolve, the development of safe and effective cationic polymer carriers is critical. In this work, three polymers have been prepared by ring-opening polymerization on the basis of peptide-lipoic acid monomers. By adjusting the sequence of the peptides, redox-responsive cationic polymers with different positive charge numbers were obtained, as well as investigating their performance as gene carriers. The results showed that the polymers complexed with negatively charged genes by electrostatic interaction and successfully transported the genes into the cells, additionally degrading and releasing the genes under glutathione (GSH) conditions. Furthermore, the polymers as gene carriers in different cell lines demonstrated lower cytotoxicity, with an excellent cell survival rate of 8 times higher than the "gold standard" polyethylenimine (PEI) at the same concentration. In vitro transfection experiments showed that the polymers successfully released and transfected genes into cells, demonstrating their immense potential in gene therapy.
Collapse
Affiliation(s)
- Hui Yun
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kang Wang
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Zhang
- Shandong
Pharmaceutical Glass Co., Ltd., Zibo 256100, China
| | - Guofeng Peng
- Shandong
Rike Chemical Co., Ltd, Changle 262400, China
| | - Hui Zhao
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Lyu J, Song G, Jung H, Park YI, Lee SH, Jeong JE, Kim JC. Solvent-Triggered Chemical Recycling of Ion-Conductive and Self-Healable Polyurethane Covalent Adaptive Networks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1511-1520. [PMID: 38129176 DOI: 10.1021/acsami.3c15337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Given the substantial environmental challenge posed by global plastic waste, recycling technology for thermosetting polymers has become a huge research topic in the polymer industry. Covalent adaptive networks (CANs), which can reversibly dissociate and reconstruct their network structure, represent a key technology for the self-healing, reprocessing, and recycling of thermosetting polymers. In the present study, we introduce a new series of polyurethane CANs whose network structure can dissociate via the self-catalyzed formation of dithiolane from the CANs' polydisulfide linkages when the CANs are treated in N,N-dimethylformamide (DMF) or dimethyl sulfoxide at 60 °C for 1 h. More interestingly, we found that this network dissociation even occurs in tetrahydrofuran-DMF solvent mixtures with low DMF concentrations. This feature enables a reduction in the use of high-boiling, toxic polar aprotic solvents. The dissociated network structure of the CANs was reconstructed under UV light at 365 nm with a high yield via ring-opening polydisulfide linkage formation from dithiolane pendant groups. These CAN films, which were prepared by a sequential organic synthesis and polymerization process, exhibited high thermal stability and good mechanical properties, recyclability, and self-healing performance. When lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt was added to the CAN films, the films exhibited a maximum ion conductivity of 7.48 × 10-4 S cm-1 because of the contribution of the high concentration of the pendant ethylene carbonate group in the CANs. The ion-conducting CAN films also showed excellent recyclability and a self-healing performance.
Collapse
Affiliation(s)
- Jihong Lyu
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Gyujin Song
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan 44776, Republic of Korea
| | - Hyocheol Jung
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Young Il Park
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Sang-Ho Lee
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Ji-Eun Jeong
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Jin Chul Kim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
- Department of Advanced Materials & Chemical Engineering, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
26
|
Liu H, Lu HH, Alp Y, Wu R, Thayumanavan S. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies. Prog Polym Sci 2024; 148:101765. [PMID: 38476148 PMCID: PMC10927256 DOI: 10.1016/j.progpolymsci.2023.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.
Collapse
Affiliation(s)
- Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yasin Alp
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
27
|
Qi Y, Ayinla M, Clifford S, Ramström O. Spontaneous and Selective Macrocyclization in Nitroaldol Reaction Systems. J Org Chem 2023. [PMID: 38154053 DOI: 10.1021/acs.joc.3c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Through a dynamic polymerization and self-sorting process, a range of lowellane macrocycles have been efficiently generated in nitroaldol systems composed of aromatic dialdehydes and aliphatic or aromatic dinitroalkanes. All identified macrocycles show a composition of two repeating units, resulting in tetra-β-nitroalcohols of different structures. The effects of the building block structure on the macrocyclization process have been demonstrated, and the influence from the solvent has been explored. In general, the formation of the lowellanes was amplified in response to phase-change effects, although solution-phase structures were, in some cases, favored.
