1
|
Jia L, Wang R, Sun Y, Chen Y, Zhang T, Li M, Xie X, Wang S. Engineered surface design of recognition site-ordered biomimetic sensor for efficient detection of circulating tumor cells. Biosens Bioelectron 2025; 269:116946. [PMID: 39557009 DOI: 10.1016/j.bios.2024.116946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
The oriented assembly of cell membrane coating plays an important role in advancing the application of this strategy in biomedical fields, particularly in detecting circulating tumor cells (CTCs). Unfortunately, there is a formidable challenge in achieving effective membrane orientation during the coating process owing to the asymmetric properties of cell membranes. Herein, magnetic vesicles released by tumor cells were designed to break down these barriers in the same way that microvesicles are actively secreted from cells, which completely inherited the orientation and characteristics of the parent cell membranes, exhibiting a satisfactory self-targeting ability for homologous cells. To cope with the complex application environment, spatially ordered aptamers were integrated into magnetic vesicles and combined with catalytic hairpin assembly (CHA) technology to construct a recognition site-ordered biomimetic sensor for high-performance detection of CTCs. In this strategy, the ordered arrangement of membrane proteins and aptamers markedly improved capture efficiency of traditional biomimetic strategy for CTCs. Additionally, CHA-induced fluorescence and colorimetric analysis ensured the detection accuracy and sensitivity, with a linear range of 0 to 104 cells mL-1 and a low detection limit of 3 cells mL-1 for fluorometry and 6 cells mL-1 for colorimetry. Overall, the biomimetic sensor offered broader possibilities for detecting rare CTCs and provided new insight to expand the application of cell membrane biomimetic strategies in biomedicine.
Collapse
Affiliation(s)
- Lanlan Jia
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Runting Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Yihan Sun
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Yuxin Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Tingting Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Min Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China; School of Medicine, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
2
|
Chen L, Xu Y, Zhou L, Ma D, Zhang R, Liu Y, Mi X. Ultra-sensitive fluorescence-activated droplet single-cell sorting based on Tetramer-HCR-EvaGreen amplification. MICROSYSTEMS & NANOENGINEERING 2025; 11:10. [PMID: 39819845 PMCID: PMC11739583 DOI: 10.1038/s41378-024-00861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025]
Abstract
The current single-cell analysis technologies such as fluorescence-activated cell sorting (FACS) and fluorescence-activated droplet sorting (FADS) could decipher the cellular heterogeneity but were constrained by low sorting performance and cell viability. Here, an ultra-sensitive single-cell sorting platform has been developed by integrating the FADS technology with Tetramer-HCR-EvaGreen (THE) fluorescence signal amplification. The THE system produced much higher fluorescence signal than that of the single Tetramer or Tetramer-HCR signal amplification. Upon application to target MCF-7 cells, the platform exhibited high efficacy and selectivity while maintaining more than 95% cell viability. The THE-FADS achieved sorting efficiencies of 55.5% and 50.3% with purities of 91% and 85% for MCF-7 cells in PBS solutions and simulated serum samples, respectively. The sorted MCF-7 cells showed similar proliferation together with CK19 and EGFR mRNA expression compared with the control cells. The established THE-FADS showed the promising prospects to cellular heterogeneity understanding and personalized medicine.
Collapse
Affiliation(s)
- Long Chen
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Xu
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lele Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ding Ma
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China.
| | - Xianqiang Mi
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Physics and Optoelectronic Engineering Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
3
|
Luo L, Li J, Zhou Y, Xiang D, Luan Y, Wang Q, Huang J, Liu J, Yang X, Wang K. Spatially Controlled DNA Frameworks for Sensitive Detection and Specific Isolation of Tumor Cells. Angew Chem Int Ed Engl 2024; 63:e202411382. [PMID: 39405000 DOI: 10.1002/anie.202411382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/14/2024] [Indexed: 11/13/2024]
Abstract
High-affinity, specific, and sensitive probes are crucial for the specific recognition and identification of tumor cells from complex matrices. Multivalent binding is a powerful strategy, but the irrational spatial distribution of the functional moieties may reduce the probe performance. Here, we constructed a Janus DNA triangular prism nanostructure (3Zy1-JTP-3) for sensitive detection and specific isolation of tumor cells. Benefiting from spatial features of the triangular prism, the fluorescence intensity induced by 3Zy1-JTP-3 was almost 4 times that of the monovalent structure. Moreover, the DNA triangular prisms were connected to form hand-in-hand multivalent DNA triangular prism structures (Zy1-MTP), in which the fluorescence intensity and affinity were increased to 9-fold and 10-fold of 3Zy1-JTP-3, respectively. Furthermore, 3Zy1-JTP-3 and Zy1-MTP were combined with magnetic beads, and the latter showed higher capture efficiency (>90 %) in whole blood. This work provides a new strategy for the efficient capture of rare cells in complex biological samples.
Collapse
Affiliation(s)
- Lei Luo
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jiaojiao Li
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuan Zhou
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Dongliu Xiang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yanan Luan
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Qing Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jin Huang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jianbo Liu
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xiaohai Yang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Kemin Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| |
Collapse
|
4
|
Liang C, Huang Q, Zheng H, Duan M, Cheng X, Chen J, Li Q, Zhang Z, Fan C, Tian H, Shen J. Probing Cell Membrane Tension Using DNA Framework-Encoded Vibration-Induced Emission Molecular Assemblies. J Am Chem Soc 2024; 146:34341-34351. [PMID: 39641755 DOI: 10.1021/jacs.4c08271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Mechanosensitive fluorescent probes are valuable tools for detecting changes in cellular mechanics and viscosity. While numerous mechanosensitive probes have been developed, the construction of molecular assemblies for probing cellular mechanics remains largely unexplored, possibly due to the challenges of designing assemblies with synergistic and integrated functionalities. Here, we report the design and synthesis of mechanosensitive molecular assemblies by integrating DNA frameworks with vibration-induced emission (VIE) probes to enable live-cell membrane tension imaging. The molecular assemblies consist of a rigid tetrahedral DNA framework anchored with prescribed numbers of VIE probes. We find that VIE probes on the DNA framework retain their ratiometric fluorescence response characteristics in aqueous systems and on lipidic model membranes. Importantly, VIE assemblies exhibit distinct cell membrane targeting behaviors depending on the number of contact points between the molecular assemblies and the cell membrane. Especially, trivalent molecular assemblies can inhibit the internalization of the probes by the cells, a property absent in free VIE and mono/divalent molecular assemblies, thereby achieving targeted and prolonged retention on the cell membrane. Using the trivalent molecular assemblies, we successfully achieve ratiometric fluorescence imaging of cell membrane tension using confocal laser scanning microscopy, revealing the potential of such multifunctional mechanical-sensitive probes for live-cell applications.
Collapse
Affiliation(s)
- Chengpin Liang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuling Huang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Haoran Zheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mulin Duan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jielin Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He Tian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Okholm K, Nooteboom SW, Vinther JN, Lamberti V, Dey S, Andersen ES, Zijlstra P, Sutherland DS. Single-Molecule Multivalent Interactions Revealed by Plasmon-Enhanced Fluorescence. ACS NANO 2024; 18:35429-35442. [PMID: 39686530 PMCID: PMC11698027 DOI: 10.1021/acsnano.4c12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Multivalency as an interaction principle is widely utilized in nature. It enables specific and strong binding by multiple weak interactions through enhanced avidity and is a core process in immune recognition and cellular signaling, which is also a current concept in drug design. Here, we use the high signals from plasmon-enhanced fluorescence of nanoparticles to extract binding kinetics and dynamics of multivalent interactions on the single-molecule level and in real time. We study mono-, bi-, and trivalent binding interactions using a DNA Holliday Junction as a model construct with programmable valency and introduce a step-binding model for binding kinetics relevant for structured macromolecules by including an experimentally extractable binding restriction term ω to quantify the effects from conformation, steric effects, and rigidity. We used this approach to explore how length and flexibility of the DNA ligands affect binding restriction and binding strength, where the overall binding strength decreased with spacer length. For trivalent systems, increasing spacer length additionally activated binding in the trivalent state, giving insight into the design of multivalent drug or targeting moieties. By systematically changing the receptor density, we explored the binding super selectivity of the multivalent HJ at the single-molecule level. We find a polynomial behavior of the trivalent binding strength that clearly shows receptor-density-dependent selective binding. Interestingly, we could exploit the rapidly decaying near fields of the plasmon that induce a strong dependence of the signal on the position of the dye to observe binding dynamics during single multivalent binding events.
Collapse
Affiliation(s)
- Kasper
R. Okholm
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
- The
Centre for Cellular Signal Patterns (CELLPAT), Gustav Wieds Vej 14, Aarhus
C 8000, Denmark
| | - Sjoerd W. Nooteboom
- Department
of Applied Physics and Science Education and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, Eindhoven 5600 MB, the Netherlands
| | - Johan Nygaard Vinther
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
- Bioinformatics
Research Centre, Aarhus University, Aarhus C 8000, Denmark
| | - Vincenzo Lamberti
- Department
of Applied Physics and Science Education and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, Eindhoven 5600 MB, the Netherlands
| | - Swayandipta Dey
- Department
of Applied Physics and Science Education and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, Eindhoven 5600 MB, the Netherlands
| | - Ebbe Sloth Andersen
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
- Department
of Molecular Biology and Genetics, Aarhus
University, Aarhus C 8000, Denmark
| | - Peter Zijlstra
- Department
of Applied Physics and Science Education and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, Eindhoven 5600 MB, the Netherlands
| | - Duncan S. Sutherland
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
- The
Centre for Cellular Signal Patterns (CELLPAT), Gustav Wieds Vej 14, Aarhus
C 8000, Denmark
| |
Collapse
|
6
|
Xia C, Chen X, Jiang YB, Jiang T. Self-Assembled Peptide Sheet-Mediated Multivalent Capture of Cells with Enhanced Tunability. Chembiochem 2024:e202400797. [PMID: 39622775 DOI: 10.1002/cbic.202400797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/30/2024] [Indexed: 12/13/2024]
Abstract
We report the creation of multivalent ligand surfaces for cell capture by conjugation of ligand-appended 2D peptide assemblies on an antifouling glass substrate. The sheet-like structures organize ligands into non-uniform, patchy patterns, enhancing multivalent cell targeting. A 155 % increase in captured cells was achieved compared to the presentation of the ligands on surfaces lacking the peptide sheets. Being orthogonal to the commonly used dendrimer- and cyclic organic molecular-based scaffolds, this peptide assembly-based approach offers a facile method to modulate the identity, number, and spatial distribution of ligands through controlled peptide coassembly. Using this method, we constructed a surface bearing two types of ligands, which demonstrates a 128 % enhancement in targeting selectivity between two model cells compared to the mono-ligand surface. These findings illustrate that integration of peptide assemblies into ligand substrates permits robust and effective manipulation of multivalent cell targeting, advancing the development of customizable cell-binding materials.
Collapse
Affiliation(s)
- Cai Xia
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen, 361005, China
| | - Xin Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen, 361005, China
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), Xiamen, 361021, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen, 361005, China
| | - Tao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen, 361005, China
| |
Collapse
|
7
|
Chen X, Xu Z, Gao Y, Chen Y, Yin W, Liu Z, Cui W, Li Y, Sun J, Yang Y, Ma W, Zhang T, Tian T, Lin Y. Framework Nucleic Acid-Based Selective Cell Catcher for Endogenous Stem Cell Recruitment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406118. [PMID: 39543443 DOI: 10.1002/adma.202406118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/23/2024] [Indexed: 11/17/2024]
Abstract
Cell-surface engineering holds great promise in boosting endogenous stem cell attraction for tissue regeneration. However, challenges such as cellular internalization of ligand and the dynamic nature of cell membranes often complicate ligand-receptor interactions. The aim of this study is to harness the innovative potential of programmable tetrahedral framework nucleic acid (tFNA) to enable precise, tunable ligand-receptor interactions, thereby improving stem cell recruitment efficiency. This approach involves experimental screening and theoretical analysis using dissipative particle dynamics. The results demonstrate that altering the flexibility and topology of ligands on tFNA changes their cellular internalization and membrane binding efficiency. Furthermore, optimizing the distribution of the mesenchymal stem cell (MSC)-binding aptamer 19S (Apt19S) on the tFNA enhances the stem cell capture efficiency. Following successful in vitro MSC capture, Apt19S-modified tFNA is chemically linked to a hyaluronic acid hydrogel, forming an efficient "stem cell catcher" system. Subsequent in vivo experiments demonstrate that this system effectively promotes early stem cell recruitment and accelerates bone regeneration in different bone healing scenarios, including cranial and maxillary defects.
Collapse
Affiliation(s)
- Xingyu Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Ziang Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Wumeng Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiafei Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| |
Collapse
|
8
|
Cui M, Zhang D, Zheng X, Zhai H, Xie M, Fan Q, Wang L, Fan C, Chao J. Intelligent Modular DNA Lysosome-Targeting Chimera Nanodevice for Precision Tumor Therapy. J Am Chem Soc 2024; 146:29609-29620. [PMID: 39428706 DOI: 10.1021/jacs.4c10010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Lysosome targeting chimeras (LYTACs) have emerged as a powerful modality that can eliminate traditionally undruggable extracellular tumor-related pathogenic proteins, but their low bioavailability and nonspecific distribution significantly restrict their efficacy in precision tumor therapy. Developing a LYTAC system that can selectively target tumor tissues and enable a modular design is crucial but challenging. We here report a programmable nanoplatform for tumor-specific degradation of multipathogenic proteins using an intelligent modular DNA LYTAC (IMTAC) nanodevice. We employ circular DNA origami to integrate predesigned modular multitarget protein binding sites and pH-responsive protein degradation promoters that specifically recognize cell-surface lysosome-shuttling receptors in tumor tissues. By precisely manipulating the stoichiometry and modularity of promoters and ligands targeting diverse proteins, the IMTAC nanodevice enables accurate localization and delivery into tumor tissues, where the acidic tumor microenvironment triggers degradation switch activation, multivalent binding, and efficient degradation of various prespecified proteins. The tissue-specificity and multiple ligands in IMTACs significantly improve the drug utilization rate while reducing off-target effects. Importantly, this system demonstrates the capability of collabo-rative degradation of EGFR and PDL1 in tumor tissue for combined targeting and immunity therapy of hepatocellular carcinoma (HCC), resulting in obvious tumor necrosis and inhibition of tumor growth in vivo even at low concentrations. This study presents a unique strategy for building a general, intelligent, modular, and simple encoded nanoplatform for designing precision medicine degraders and developing proprietary antitumor drugs.