Collapse
Affiliation(s)
- Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Mubarak Ayinla
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Stephen Clifford
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
28
|
Du T, Shen B, Dai J, Zhang M, Chen X, Yu P, Liu Y. Controlled and Regioselective Ring-Opening Polymerization for Poly(disulfide)s by Anion-Binding Catalysis. J Am Chem Soc 2023; 145:27788-27799. [PMID: 37987648 DOI: 10.1021/jacs.3c10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Poly(disulfide)s are an emerging class of sulfur-containing polymers with applications in medicine, energy, and functional materials. However, the constituent dynamic covalent S-S bond is highly reactive in the presence of the sulfide (RS-) anion, imposing a persistent challenge to control the polymerization. Here, we report an anion-binding approach to arrest the high reactivity of the RS- chain end to control the synthesis of linear poly(disulfide)s, realizing a rapid, living ring-opening polymerization of 1,2-dithiolanes with narrow dispersity and high regioselectivity (Mw/Mn ∼ 1.1, Ps ∼ 0.85). Mechanistic studies support the formation of a thiourea-base-sulfide ternary complex as the catalytically active species during the chain propagation. Theoretical analyses reveal a synergistic catalytic model where the catalyst preorganizes the protonated base and anionic chain end to establish spatial confinement over the bound monomer, effecting the observed regioselectivity. The catalytic system is amenable to monomers with various functional groups, and semicrystalline polymers are also obtained from lipoic acid derivatives by enhancing the regioselectivity.
Collapse
Affiliation(s)
- Tianyi Du
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Boming Shen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jieyu Dai
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Miaomiao Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xingjian Chen
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Albanese K, Morris PT, Read de Alaniz J, Bates CM, Hawker CJ. Controlled-Radical Polymerization of α-Lipoic Acid: A General Route to Degradable Vinyl Copolymers. J Am Chem Soc 2023; 145:22728-22734. [PMID: 37813389 PMCID: PMC10591472 DOI: 10.1021/jacs.3c08248] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 10/11/2023]
Abstract
Here, we present the synthesis and characterization of statistical and block copolymers containing α-lipoic acid (LA) using reversible addition-fragmentation chain-transfer (RAFT) polymerization. LA, a readily available nutritional supplement, undergoes efficient radical ring-opening copolymerization with vinyl monomers in a controlled manner with predictable molecular weights and low molar-mass dispersities. Because lipoic acid diads present in the resulting copolymers include disulfide bonds, these materials efficiently and rapidly degrade when exposed to mild reducing agents such as tris(2-carboxyethyl)phosphine (Mn = 56 → 3.6 kg mol-1). This scalable and versatile polymerization method affords a facile way to synthesize degradable polymers with controlled architectures, molecular weights, and molar-mass dispersities from α-lipoic acid, a commercially available and renewable monomer.
Collapse
Affiliation(s)
- Kaitlin
R. Albanese
- Department
of Chemistry & Biochemistry, Materials Research Laboratory, Materials Department, and Department of
Chemical Engineering, University of California,
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Parker T. Morris
- Department
of Chemistry & Biochemistry, Materials Research Laboratory, Materials Department, and Department of
Chemical Engineering, University of California,
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department
of Chemistry & Biochemistry, Materials Research Laboratory, Materials Department, and Department of
Chemical Engineering, University of California,
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Christopher M. Bates
- Department
of Chemistry & Biochemistry, Materials Research Laboratory, Materials Department, and Department of
Chemical Engineering, University of California,
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Craig J. Hawker
- Department
of Chemistry & Biochemistry, Materials Research Laboratory, Materials Department, and Department of
Chemical Engineering, University of California,
Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
30
|
Deng Z, Gillies ER. Emerging Trends in the Chemistry of End-to-End Depolymerization. JACS AU 2023; 3:2436-2450. [PMID: 37772181 PMCID: PMC10523501 DOI: 10.1021/jacsau.3c00345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023]
Abstract
Over the past couple of decades, polymers that depolymerize end-to-end upon cleavage of their backbone or activation of a terminal functional group, sometimes referred to as "self-immolative" polymers, have been attracting increasing attention. They are of growing interest in the context of enhancing polymer degradability but also in polymer recycling as they allow monomers to be regenerated in a controlled manner under mild conditions. Furthermore, they are highly promising for applications as smart materials due to their ability to provide an amplified response to a specific signal, as a single sensing event is translated into the generation of many small molecules through a cascade of reactions. From a chemistry perspective, end-to-end depolymerization relies on the principles of self-immolative linkers and polymer ceiling temperature (Tc). In this article, we will introduce the key chemical concepts and foundations of the field and then provide our perspective on recent exciting developments. For example, over the past few years, new depolymerizable backbones, including polyacetals, polydisulfides, polyesters, polythioesters, and polyalkenamers, have been developed, while modern approaches to depolymerize conventional backbones such as polymethacrylates have also been introduced. Progress has also been made on the topological evolution of depolymerizable systems, including the introduction of fully depolymerizable block copolymers, hyperbranched polymers, and polymer networks. Furthermore, precision sequence-defined oligomers have been synthesized and studied for data storage and encryption. Finally, our perspectives on future opportunities and challenges in the field will be discussed.