Collapse
Affiliation(s)
- Meirong Cui
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xian Zheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huan Zhai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Mo Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qin Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
9
|
Ouyang Y, Zhang P, Willner I. DNA Tetrahedra as Functional Nanostructures: From Basic Principles to Applications. Angew Chem Int Ed Engl 2024; 63:e202411118. [PMID: 39037936 DOI: 10.1002/anie.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Self-assembled supramolecular DNA tetrahedra composed of programmed sequence-engineered complementary base-paired strands represent elusive nanostructures having key contributions to the development and diverse applications of DNA nanotechnology. By appropriate engineering of the strands, DNA tetrahedra of tuneable sizes and chemical functionalities were designed. Programmed functionalities for diverse applications were integrated into tetrahedra structures including sequence-specific recognition strands (aptamers), catalytic DNAzymes, nanoparticles, proteins, or fluorophore. The article presents a comprehensive review addressing methods to assemble and characterize the DNA tetrahedra nanostructures, and diverse applications of DNA tetrahedra framework are discussed. Topics being addressed include the application of structurally functionalized DNA tetrahedra nanostructure for the assembly of diverse optical or electrochemical sensing platforms and functionalized intracellular sensing and imaging modules. In addition, the triggered reconfiguration of DNA tetrahedra nanostructures and dynamic networks and circuits emulating biological transformations are introduced. Moreover, the functionalization of DNA tetrahedra frameworks with nanoparticles provides building units for the assembly of optical devices and for the programmed crystallization of nanoparticle superlattices. Finally, diverse applications of DNA tetrahedra in the field of nanomedicine are addressed. These include the DNA tetrahedra-assisted permeation of nanocarriers into cells for imaging, controlled drug release, active chemodynamic/photodynamic treatment of target tissues, and regenerative medicine.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Pu Zhang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Current address: Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
10
|
Liu Y, Fan Z, Xiang XW, Tao X, Xia X, Shi Q, Lu Y, Lu J, Gu H, Liu YJ, Liu B. Engineering of Multivalent Membrane-Anchored DNA Frameworks for Precise Profiling of Variable Membrane Permeability During Reversible Electroporation. SMALL METHODS 2024; 8:e2301198. [PMID: 38152955 DOI: 10.1002/smtd.202301198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Electroporation techniques have emerged as attractive tools for intracellular delivery, rendering promising prospects towards clinical therapies. Transient disruption of membrane permeability is the critical process for efficient electroporation-based cargo delivery. However, smart nanotools for precise characterization of transient membrane changes induced by strong electric pulses are extremely limited. Herein, multivalent membrane-anchored fluorescent nanoprobes (MMFNPs) that take advantages of flexible functionalization and spatial arrangement of DNA frameworks are developed for in situ evaluation of electric field-induced membrane permeability during reversible electroporation . Single-molecule fluorescence imaging techniques are adopted to precisely verify the excellent analytical performance of the engineered MMFNPs. Benefited from tight membrane anchoring and sensitive adenosine triphosphate (ATP) profiling, varying degrees of membrane disturbances are visually exhibited under different intensities of the microsecond pulse electric field (µsPEF). Significantly, the dynamic process of membrane repair during reversible electroporation is well demonstrated via ATP fluctuations monitored by the designed MMFNPs. Furthermore, molecular dynamics (MD) simulations are performed for accurate verification of electroporation-driven dynamic cargo entry via membrane nanopores. This work provides an avenue for effectively capturing transient fluctuations of membrane permeability under external stimuli, offering valuable guidance for developing efficient and safe electroporation-driven delivery strategies for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zihui Fan
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiao-Wei Xiang
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xiaonan Tao
- School of Information Science and Technology, Fudan University, Shanghai, 200032, China
| | - Xinwei Xia
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qian Shi
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiayin Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hongzhou Gu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan-Jun Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
11
|
Song L, Zuo X, Li M. Concept and Development of Algebraic Topological Framework Nucleic Acids. Chempluschem 2024; 89:e202300760. [PMID: 38529703 DOI: 10.1002/cplu.202300760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Nucleic acids are considered as promising materials for developing exquisite nanostructures from one to three dimensions. The advances of DNA nanotechnology facilitate ingenious design of DNA nanostructures with diverse shapes and sizes. Especially, the algebraic topological framework nucleic acids (ATFNAs) are functional DNA nanostructures that engineer guest molecules (e. g., nucleic acids, proteins, small molecules, and nanoparticles) stoichiometrically and spatially. The intrinsic precise properties and tailorable functionalities of ATFNAs hold great promise for biological applications, such as cell recognition and immunotherapy. This Perspective highlights the concept and development of precisely assembled ATFNAs, and outlines the new frontiers and opportunities for exploiting the structural advantages of ATFNAs for biological applications.
Collapse
Affiliation(s)
- Lu Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| |
Collapse
|
12
|
Chen H, Li F, Ge Y, Liu J, Xing X, Li M, Ge Z, Zuo X, Fan C, Wang S, Wang F. DNA Framework-Enabled 3D Organization of Antiarrhythmic Drugs for Radiofrequency Catheter Ablation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401960. [PMID: 38843807 DOI: 10.1002/adma.202401960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/06/2024] [Indexed: 06/13/2024]
Abstract
Preorganizing molecular drugs within a microenvironment is crucial for the development of efficient and controllable therapeutic systems. Here, the use of tetrahedral DNA framework (TDF) is reported to preorganize antiarrhythmic drugs (herein doxorubicin, Dox) in 3D for catheter ablation, a minimally invasive treatment for fast heartbeats, aiming to address potential complications linked to collateral tissue damage and the post-ablation atrial fibrillation (AF) recurrence resulting from incomplete ablation. Dox preorganization within TDF transforms its random distribution into a confined, regular spatial arrangement governed by DNA. This, combined with the high affinity between Dox and DNA, significantly increases local Dox concentration. The exceptional capacity of TDF for cellular internalization leads to a 5.5-fold increase in intracellular Dox amount within cardiomyocytes, effectively promoting cellular apoptosis. In vivo investigations demonstrate that administering TDF-Dox reduces the recurrence rate of electrical conduction after radiofrequency catheter ablation (RFCA) to 37.5%, compared with the 77.8% recurrence rate in the free Dox-treated group. Notably, the employed Dox dosage exhibits negligible adverse effects in vivo. This study presents a promising treatment paradigm that strengthens the efficacy of catheter ablation and opens a new avenue for reconciling the paradox of ablation efficacy and collateral damage.
Collapse
Affiliation(s)
- Hangwei Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200800, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yulong Ge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200800, China
| | - Junyi Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200800, China
| | - Xing Xing
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200800, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaopeng Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200800, China
| |
Collapse
|
13
|
Duan X, Qin W, Hao J, Yu X. Recent advances in the applications of DNA frameworks in liquid biopsy: A review. Anal Chim Acta 2024; 1308:342578. [PMID: 38740462 DOI: 10.1016/j.aca.2024.342578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Cancer is one of the serious threats to public life and health. Early diagnosis, real-time monitoring, and individualized treatment are the keys to improve the survival rate and prolong the survival time of cancer patients. Liquid biopsy is a potential technique for cancer early diagnosis due to its non-invasive and continuous monitoring properties. However, most current liquid biopsy techniques lack the ability to detect cancers at the early stage. Therefore, effective detection of a variety of cancers is expected through the combination of various techniques. Recently, DNA frameworks with tailorable functionality and precise addressability have attracted wide spread attention in biomedical applications, especially in detecting cancer biomarkers such as circulating tumor cells (CTCs), exosomes and circulating tumor nucleic acid (ctNA). Encouragingly, DNA frameworks perform outstanding in detecting these cancer markers, but also face some challenges and opportunities. In this review, we first briefly introduced the development of DNA frameworks and its typical structural characteristics and advantages. Then, we mainly focus on the recent progress of DNA frameworks in detecting commonly used cancer markers in liquid-biopsy. We summarize the advantages and applications of DNA frameworks for detecting CTCs, exosomes and ctNA. Furthermore, we provide an outlook on the possible opportunities and challenges for exploiting the structural advantages of DNA frameworks in the field of cancer diagnosis. Finally, we envision the marriage of DNA frameworks with other emerging materials and technologies to develop the next generation of disease diagnostic biosensors.
Collapse
Affiliation(s)
- Xueyuan Duan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Weiwei Qin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| | - Jicong Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
14
|
Li W, Liu S, Wang Z, Gou L, Ou Y, Zhu X, Zhou Y, Zhang T, Liu J, Zheng X, Berggren PO, Liu J, Zheng X. Programmable DNA Scaffolds Enable Orthogonal Engineering of Cell Membrane-Based Nanovesicles for Therapeutic Development. NANO LETTERS 2024. [PMID: 38856668 DOI: 10.1021/acs.nanolett.4c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cell membrane-based nanovesicles (CMNVs) play pivotal roles in biomolecular transportation in living organisms and appear as attractive bioinformed nanomaterials for theranostic applications. However, the current surface-engineering technologies are limited in flexibility and orthogonality, making it challenging to simultaneously display multiple different ligands on the CMNV surface in a precisely controlled manner. Here, we developed a DNA scaffold-programmed approach to orthogonally engineer CMNVs with versatile ligands. The designed DNA scaffolds can rapidly anchor onto the CMNV surface, and their unique sequences and hybridized properties enable independent control of the loading of multiple different types of biomolecules on the CMNVs. As a result, the orthogonal engineering of CMNVs with a renal targeted peptide and a therapeutic protein at controlled ratios demonstrated an enhanced renal targeting and repair potential in vivo. This study highlights that a DNA scaffold-programmed platform can provide a potent means for orthogonal and flexible surface engineering of CMNVs for diverse therapeutic purposes.
Collapse
Affiliation(s)
- Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuyun Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianci Zhang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaye Liu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610041, China
| | - Xiaowei Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Per-Olof Berggren
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610041, China
| |
Collapse
|
15
|
Cao N, Wang S, Li F, Mao X, Zuo X, Zhang Y, Li M. Construction of Double-enzyme Complexes with DNA Framework Nanorulers for Improving Enzyme Cascade Catalytic Efficiency. Chempluschem 2024; 89:e202300781. [PMID: 38355897 DOI: 10.1002/cplu.202300781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/16/2024]
Abstract
Efficient biocatalytic cascade reactions play a crucial role in guiding intricate, specific and selective intracellular transformation processes. However, the catalytic activity of the enzyme cascade reaction in bulk solution was greatly impacted by the spatial morphology and inter-enzyme distance. The programmability and addressability nature of framework nucleic acid (FNA) allows to be used as scaffold for immobilization and to direct the spatial arrangement of enzyme cascade molecules. Here, we used tetrahedral DNA framework (TDF) as nanorulers to assemble two enzymes for constructing a double-enzyme complex, which significantly enhance the catalytic efficiency of sarcosine oxidase (SOx)/horseradish peroxidase (HRP) cascade system. We synthesized four types of TDF nanorulers capable of programming the lateral distance between enzymes from 5.67 nm to 12.33 nm. Enzymes were chemical modified by ssDNA while preserving most catalytic activity. Polyacrylamide gel electrophoresis (PAGE), transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to verify the formation of double-enzyme complex. Four types of double-enzyme complexes with different enzyme distance were constructed, in which TDF26(SOx+HRP) exhibited the highest relative enzyme cascade catalytic activity, ~3.11-fold of free-state enzyme. Importantly, all the double-enzyme complexes demonstrate a substantial improvement in enzyme cascade catalytic activity compared to free enzymes.
Collapse
Affiliation(s)
- Nan Cao
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Shaopeng Wang
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
| | - Fan Li
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
| | - Xiuhai Mao
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
| | - Yueyue Zhang
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
| | - Min Li
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R., China
| |
Collapse
|
16
|
Wang Y, Shen C, Wu C, Zhan Z, Qu R, Xie Y, Chen P. Self-Assembled DNA Machine and Selective Complexation Recognition Enable Rapid Homogeneous Portable Quantification of Lung Cancer CTCs. RESEARCH (WASHINGTON, D.C.) 2024; 7:0352. [PMID: 38711475 PMCID: PMC11070850 DOI: 10.34133/research.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/21/2024] [Indexed: 05/08/2024]
Abstract
In this study, we systematically investigated the interactions between Cu2+ and various biomolecules, including double-stranded DNA, Y-shaped DNA nanospheres, the double strand of the hybridization chain reaction (HCR), the network structure of cross-linked HCR (cHCR), and small molecules (PPi and His), using Cu2+ as an illustrative example. Our research demonstrated that the coordination between Cu2+ and these biomolecules not only is suitable for modulating luminescent material signals through complexation reactions with Cu2+ but also enhances signal intensities in materials based on chemical reactions by increasing spatial site resistance and local concentration. Building upon these findings, we harnessed the potential for signal amplification in self-assembled DNA nanospheres and the selective complexation modulation of calcein in conjunction with the aptamer targeting mucin 1 as a recognition probe. We applied this approach to the analysis of circulating tumor cells, with the lung cancer cell line A549 serving as a representative model. Our assay, utilizing both a fluorometer and a handheld detector, achieved impressive detection limits of ag/ml and single-cell levels for mucin 1 and A549 cells, and this approach was successfully validated using 46 clinical samples, yielding 100% specificity and 86.5% sensitivity. Consequently, our strategy has paved the way for more portable and precise disease diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, West China Hospital,
Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
17
|
Wei Y, Feng Y, Wang K, Wei Y, Li Q, Zuo X, Li B, Li J, Wang L, Fan C, Zhu Y. Directing the Encapsulation of Single Cells with DNA Framework Nucleator-Based Hydrogel Growth. Angew Chem Int Ed Engl 2024; 63:e202319907. [PMID: 38391274 DOI: 10.1002/anie.202319907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Encapsulating individual mammalian cells with biomimetic materials holds potential in ex vivo cell culture and engineering. However, current methodologies often present tradeoffs between homogeneity, stability, and cell compatibility. Here, inspired by bacteria that use proteins stably anchored on their outer membranes to nucleate biofilm growth, we develop a single-cell encapsulation strategy by using a DNA framework structure as a nucleator (DFN) to initiate the growth of DNA hydrogels under cell-friendly conditions. We find that among the tested structures, the tetrahedral DFN can evenly and stably reside on cell membranes, effectively initiating hybridization chain reactions which generate homogeneously dense yet flexible single-cell encapsulation for diverse cell lines. The encapsulation persists for up to 72 hours in a serum-containing cell culture environment, representing a ~70-fold improvement compared to encapsulations mediated by single-stranded DNA nucleators. The metabolism and proliferation of the encapsulated cells are suppressed, but can be restored to the original efficiencies upon release, suggesting the superior cell compatibility of the encapsulation. We also find that compared to naked cells, the encapsulated cells exhibit a lower autophagy level after undergoing mechanical stress, suggesting the protective effect of the DNA encapsulation. This method may provide a new tool for ex vivo cell engineering.