Collapse
Affiliation(s)
- Zhengyu Deng
- Department
of Chemistry, The University of Western
Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R. Gillies
- Department
of Chemistry, The University of Western
Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
31
|
Kristensen MM, Løvschall KB, Zelikin AN. Mechanisms of Degradation for Polydisulfides: Main Chain Scission, Self-Immolation, Or Chain Transfer Depolymerization. ACS Macro Lett 2023:955-960. [PMID: 37384840 DOI: 10.1021/acsmacrolett.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Organic polydisulfides hold immense potential for the design of recyclable materials. Of these, polymers based on lipoic acid are attractive, as they are based on a natural, renewable resource. Herein, we demonstrate that reductive degradation of lipoic acid polydisulfides is a rapid process whereby the quantity of added initiator relative to the polymer content defines the mechanism of polymer degradation, through the main chain scission, self-immolation, or "chain transfer" depolymerization. The latter mechanism is defined as the one during which a thiol group released through the decomposition of one polydisulfide chain initiates depolymerization of the neighbor macromolecule. The chain transfer mechanism afforded the highest yields of recovery of the monomer in its pristine form, and just one molecule of the reducing agent to initiate polymer degradation afforded recovery of over 50% of the monomer. These data are important to facilitate the development of polymer recycling and monomer reuse schemes.
Collapse
Affiliation(s)
- Maria Merrild Kristensen
- Department of Chemistry and iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| | - Kaja Borup Løvschall
- Department of Chemistry and iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| | - Alexander N Zelikin
- Department of Chemistry and iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
32
|
Wan Y, Wang W, Lai Q, Wu M, Feng S. Advances in cell-penetrating poly(disulfide)s for intracellular delivery of therapeutics. Drug Discov Today 2023:103668. [PMID: 37321318 DOI: 10.1016/j.drudis.2023.103668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Efficient intracellular delivery is essential for most therapeutic agents; however, existing delivery vectors face a dilemma between efficiency and toxicity, and always encounter the challenge of endolysosomal trapping. The cell-penetrating poly(disulfide) (CPD) is an effective tool for intracellular delivery, as it is taken up through thiol-mediated cellular uptake, thus avoiding endolysosomal entrapment and ensuring efficient cytosolic availability. Upon cellular uptake, CPD undergoes reductive depolymerization by glutathione inside cells and has minimal cytotoxicity. This review summarizes CPD's chemical synthesis approaches, cellular uptake mechanism, and recent advances in the intracellular delivery of proteins, antibodies, nucleic acids, and other nanoparticles. Overall, CPD is a promising candidate carrier for efficient intracellular delivery.
Collapse
Affiliation(s)
- Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Wangxia Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiuyue Lai
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mingyu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
33
|
Su YL, Yue L, Tran H, Xu M, Engler A, Ramprasad R, Qi HJ, Gutekunst WR. Chemically Recyclable Polymer System Based on Nucleophilic Aromatic Ring-Opening Polymerization. J Am Chem Soc 2023. [PMID: 37307298 DOI: 10.1021/jacs.3c03455] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of chemically recyclable polymers with desirable properties is a long-standing but challenging goal in polymer science. Central to this challenge is the need for reversible chemical reactions that can equilibrate at rapid rates and provide efficient polymerization and depolymerization cycles. Based on the dynamic chemistry of nucleophilic aromatic substitution (SNAr), we report a chemically recyclable polythioether system derived from readily accessible benzothiocane (BT) monomers. This system represents the first example of a well-defined monomer platform capable of chain-growth ring-opening polymerization through an SNAr manifold. The polymerizations reach completion in minutes, and the pendant functionalities are easily customized to tune material properties or render the polymers amenable to further functionalization. The resulting polythioether materials exhibit comparable performance to commercial thermoplastics and can be depolymerized to the original monomers in high yields.
Collapse
Affiliation(s)
- Yong-Liang Su
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Liang Yue
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huan Tran
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mizhi Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anthony Engler
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Will R Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
34
|
Fang W, Mu Z, He Y, Kong K, Jiang K, Tang R, Liu Z. Organic-inorganic covalent-ionic molecules for elastic ceramic plastic. Nature 2023:10.1038/s41586-023-06117-1. [PMID: 37286604 DOI: 10.1038/s41586-023-06117-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/21/2023] [Indexed: 06/09/2023]
Abstract
Although organic-inorganic hybrid materials have played indispensable roles as mechanical1-4, optical5,6, electronic7,8 and biomedical materials9-11, isolated organic-inorganic hybrid molecules (at present limited to covalent compounds12,13) are seldom used to prepare hybrid materials, owing to the distinct behaviours of organic covalent bonds14 and inorganic ionic bonds15 in molecular construction. Here we integrate typical covalent and ionic bonds within one molecule to create an organic-inorganic hybrid molecule, which can be used for bottom-up syntheses of hybrid materials. A combination of the organic covalent thioctic acid (TA) and the inorganic ionic calcium carbonate oligomer (CCO) through an acid-base reaction provides a TA-CCO hybrid molecule with the representative molecular formula TA2Ca(CaCO3)2. Its dual reactivity involving copolymerization of the organic TA segment and inorganic CCO segment generates the respective covalent and ionic networks. The two networks are interconnected through TA-CCO complexes to form a covalent-ionic bicontinuous structure within the resulting hybrid material, poly(TA-CCO), which unifies paradoxical mechanical properties. The reversible binding of Ca2+-CO32- bonds in the ionic network and S-S bonds in the covalent network ensures material reprocessability with plastic-like mouldability while preserving thermal stability. The coexistence of ceramic-like, rubber-like and plastic-like behaviours within poly(TA-CCO) goes beyond current classifications of materials to generate an 'elastic ceramic plastic'. The bottom-up creation of organic-inorganic hybrid molecules provides a feasible pathway for the molecular engineering of hybrid materials, thereby supplementing the classical methodology used for the manufacture of organic-inorganic hybrid materials.
Collapse
Affiliation(s)
- Weifeng Fang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Zhao Mu
- Department of Chemistry, Zhejiang University, Hangzhou, China
- State Key Laboratory of Military Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yan He
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kangren Kong
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kai Jiang
- Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, East China Normal University, Shanghai, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, China.
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Albanese KR, Okayama Y, Morris PT, Gerst M, Gupta R, Speros JC, Hawker CJ, Choi C, de Alaniz JR, Bates CM. Building Tunable Degradation into High-Performance Poly(acrylate) Pressure-Sensitive Adhesives. ACS Macro Lett 2023:787-793. [PMID: 37220638 DOI: 10.1021/acsmacrolett.3c00204] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pressure-sensitive adhesives (PSAs) based on poly(acrylate) chemistry are common in a wide variety of applications, but the absence of backbone degradability causes issues with recycling and sustainability. Here, we report a strategy to create degradable poly(acrylate) PSAs using simple, scalable, and functional 1,2-dithiolanes as drop-in replacements for traditional acrylate comonomers. Our key building block is α-lipoic acid, a natural, biocompatible, and commercially available antioxidant found in various consumer supplements. α-Lipoic acid and its derivative ethyl lipoate efficiently copolymerize with n-butyl acrylate under conventional free-radical conditions leading to high-molecular-weight copolymers (Mn > 100 kg mol-1) containing a tunable concentration of degradable disulfide bonds along the backbone. The thermal and viscoelastic properties of these materials are practically indistinguishable from nondegradable poly(acrylate) analogues, but a significant reduction in molecular weight is realized upon exposure to reducing agents such as tris (2-carboxyethyl) phosphine (e.g., Mn = 198 kg mol-1 → 2.6 kg mol-1). By virtue of the thiol chain ends produced after disulfide cleavage, degraded oligomers can be further cycled between high and low molecular weights through oxidative repolymerization and reductive degradation. Transforming otherwise persistent poly(acrylates) into recyclable materials using simple and versatile chemistry could play a pivotal role in improving the sustainability of contemporary adhesives.
Collapse
Affiliation(s)
| | | | | | - Matthias Gerst
- BASF SE, Polymers for Adhesives, 67056, Ludwigshafen am Rhein, Germany
| | - Rohini Gupta
- BASF Corporation California Research Alliance, Berkeley, California 94720, United States
| | - Joshua C Speros
- BASF Venture Capital America Inc., Boston, Massachusetts 02142,United States
| | | | | | | | | |
Collapse
|
36
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
37
|
Tong L, Zhou M, Chen Y, Lu K, Zhang Z, Mu Y, He Z. A New Self-Healing Degradable Copolymer Based on Polylactide and Poly(p-dioxanone). Molecules 2023; 28:molecules28104021. [PMID: 37241762 DOI: 10.3390/molecules28104021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In this paper, the copolymerization of poly (p-dioxanone) (PPDO) and polylactide (PLA) was carried out via a Diels-Alder reaction to obtain a new biodegradable copolymer with self-healing abilities. By altering the molecular weights of PPDO and PLA precursors, a series of copolymers (DA2300, DA3200, DA4700 and DA5500) with various chain segment lengths were created. After verifying the structure and molecular weight by 1H NMR, FT-IR and GPC, the crystallization behavior, self-healing properties and degradation properties of the copolymers were evaluated by DSC, POM, XRD, rheological measurements and enzymatic degradation. The results show that copolymerization based on the DA reaction effectively avoids the phase separation of PPDO and PLA. Among the products, DA4700 showed a better crystallization performance than PLA, and the half-crystallization time was 2.8 min. Compared to PPDO, the heat resistance of the DA copolymers was improved and the Tm increased from 93 °C to 103 °C. Significantly, the rheological data also confirmed that the copolymer was self-healing and showed obvious self-repairing properties after simple tempering. In addition, an enzyme degradation experiment showed that the DA copolymer can be degraded by a certain amount, with the degradation rate lying between those of PPDO and PLA.