Collapse
Affiliation(s)
- Yuhan Wei
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yueyue Feng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315300, Ningbo, China
| | - Yuhui Wei
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Bin Li
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Jiang Li
- Institute of Materiobiology, College of Science, Shanghai University, 200444, Shanghai, China
| | - Lihua Wang
- Institute of Materiobiology, College of Science, Shanghai University, 200444, Shanghai, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ying Zhu
- Institute of Materiobiology, College of Science, Shanghai University, 200444, Shanghai, China
| |
Collapse
|
18
|
Chen Y, Lin M, Ye D, Wang S, Zuo X, Li M. Functionalized tetrahedral DNA frameworks for the capture of circulating tumor cells. Nat Protoc 2024; 19:985-1014. [PMID: 38316964 DOI: 10.1038/s41596-023-00943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/30/2023] [Indexed: 02/07/2024]
Abstract
Identification and characterization of circulating tumor cells (CTCs) from blood samples of patients with cancer can help monitor parameters such as disease stage, disease progression and therapeutic efficiency. However, the sensitivity and specificity of current multivalent approaches used for CTC capture is limited by the lack of control over the ligands' position. In this Protocol Update, we describe DNA-tetrahedral frameworks anchored with aptamers that can be configured with user-defined spatial arrangements and stoichiometries. The modified tetrahedral DNA frameworks, termed 'n-simplexes', can be used as probes to specifically target receptor-ligand interactions on the cell membrane. Here, we describe the synthesis and use of n-simplexes that target the epithelial cell adhesion molecule expressed on the surface of CTCs. The characterization of the n-simplexes includes measuring the binding affinity to the membrane receptors as a result of the spatial arrangement and stoichiometry of the aptamers. We further detail the capture of CTCs from patient blood samples. The procedure for the preparation and characterization of n-simplexes requires 11.5 h, CTC capture from clinical samples and data processing requires ~5 h per six samples and the downstream analysis of captured cells typically requires 5.5 h. The protocol is suitable for users with basic expertise in molecular biology and handling of clinical samples.
Collapse
Affiliation(s)
- Yirong Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Dekai Ye
- Zhangjiang Laboratory, Shanghai, China
| | - Shaopeng Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Zou W, Lu J, Zhang L, Sun D. Tetrahedral framework nucleic acids for improving wound healing. J Nanobiotechnology 2024; 22:113. [PMID: 38491372 PMCID: PMC10943864 DOI: 10.1186/s12951-024-02365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Wounds are one of the most common health issues, and the cost of wound care and healing has continued to increase over the past decade. In recent years, there has been growing interest in developing innovative strategies to enhance the efficacy of wound healing. Tetrahedral framework nucleic acids (tFNAs) have emerged as a promising tool for wound healing applications due to their unique structural and functional properties. Therefore, it is of great significance to summarize the applications of tFNAs for wound healing. This review article provides a comprehensive overview of the potential of tFNAs as a novel therapeutic approach for wound healing. In this review, we discuss the possible mechanisms of tFNAs in wound healing and highlight the role of tFNAs in modulating key processes involved in wound healing, such as cell proliferation and migration, angiogenesis, and tissue regeneration. The targeted delivery and controlled release capabilities of tFNAs offer advantages in terms of localized and sustained delivery of therapeutic agents to the wound site. In addition, the latest research progress on tFNAs in wound healing is systematically introduced. We also discuss the biocompatibility and biosafety of tFNAs, along with their potential applications and future directions for research. Finally, the current challenges and prospects of tFNAs are briefly discussed to promote wider applications.
Collapse
Affiliation(s)
- Wanqing Zou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China.
| | - Luyong Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
| |
Collapse
|
20
|
Ding F, Zhang S, Chen Q, Xie X, Xi Z, Ge Z, Zuo X, Yang X, Willner I, Fan C, Li Q, Xia Q. Programmable Atom-Like Nanoparticle Reporters for High-Precision Urinalysis of In Situ Membrane Proteins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310199. [PMID: 38096904 DOI: 10.1002/adma.202310199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Indexed: 12/22/2023]
Abstract
The expression of disease-specific membrane proteins (MPs) is a crucial indicator for evaluating the onset and progression of diseases. Urinalysis of in situ MPs has the potential for point-of-care disease diagnostics, yet remains challenging due to the lack of molecular reporter to transform the expression information of in situ MPs into the measurable urine composition. Herein, a series of tetrahedral DNA frameworks (TDFs) are employed as the cores of programmable atom-like nanoparticles (PANs) to direct the self-assembly of PAN reporters with defined ligand valence and spatial distribution. With the rational spatial organization of ligands, the interaction between PAN reporters and MPs exhibits superior stability on cell-membrane interface under renal tubule-mimic fluid microenvironment, thus enabling high-fidelity conversion of MPs expression level into binding events and reverse assessment of in situ MP levels via measurement of the renal clearance efficiency of PAN reporters. Such PAN reporter-mediated signal transformation mechanism empowers urinalysis of the onset of acute kidney injury at least 6 h earlier than the existing methods with an area under the curve of 100%. This strategy has the potential for urinalysis of a variety of in situ membrane proteins.
Collapse
Affiliation(s)
- Fei Ding
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Shuangye Zhang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Chen
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhifeng Xi
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Xiurong Yang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- WLA Laboratories, World Laureates Association, Shanghai, 201203, China
| | - Qiang Xia
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| |
Collapse
|
21
|
Zhang Q, Gao X, Ho YP, Liu M, Han Y, Li DL, Yuan HM, Zhang CY. Controllable Assembly of a Quantum Dot-Based Aptasensor Guided by CRISPR/Cas12a for Direct Measurement of Circulating Tumor Cells in Human Blood. NANO LETTERS 2024; 24:2360-2368. [PMID: 38347661 DOI: 10.1021/acs.nanolett.3c04828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Accurate and sensitive analysis of circulating tumor cells (CTCs) in human blood provides a non-invasive approach for the evaluation of cancer metastasis and early cancer diagnosis. Herein, we demonstrate the controllable assembly of a quantum dot (QD)-based aptasensor guided by CRISPR/Cas12a for direct measurement of CTCs in human blood. We introduce a magnetic bead@activator/recognizer duplex core-shell structure to construct a multifunctional platform for the capture and direct detection of CTCs in human blood, without the need for additional CTC release and re-identification steps. Notably, the introduction of magnetic separation ensures that only a target-induced free activator can initiate the downstream catalysis, efficiently avoiding the undesired catalysis triggered by inappropriate recognition of the activator/recognizer duplex structure by crRNAs. This aptasensor achieves high CTC-capture efficiency (82.72%) and sensitive detection of CTCs with a limit of detection of 2 cells mL-1 in human blood, holding great promise for the liquid biopsy of cancers.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xin Gao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hui-Min Yuan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
22
|
Zhao X, Na N, Ouyang J. Functionalized DNA nanoplatform for multi-target simultaneous imaging: Establish the atlas of cancer cell species. Talanta 2024; 267:125222. [PMID: 37778181 DOI: 10.1016/j.talanta.2023.125222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Detection and imaging of cell membrane receptor proteins have gained widespread interest in recent years. However, recognition based on a single biomarker can induce false positive feedback, including off-target phenomenon caused by the absence of tumor-specific antigens. In addition, nucleic acid probes often cause nonspecific and undesired cell internalization during cell imaging. In this work, we constructed a logic gate DNA nano-platform (LGDP) for single-molecule imaging of cell membrane proteins to synergistically diagnose cancer cells. The traffic light-like color response of LGDP facilitates the precise discrimination among different cell lines. Combined with single molecule technology, the target proteins were qualitatively and quantitatively analyzed synergistically. Logic-gated recognition integrated in aptamer-functionalized molecular machines will prompt fast cells analysis, laying the foundation of cancer early diagnosis and treatment.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Na Na
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jin Ouyang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China; Department of Chemistry, College of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai City, 519087, Guangdong Province, China.