Collapse
Affiliation(s)
- Laifa Tong
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Mi Zhou
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Yulong Chen
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Kai Lu
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Zhaohua Zhang
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Yuesong Mu
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Zejian He
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| |
Collapse
|
38
|
Shi C, Zhang Z, Scoti M, Yan XY, Chen EYX. Endowing Polythioester Vitrimer with Intrinsic Crystallinity and Chemical Recyclability. CHEMSUSCHEM 2023; 16:e202300008. [PMID: 36638158 DOI: 10.1002/cssc.202300008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Technologically important thermosets face a long-standing end-of-life (EoL) problem of non-reprocessability, a more sustainable solution of which has resolved to nascent vitrimers that can merge the robust material properties of thermosets and the reprocessability of thermoplastics. However, the lifecycle of vitrimers is still finite, as they often suffer from significant deterioration of mechanical performance following multiple reprocessing cycles, analogous to mechanical recycling, and they often show undesired creep under working conditions. To address these two key limitations, we have developed a cross-linked semi-crystalline polythioester with both dynamic covalent bonds and intrinsic crystallinity and chemical recyclability, affording a vitrimeric system that exhibits not only reprocessability and crystallinity-restricted creep but also complete chemical recyclability to initial monomer by catalyzed depolymerization in solution or bulk. Therefore, reported herein is an "infinite" vitrimer system that is empowered with a facile closed-loop EoL option once serial reprocessing deteriorates performance and the material can no longer meet the application requirements. Specifically, the polythioester vitrimer was constructed by copolymerization of a bicyclic thioester with a bis-dithiolane, producing dynamically cross-linked polythioesters with excellent property tunability, from amorphous to semi-crystalline states and melting transition temperatures from 91 to 178 °C.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872, United States
| | - Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872, United States
| | - Miriam Scoti
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872, United States
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126, Napoli, Italy
| | - Xiao-Yun Yan
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, 44325-3909, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872, United States
| |
Collapse
|
39
|
Lan MH, Guan X, Zhu DY, Chen ZP, Liu T, Tang Z. Highly Elastic, Self-Healing, Recyclable Interlocking Double-Network Liquid-Free Ionic Conductive Elastomers via Facile Fabrication for Wearable Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19447-19458. [PMID: 37037788 DOI: 10.1021/acsami.3c01585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Liquid-free ionic conductive elastomers (ICEs) are ideal materials for wearable strain sensors in increasingly flexible electronic devices. However, developing recyclable ICEs with high elasticity, self-healability, and recyclability is still a great challenge. In this study, we fabricated a series of novel ICEs by in situ polymerization of lipoic acid (LA) in poly(acrylic acid) (PAA) solution and cross-linking by coordination bonding and hydrogen bonding. One of the obtained dynamically cross-linked interlocking double-network ICEs, PLA-PAA4-1% ICE, showed excellent mechanical properties, with high elasticity (90%) and stretchability (610%), as well as rapid self-healability (mechanical self-healing within 2 h and electrical recovery within 0.3 s). The PLA-PAA4-1% ICE was used as a strain sensor and possessed excellent linear sensitivity and highly cyclic stability, effectively monitoring diverse human motions with both stretched and compressed deformations. Notably, the PLA-PAA4-1% ICE can be fully recycled and reused as a new strain sensor without any structure change or degradation in performance. This work provided a viable path to fabricate conductive materials by solving the two contradictions of high mechanical property and self-healability, and structure stability and recyclability. We believe that the superior overall performance and feasible fabrication make the developed PLA-PAA4-1% ICE hold great promise as a multifunctional strain sensor for practical applications in flexible wearable electronic devices and humanoid robotics.
Collapse
Affiliation(s)
- Ming Hui Lan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Xiaoxiao Guan
- China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou, Guangdong 510507, P. R. China
| | - Dong Yu Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Zhi Peng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Tingsu Liu
- School of Physics and Optoeletronic Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Zhenhua Tang
- School of Physics and Optoeletronic Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
40
|
Dikshit KV, Visal AM, Janssen F, Larsen A, Bruns CJ. Pressure-Sensitive Supramolecular Adhesives Based on Lipoic Acid and Biofriendly Dynamic Cyclodextrin and Polyrotaxane Cross-Linkers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17256-17267. [PMID: 36926820 DOI: 10.1021/acsami.3c00927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Slide-ring materials are polymer networks with mobile cross-links that exhibit impressive stress dissipation and fracture resistance owing to the pulley effect. On account of their remarkable ability to dissipate the energy of deformation, these materials have found their way into advanced materials such as abrasion-resistant coatings and elastic battery electrode binders. In this work, we explore the role of mobile cross-links on the properties of a biofriendly pressure-sensitive adhesive made using composites of cyclodextrin-based macromolecules and poly(lipoic acid). We modify cyclodextrin-based hosts and polyrotaxanes with pendant groups of lipoic acid (a commonly ingested antioxidant) to incorporate them as cross-links in poly(lipoic acid) networks obtained by simple heating in open air. By systematically varying the adhesive formulations while probing their mechanical and adhesive properties, we uncover trends in structure-property relationships that enable one to tune network properties and access biofriendly, high-tack adhesives.
Collapse
Affiliation(s)
- Karan Vivek Dikshit
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Aseem Milind Visal
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Femke Janssen
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Alexander Larsen
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Carson J Bruns
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- ATLAS Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
41
|
Mondal A, Das S, Ali SM, Kolay S, Sengupta A, Molla MR. Bioderived Lipoic Acid-Based Dynamic Covalent Nanonetworks of Poly(disulfide)s: Enhanced Encapsulation Stability and Cancer Cell-Selective Delivery of Drugs. Bioconjug Chem 2023; 34:489-500. [PMID: 36693213 DOI: 10.1021/acs.bioconjchem.2c00493] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dynamic covalent poly(disulfide)-based cross-linked nanoaggregates, termed nanonetworks (NNs), endowed with pH- and redox-responsive degradation features have been fabricated for stable noncovalent encapsulation and triggered cargo release in a controlled fashion. A bioderived lipoic acid-based Gemini surfactant-like amphiphilic molecule was synthesized for the preparation of nanoaggregates. It self-assembles by a entropy-driven self-assembly process in aqueous milieu. To further stabilize the self-assembled nanostructure, the core was cross-linked by ring-opening disulfide exchange polymerization (RODEP) of 1,2-dithiolane rings situated inside the core of the nanoaggregates. The cross-linked nanoaggregates, i.e., nanonetwork, are found to be stable in the presence of blood serum, and also, they maintain the self-assembled structure even below the critical aggregation concentration (CAC) as probed by dynamic light scattering (DLS) experiments. The nanonetwork showed almost 50% reduction in guest leakage compared to that of the nanoaggregates as shown by the release profile in the absence of stimuli, suggesting high encapsulation stability as evidenced by the fluorescence resonance energy transfer (FRET) experiment. The decross-linking of the nanonetwork occurs in response to redox and pH stimuli due to disulfide reduction and β-thioester hydrolysis, respectively, thus empowering disassembly-mediated controlled cargo release up to ∼87% for 55 h of incubation. The biological evaluation of the doxorubicin (DOX)-loaded nanonetwork revealed environment-specific surface charge modulation-mediated cancer cell-selective cellular uptake and cytotoxicity. The benign nature of the nanonetwork toward normal cells makes the system very promising in targeted drug delivery applications. Thus, the ease of synthesis, nanonetwork fabrication reproducibility, robust stability, triggered drug release in a controlled fashion, and cell-selective cytotoxicity behavior, we believe, will make the system a potential candidate in the development of robust materials for chemotherapeutic applications.
Collapse
Affiliation(s)
- Arun Mondal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shreya Das
- Department of Life Science & Biotechnology, Jadavpur University, 188 R. S. C. M. Road, Jadavpur, Kolkata 700032, India
| | - Sk Mursed Ali
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Soumya Kolay
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Arunima Sengupta
- Department of Life Science & Biotechnology, Jadavpur University, 188 R. S. C. M. Road, Jadavpur, Kolkata 700032, India
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
42
|
Wang BS, Zhang Q, Wang ZQ, Shi CY, Gong XQ, Tian H, Qu DH. Acid-catalyzed Disulfide-mediated Reversible Polymerization for Recyclable Dynamic Covalent Materials. Angew Chem Int Ed Engl 2023; 62:e202215329. [PMID: 36602285 DOI: 10.1002/anie.202215329] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Poly(1,2-dithiolane)s are a family of intrinsically recyclable polymers due to their dynamic covalent disulfide linkages. Despite the common use of thiolate-initiated anionic ring-opening polymerization (ROP) under basic condition, cationic ROP is still not exploited. Here we report that disulfide bond can act as a proton acceptor, being protonated by acids to form sulfonium cations, which can efficiently initiate the ROP of 1,2-dithiolanes and result in high-molecular-weight (over 1000 kDa) poly(disulfide)s. The reaction can be triggered by adding catalytic amounts of acids and non-coordinating anion salts, and completed in few minutes at room temperature. The acidic conditions allow the applicability for acidic monomers. Importantly, the reaction condition can be under open air without inert protection, enabling the nearly quantitative chemical recycling from bulk materials to original monomers.