| |
Collapse
|
23
|
Tang J, Qi C, Bai X, Ji M, Wang Z, Luo Y, Ni S, Zhang T, Liu K, Yuan B. Cell Membrane-Anchored DNA Nanoinhibitor for Inhibition of Receptor Tyrosine Kinase Signaling Pathways via Steric Hindrance and Lysosome-Induced Protein Degradation. ACS Pharmacol Transl Sci 2024; 7:110-119. [PMID: 38230289 PMCID: PMC10789140 DOI: 10.1021/acsptsci.3c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Receptor tyrosine kinase (RTK) plays a crucial role in cancer progression, and it has been identified as a key drug target for cancer targeted therapy. Although traditional RTK-targeting drugs are effective, there are some limitations that potentially hinder the further development of RTK-targeting drugs. Therefore, it is urgently needed to develop novel, simple, and general RTK-targeting inhibitors with a new mechanism of action for cancer targeted therapy. Here, a cell membrane-anchored RTK-targeting DNA nanoinhibitor is developed to inhibit RTK function. By using a DNA tetrahedron as a framework, RTK-specific aptamers as the recognition elements, and cholesterol as anchoring molecules, this DNA nanoinhibitor could rapidly anchor on the cell membrane and specifically bind to RTK. Compared with traditional RTK-targeting inhibitors, this DNA nanoinhibitor does not need to bind at a limited domain on RTK, which increases the possibilities of developing RTK inhibitors. With the cellular-mesenchymal to epithelial transition factor (c-Met) as a target RTK, the DNA nanoinhibitor can not only induce steric hindrance effects to inhibit c-Met activation but also reduce the c-Met level via lysosome-mediated protein degradation and thus inhibition of c-Met signaling pathways and related cell behaviors. Moreover, the DNA nanoinhibitor is feasible for other RTKs by just replacing aptamers. This work may provide a novel, simple, and general RTK-targeting nanoinhibitor and possess great value in RTK-targeted cancer therapy.
Collapse
Affiliation(s)
- Jinlu Tang
- School
of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Cuihua Qi
- School
of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xue Bai
- School
of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mengmeng Ji
- School
of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhaoting Wang
- School
of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanchao Luo
- School
of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shanshan Ni
- School
of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tianlu Zhang
- School
of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kangdong Liu
- School
of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Henan
Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China
- State
Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
- China-US
(Henan) Hormel Cancer Institute, Zhengzhou 450003, Henan, China
- Cancer
Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, Henan, China
| | - Baoyin Yuan
- School
of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Henan
Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China
- State
Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
24
|
Nie W, He K, Zhao Z, Luo X, Liu J. Luminescent Gold Nanoparticles with Discrete DNA Valences for Precisely Controlled Transport at the Subcellular Level. Angew Chem Int Ed Engl 2023; 62:e202314896. [PMID: 37929305 DOI: 10.1002/anie.202314896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Ultrasmall luminescent gold nanoparticles (AuNPs) with excellent capabilities to cross biological barriers offer great promise in designing intelligent model nanomedicines for investigating structure-property relationships at the subcellular level. However, the strict surface controllability of ultrasmall AuNPs is challenging because of their small size. Herein, we report a facile in situ method for precisely controlling DNA aptamer valences on the surface of luminescent AuNPs with emission in the second near-infrared window using a phosphorothioate-modified DNA aptamer, AS1411, as a template. The discrete DNA aptamer number of AS1411-functionalized AuNPs (AS1411-AuNPs, ≈1.8 nm) with emission at 1030 nm was controlled in one aptamer (V1), two aptamers (V2), and four aptamers (V4). It was then discovered that not only the tumor-targeting efficiencies but also the subcellular transport of AS1411-AuNPs were precisely dependent on valences. A slight increase in valence from V1 to V2 increased tumor-targeting efficiencies and resulted in higher nucleus accumulation, whereas a further increase in valence (e.g., V4) significantly increased tumor-targeting efficiencies and led to higher cytomembrane accumulation. These results provide a basis for the strict surface control of nanomedicines in the precise regulation of in vivo transport at the subcellular level and their translation into clinical practice in the future.
Collapse
Affiliation(s)
- Wenyan Nie
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhipeng Zhao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
25
|
Ren Y, Ge K, Lu W, Xie X, Lu Y, Wang M, Yao B. Multivalent DNA Flowers for High-Performance Isolation, Detection, and Release of Tumor-Derived Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55358-55368. [PMID: 38008903 DOI: 10.1021/acsami.3c12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Tumor-derived extracellular vesicles (T-EVs) hold great promise for understanding cancer biology and improving cancer diagnostics and therapeutics. Herein, we developed multivalent DNA flowers (DFs) containing repeated and equidistant EpCAM aptamers for the efficient isolation of T-EVs. The multivalent aptamer chains in DFs had good flexibility to adapt to the surface morphology of T-EVs and achieved multivalent ligand-receptor interactions, thus showing enhanced isolation ability compared to monovalent aptamers. Compared with other materials for isolation of EVs, DFs were generated by rolling circle amplification (RCA) and self-assembled into microspheres in a one-pot reaction, and the recognition molecules (aptamers) were directly replicated and assembled during the RCA reaction instead of chemical modification and immobilization on the surface of solid materials. Moreover, as optically transparent biomaterials, the content of EpCAM+ EVs could be directly reflected via membrane-based hydrophobic assembly of signaling modules in DFs@EpCAM+ EVs complex, and we found that the amount of EpCAM+ EVs showed greater accuracy in cancer diagnosis than total EVs (88.3 vs 69.7%) and was also higher than the clinically commonly used marker carcinoembryonic antigen (CEA) (88.3 vs 76.7%). In addition, T-EVs could be released by lysis of DFs with the nuclease, gently and easily, keeping high intact and activity of EVs for downstream biological function studies. These results demonstrated that DFs are efficient and nondestructive tools for isolation, detection, and release of T-EVs.
Collapse
Affiliation(s)
- Yongan Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ke Ge
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Wei Lu
- GeneX (Zhejiang) Precision Medicine Co., Ltd, Hangzhou 311100, China
| | - Xinlun Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- Department of Oncology, PKUCare Luzhong Hospital, Zibo, Shandong 255499, China
| | - Min Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bo Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Niu Q, Qu X, Li S, Shi X, Yang J, Feng J, Huang C, Song Y, Yang C, Wu L. Hierarchical Fluid Interface Enables Spatiotemporal Regulation of Ligand Distribution to Increase Kinetics and Thermodynamics of Interfacial Binding Reaction. Angew Chem Int Ed Engl 2023; 62:e202312581. [PMID: 37853512 DOI: 10.1002/anie.202312581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
In nature, regulation of the spatiotemporal distribution of interfacial receptors and ligands leads to optimum binding kinetics and thermodynamics of receptor-ligand binding reactions within interfaces. Inspired by this, we report a hierarchical fluid interface (HieFluidFace) to regulate the spatiotemporal distribution of interfacial ligands to increase the rate and thermodynamic favorability of interfacial binding reactions. Each aptamer-functionalized gold nanoparticle, termed spherical aptamer (SAPT), is anchored on a supported lipid bilayer without fluidity, like an "island", and is surrounded by many fluorescent aptamers (FAPTs) with free fluidity, like "rafts". Such ligand "island-rafts" model provides a large reactive cross-section for rapid binding to cellular receptors. The synergistic multivalency of SAPTs and FAPTs improves interfacial affinity for tight capture. Moreover, FAPTs accumulate at binding sites to bind to cellular receptors with clustered fluorescence to "lighten" cells for direct identification. Thus, HieFluidFace in a microfluidic chip achieves high-performance capture and identification of circulating tumor cells from clinical samples, providing a new paradigm to optimize the kinetics and thermodynamics of interfacial binding reactions.