Collapse
Affiliation(s)
- Bang-Sen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
43
|
Hickey JC, Hurst PJ, Patterson JP, Guan Z. Facile Synthesis of Multifunctional Bioreducible Polymers for mRNA Delivery. Chemistry 2023; 29:e202203393. [PMID: 36469740 DOI: 10.1002/chem.202203393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Bioreducible polymeric mRNA carriers are an emerging family of vectors for gene delivery and vaccine development. A few bioreducible systems have been generated through aqueous-phase ring-opening polymerization of lipoic acid derivatives, however this methodology limits hydrophobic group incorporation and functionality into resulting polymers. Herein, a poly(active ester)disulfide polymer is synthesized that can undergo facile aminolysis with amine-containing substrates under stoichiometric control and mild reaction conditions to yield a library of multifunctional polydisulfide polymers. Functionalized polydisulfide polymer species form stable mRNA-polymer nanoparticles for intracellular delivery of mRNAs in vitro. Alkyl-functionalized polydisulfide-RNA nanoparticles demonstrate rapid cellular uptake and excellent biodegradability when delivering EGFP and OVA mRNAs to cells in vitro. This streamlined polydisulfide synthesis provides a new facile methodology for accessing multifunctional bioreducible polymers as biomaterials for RNA delivery and other applications.
Collapse
Affiliation(s)
- James C Hickey
- Department of Chemistry, University of California, Irvine, California, 92697, USA
| | - Paul J Hurst
- Department of Chemistry, University of California, Irvine, California, 92697, USA
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, California, 92697, USA.,Center for Complex and Active Materials, University of California, Irvine, California, 92697, USA
| | - Zhibin Guan
- Department of Chemistry, University of California, Irvine, California, 92697, USA.,Center for Complex and Active Materials, University of California, Irvine, California, 92697, USA.,Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA.,Department of Biomedical Engineering Department of Chemical and Biomolecular Engineering and Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| |
Collapse
|
44
|
Ma Y, Jiang X, Yin J, Weder C, Berrocal JA, Shi Z. Chemical Upcycling of Conventional Polyureas into Dynamic Covalent Poly(aminoketoenamide)s. Angew Chem Int Ed Engl 2023; 62:e202212870. [PMID: 36394348 DOI: 10.1002/anie.202212870] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
The chemical upcycling of polymers is an emerging strategy to transform post-consumer waste into higher-value chemicals and materials. However, on account of the high stability of the chemical bonds that constitute their main chains, the chemical modification of many polymers proves to be difficult. Here, we report a versatile approach for the upcycling of linear and cross-linked polyureas, which are widely used because of their high chemical stability. The treatment of these polymers or their composites with acetylacetone affords di-vinylogous amide-terminated compounds in good yield. These products can be reacted with aromatic isocyanates, and the resulting aminoketoenamide bonds are highly dynamic at elevated temperatures. We show here that this conversion scheme can be exploited for the preparation of dynamic covalent poly(aminoketoenamide) networks, which are healable and reprocessable through thermal treatment without any catalyst.
Collapse
Affiliation(s)
- Youwei Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - José Augusto Berrocal
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Zixing Shi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
45
|
Recyclable polythioesters and polydisulfides with near-equilibrium thermodynamics and dynamic covalent bonds. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Closed-loop chemical recycling of cross-linked polymeric materials based on reversible amidation chemistry. Nat Commun 2022; 13:7595. [PMID: 36494357 PMCID: PMC9734120 DOI: 10.1038/s41467-022-35365-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Closed-loop chemical recycling provides a solution to the end-of-use problem of synthetic polymers. However, it remains a major challenge to design dynamic bonds, capable of effective bonding and reversible cleaving, for preparing chemically recyclable cross-linked polymers. Herein, we report a dynamic maleic acid tertiary amide bond based upon reversible amidation reaction between maleic anhydrides and secondary amines. This dynamic bond allows for the construction of polymer networks with tailorable and robust mechanical properties, covering strong elastomers with a tensile strength of 22.3 MPa and rigid plastics with a yield strength of 38.3 MPa. Impressively, these robust polymeric materials can be completely depolymerized in an acidic aqueous solution at ambient temperature, leading to efficient monomer recovery with >94% separation yields. Meanwhile, the recovered monomers can be used to remanufacture cross-linked polymeric materials without losing their original mechanical performance. This work unveils a general approach to design polymer networks with tunable mechanical performance and closed-loop recyclability, which will open a new avenue for sustainable polymeric materials.