Collapse
Affiliation(s)
- Qi Niu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Xin Qu
- College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, China
- Fuzhou University Jianming Joint Medical Research Center, 350108, Fuzhou, China
| | - Shiyu Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, China
| | - Jianzhou Feng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Chen Huang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 361104, Xiamen, China
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| |
Collapse
|
27
|
Koerselman M, Morshuis LCM, Karperien M. The use of peptides, aptamers, and variable domains of heavy chain only antibodies in tissue engineering and regenerative medicine. Acta Biomater 2023; 170:1-14. [PMID: 37517622 DOI: 10.1016/j.actbio.2023.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Over the years, much research has been focused on the use of small molecules such as peptides or aptamers or more recently on the use of variable antigen-binding domain of heavy chain only antibodies in the field of tissue engineering and regenerative medicine. The use of these molecules originated as an alternative for the larger conventional antibodies, of which most drawbacks are derived from their size and complex structure. In the field of tissue engineering and regenerative medicine, biological functionalities are often conjugated to biomaterials in order to (re-)create an in vivo like situation, especially when bioinert biomaterials are used. Those biomaterials are functionalized with these functionalities for instance for the purpose of cell attachment or cell targeting for targeted drug delivery but also for local enrichment or blocking of ligands such as growth factors or cytokines on the biomaterial surface. In this review, we further refer to peptides, aptamers, and variable antigen-binding domain of heavy chain only antibodies as biological functionalities. Here, we compare these biological functionalities within the field of tissue engineering and regenerative medicine and give an overview of recent work in which these biological functionalities have been explored. We focus on the previously mentioned purposes of the biological functionalities. We will compare structural differences, possible modifications and (chemical) conjugation strategies. In addition, we will provide an overview of biologicals that are, or have been, involved in clinical trials. Finally, we will highlight the challenges of each of these biologicals. STATEMENT OF SIGNIFICANCE: In the field of tissue engineering there is broad application of functionalized biomaterials for cell attachment, targeted drug delivery and local enrichment or blocking of growth factors. This was previously mostly done via conventional antibodies, but their large size and complex structure impose various challenges with respect of retaining biological functionality. Peptides, aptamers and VHHs may provide an alternative solution for the use of conventional antibodies. This review discusses the use of these molecules for biological functionalization of biomaterials. For each of the molecules, their characteristics, conjugation possibilities and current use in research and clinical trials is described. Furthermore, this review sets out the benefits and challenges of using these types of molecules for different fields of application.
Collapse
Affiliation(s)
- Michelle Koerselman
- Department of Developmental BioEngineering, TechMed Institute, University of Twente, The Netherlands. Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - Lisanne C M Morshuis
- Department of Developmental BioEngineering, TechMed Institute, University of Twente, The Netherlands. Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, TechMed Institute, University of Twente, The Netherlands. Drienerlolaan 5, 7522 NB, Enschede, the Netherlands.
| |
Collapse
|
28
|
Kou Q, Yang J, Wang L, Zhao H, Zhang L, Su X. Enhanced DNA Entropy-Driven Circuit by Locked Nucleic Acids and Simulation-Guided Localization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47415-47424. [PMID: 37773989 DOI: 10.1021/acsami.3c11189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Signal amplification methods based on DNA molecular interactions are promising tools for detecting various biomarkers in low abundance. The entropy-driven circuit (EDC), as an enzyme-free signal amplification method, has been used in detecting and imaging a variety of biomarkers. The localization strategy can effectively increase the local concentration of the DNA reaction modules to improve the signal amplification effect. However, the localization strategy may also amplify the leak reaction of the EDC, and effective signal amplification can be limited by the unclear structure-function relationship. Herein, we utilized locked nucleic acid (LNA) modification to enhance the stability of the localized entropy-driven circuit (LEDC), which suppressed a 94.6% leak signal. The coarse-grained model molecular simulation was used to guide the structure design of the LEDC, and the influence of critical factors such as the localized distance and spacer length was analyzed at the molecular level to obtain the best reaction performance. The sensitivities of miR-21 and miR-141 detected by a simulation-guided optimal LEDC probe were 17.45 and 65 pM, 1345 and 521 times higher than free-EDC, respectively. The LEDC was further employed for the fluorescence imaging of miRNA in cancer cells, showing excellent specificity and sensitivity. This work utilizes LNA and molecular simulations to comprehensively improve the performance of a localized DNA signal amplification circuit, providing an advanced DNA probe design strategy for biosensing and imaging as well as valuable information for the designers of DNA-based probes.
Collapse
Affiliation(s)
- Qiaoni Kou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiarui Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lei Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
29
|
Li H, Li R, He S, Wang Y, Fang W, Jin Y, Yang R, Liu Y, Ye Q, Peng X. An Aptamer-Embedded Two-Dimensional DNA Nanoscale Material with the Property of Cells Recruitment. NANO LETTERS 2023; 23:8399-8405. [PMID: 37339058 DOI: 10.1021/acs.nanolett.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Stem cells possess exceptional proliferation and differentiation abilities, making them highly promising for targeted recruitment research in tissue engineering and other clinical applications. DNA is a naturally water-soluble, biocompatible, and highly editable material that is widely used in cell recruitment research. However, DNA nanomaterials face challenges, such as poor stability, complex synthesis processes, and demanding storage conditions, which limit their potential applications. In this study, we designed a highly stable DNA nanomaterial that embeds nucleic acid aptamers in the single strand region. This material has the ability to specifically bind, recruit, and capture human mesenchymal stem cells. The synthesis process involves rolling circle amplification and topological isomerization, and it can be stored for extended periods under varying temperatures and humidity conditions. This DNA material offers high specificity, ease of fabrication, simple preservation, and low cost, providing a novel approach to stem cell recruitment strategies.
Collapse
Affiliation(s)
- Hongshu Li
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Rui Li
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Songlin He
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, P. R. China
| | - Yu Wang
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Wenya Fang
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yufeng Jin
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Rui Yang
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yin Liu
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, P. R. China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, P. R. China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, P. R. China
| | - Xi Peng
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
30
|
Wang Y, Chen X, Shen X, He Y, Zhan Z, Liu C, Xie Y, Lin F, Huang K, Chen P. Simplified Rapid Enrichment of CTCs and Selective Recognition Prereduction Enable a Homogeneous ICP-MS Liquid Biopsy Strategy of Lung Cancer. Anal Chem 2023; 95:14244-14252. [PMID: 37705297 DOI: 10.1021/acs.analchem.3c02302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The effective enrichment and hypersensitivity analysis of circulating tumor cells (CTCs) in clinical whole blood samples are highly significant for clinical tumor liquid biopsy. In this study, we established an easy operation and affordable CTCs extraction technique while simultaneously performing the homogeneous inductively coupled plasma mass spectrometry (ICP-MS) determination of CTCs in lung cancer clinical samples based on selective recognition reactions and prereduction phenomena. Our strategy allowed for the pretreatment of whole blood samples in less than 45 min after step-by-step centrifugation, which only required lymphocyte separation solution and erythrocyte lysate. Furthermore, a three-stage signal amplification system consisting of catalytic hairpin assembly (CHA), selective recognition for C-Ag+-C structures and Ag+ of copper sulfide nanoparticles (CuS NPs), and prereduction of Hg2+ through ascorbic acid (AA) was constructed by using mucin 1 as the CTCs marker and the aptamer for identification probes. In optimal conditions, the detection limits of ICP-MS were as low as 0.3 ag/mL for mucin 1 and 0.25 cells/mL for A549 cells. This method analyzed CTCs in 58 clinical samples quantitatively, and the results were consistent with clinical CT images and pathological findings. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was 0.957, which provided a specificity of 100% and a sensitivity of 91.5% for the assay. Therefore, the simplicity of the extraction method, the accessibility, and the high sensitivity of the assay method make the strategies attractive for clinical CTCs testing applications.