Collapse
|
47
|
Qi Y, Ramström O. Polymerization, Stimuli-induced Depolymerization, and Precipitation-driven Macrocyclization in a Nitroaldol Reaction System. Chemistry 2022; 28:e202201863. [PMID: 35971799 PMCID: PMC9826525 DOI: 10.1002/chem.202201863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 01/11/2023]
Abstract
Dynamic covalent polymers of different topology have been synthesized from an aromatic dialdehyde and α,ω-dinitroalkanes via the nitroaldol reaction. All dinitroalkanes yielded dynamers with the dialdehyde, where the length of the dinitroalkane chain played a vital role in determining the structure of the final products. For longer dinitroalkanes, linear dynamers were produced, where the degree of polymerization reached a plateau at higher feed concentrations. In the reactions involving 1,4-dinitrobutane and 1,5-dinitropentane, specific macrocycles were formed through depolymerization of the linear chains, further driven by precipitation. At lower temperature, the same systemic self-sorting effect was also observed for the 1,6-dinitrohexane-based dynamers. Moreover, the dynamers showed a clear adaptive behavior, displaying depolymerization and rearrangement of the dynamer chains in response to alternative building blocks as external stimuli.
Collapse
Affiliation(s)
- Yunchuan Qi
- Department of ChemistryUniversity of Massachusetts LowellOne University Ave.LowellMA 01854USA
| | - Olof Ramström
- Department of ChemistryUniversity of Massachusetts LowellOne University Ave.LowellMA 01854USA
- Department of Chemistry and Biomedical SciencesLinnaeus UniversitySE-39182KalmarSweden
| |
Collapse
|
48
|
Chen Z, He Y, Tao X, Ma Y, Jia J, Wang Y. Thermal Nociception of Ionic Skin: TRPV1 Ion Channel-Inspired Heat-Activated Dynamic Ionic Liquid. J Phys Chem Lett 2022; 13:10076-10084. [PMID: 36269047 DOI: 10.1021/acs.jpclett.2c02952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The artificial reproduction of the tactile sensory function of natural skin is crucial for intelligent sensing, human-computer interaction, and medical health. Thermal nociception is an essential human tactile function to avoid noxious thermal stimuli, which depends on the specific heat-activation of the TRPV1 ion channel. Inspired by the TRPV1, a dynamic ionic liquid with heat-activation characteristics is designed and prepared, which can be activated at 45 °C, which is near the physiological noxious temperature, accompanied by a steep rise in electrical response signals. Its electrical behavior can be deemed to be the extreme version of temperature sensation similar to the natural thermal nociceptor. The heat-activation mechanism is confirmed as a feasible strategy to regulate the thermal response behavior of ions, and this reported dynamic ionic liquid has an unprecedented intrinsic temperature response sensitivity of up to 156.79%/°C. In consideration of the similarity between the heat-activated dynamic ionic liquid and the TRPV1 ion channel in terms of heat-activation characteristics, electrical output signal, and ultrathermal sensitivity, an all-liquid ionic skin with the ability of thermal nociception is further fabricated, which shows considerable potential to assist patients with tactile desensitization to avoid noxious thermal stimuli.
Collapse
Affiliation(s)
- Zhiwu Chen
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing100872, China
| | - Yonglin He
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing100872, China
| | - Xinglei Tao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing100872, China
| | - Yingchao Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing100872, China
| | - Jichen Jia
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing100872, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing100872, China
| |
Collapse
|
49
|
Cai C, Wu S, Zhang Y, Li F, Tan Z, Dong S. Poly(thioctic acid): From Bottom-Up Self-Assembly to 3D-Fused Deposition Modeling Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203630. [PMID: 36220340 PMCID: PMC9685451 DOI: 10.1002/advs.202203630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Inspired by the bottom-up assembly in nature, an artificial self-assembly pattern is introduced into 3D-fused deposition modeling (FDM) printing to achieve additive manufacturing on the macroscopic scale. Thermally activated polymerization of thioctic acid (TA) enabled the bulk construction of poly(TA), and yielded unique time-dependent self-assembly. Freshly prepared poly(TA) can spontaneously and continuously transfer into higher-molecular-weight species and low-molecular-weight TA monomers. Poly(TA) and the newly formed TA further assembled into self-reinforcing materials via microscopic-phase separation. Bottom-up self-assembly patterns on different scales are fully realized by 3D FDM printing of poly(TA): thermally induced polymerization of TA (microscopic-scale assembly) to poly(TA) and 3D printing (macroscopic-scale assembly) of poly(TA) are simultaneously achieved in the 3D-printing process; after 3D printing, the poly(TA) modes show mechanically enhanced features over time, arising from the microscopic self-assembly of poly(TA) and TA. This study clearly demonstrates that micro- and macroscopic bottom-up self-assembly can be applied in 3D additive manufacturing.
Collapse
Affiliation(s)
- Changyong Cai
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Shuanggen Wu
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Yunfei Zhang
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Fenfang Li
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083China
| | - Zhijian Tan
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangsha410205China
| | - Shengyi Dong
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| |
Collapse
|
50
|
Preparation and application of recyclable multifunctional self-healing thioctic acid-based materials. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|