Collapse
Affiliation(s)
- Yue Wang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Thoracic Surgery, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xu Shen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Thoracic Surgery, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaqin He
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Thoracic Surgery, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zixuan Zhan
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Thoracic Surgery, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengxin Liu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Thoracic Surgery, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Xie
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Thoracic Surgery, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Lin
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Thoracic Surgery, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Thoracic Surgery, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
31
|
Xu Y, Luo J, Lai W, Da J, Yang B, Luo X, Zhan L, Fei Y, Liu L, Zha Y. Multiplex lateral flow test strip for detection of carbapenemase genes using barcoded tetrahedral DNA capture probe-based biosensing interface. Mikrochim Acta 2023; 190:360. [PMID: 37606732 DOI: 10.1007/s00604-023-05903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/04/2023] [Indexed: 08/23/2023]
Abstract
Carbapenem-resistant Enterobacterales pose significant global health challenges due to their rapid spread and ability to hydrolyse various beta-lactam antibiotics. Rapid tests for these carbapenemase genes are crucial to ensure appropriate prescription administration and infection control. In this study, we developed a rapid visual nanodiagnostic platform for multiplexed detection of carbapenemase genes using a lateral flow strip. The nanodiagnostic strip was designed with separate barcoded DNA tetrahedrons for the blaKPC and blaNDM genes. These tetrahedrons were distributed on a nitrocellulose membrane at two different test lines as capture probes. When tested against a panel of carbapenemase genes, the tetrahedral probes captured single-stranded amplicons of asymmetric PCR via strand hybridisation. The amplicons acted as bridging elements, binding the DNA-modified gold nanoparticles to the test line of the strip, resulting in clear visual readouts specific to the blaKPC and blaNDM genes. By employing barcoded tetrahedrons and asymmetric PCR in conjunction with the lateral flow strip, a single diagnostic test enabled the detection of multiple carbapenemase genes. The test yielded results as low as 0.12 fM for blaKPC and 0.05 fM for blaNDM within 75 min. Furthermore, the strip effectively identified specific carbapenemase genes in clinical isolates using real-time PCR, antibody-based lateral flow systems for carbapenemase detection, and carbapenemase phenotype experiments. Thus, the strip develop has a high potential for testing blaKPC and blaNDM genes in practice.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Jie Luo
- Department of Laboratory Medicine, Guizhou Provincial Second People's Hospital, Guiyang, 550002, Guizhou, China
| | - Wei Lai
- School of Medical Laboratory, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jingjing Da
- Renal Division, Department of Medicine, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Bin Yang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xiangrong Luo
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Lin Zhan
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Ying Fei
- School of Medical Laboratory, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Lin Liu
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| | - Yan Zha
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
- Renal Division, Department of Medicine, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
32
|
Kan CM, Pei XM, Yeung MHY, Jin N, Ng SSM, Tsang HF, Cho WCS, Yim AKY, Yu ACS, Wong SCC. Exploring the Role of Circulating Cell-Free RNA in the Development of Colorectal Cancer. Int J Mol Sci 2023; 24:11026. [PMID: 37446204 DOI: 10.3390/ijms241311026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Circulating tumor RNA (ctRNA) has recently emerged as a novel and attractive liquid biomarker. CtRNA is capable of providing important information about the expression of a variety of target genes noninvasively, without the need for biopsies, through the use of circulating RNA sequencing. The overexpression of cancer-specific transcripts increases the tumor-derived RNA signal, which overcomes limitations due to low quantities of circulating tumor DNA (ctDNA). The purpose of this work is to present an up-to-date review of current knowledge regarding ctRNAs and their status as biomarkers to address the diagnosis, prognosis, prediction, and drug resistance of colorectal cancer. The final section of the article discusses the practical aspects involved in analyzing plasma ctRNA, including storage and isolation, detection technologies, and their limitations in clinical applications.
Collapse
Affiliation(s)
- Chau-Ming Kan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Nana Jin
- Codex Genetics Limited, Shatin, Hong Kong SAR, China
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | | | | | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
33
|
Jing X, Zhang Y, Li M, Zuo X, Fan C, Zheng J. Surface engineering of colloidal nanoparticles. MATERIALS HORIZONS 2023; 10:1185-1209. [PMID: 36748345 DOI: 10.1039/d2mh01512a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Synthesis of engineered colloidal nanoparticles (NPs) with delicate surface characteristics leads to well-defined physicochemical properties and contributes to multifunctional applications. Surface engineering of colloidal NPs can improve their stability in diverse solvents by inhibiting the interparticle attractive forces, thus providing a prerequisite for further particle manipulation, fabrication of the following materials and biological applications. During the last decades, surface engineering methods for colloidal NPs have been well-developed by numerous researchers. However, accurate control of surface properties is still an important topic. The emerging DNA/protein nanotechnology offers additional possibility of surface modification of NPs and programmable particle self-assembly. Here, we first briefly review the recent progress in surface engineering of colloidal NPs, focusing on the improved stability by grafting suitable small molecules, polymers or biological macromolecules. We then present the practical strategies for nucleic acid surface encoding of NPs and subsequent programmable assembly. Various exciting applications of these unique materials are summarized with a specific focus on the cellular uptake, bio-toxicity, imaging and diagnosis of colloidal NPs in vivo. With the growing interest in colloidal NPs in nano-biological research, we expect that this review can play an instructive role in engineering the surface properties for desired applications.
Collapse
Affiliation(s)
- Xinxin Jing
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yueyue Zhang
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Min Li
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xiaolei Zuo
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Junhua Zheng
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
34
|
Ding F, Zhang S, Chen Q, Feng H, Ge Z, Zuo X, Fan C, Li Q, Xia Q. Immunomodulation with Nucleic Acid Nanodevices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206228. [PMID: 36599642 DOI: 10.1002/smll.202206228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The precise regulation of interactions of specific immunological components is crucial for controllable immunomodulation, yet it remains a great challenge. With the assistance of advanced computer design, programmable nucleic acid nanotechnology enables the customization of synthetic nucleic acid nanodevices with unprecedented geometrical and functional precision, which have shown promising potential for precise immunoengineering. Notably, the inherently immunologic functions of nucleic acids endow these nucleic acid-based assemblies with innate advantages in immunomodulatory engagement. In this review, the roles of nucleic acids in innate immunity are discussed, focusing on the definition, immunologic modularity, and enhanced bioavailability of structural nucleic acid nanodevices. In light of this, molecular programming and precise organization of functional modules with nucleic acid nanodevices for immunomodulation are emphatically reviewed. At last, the present challenges and future perspectives of nucleic acid nanodevices for immunomodulation are discussed.
Collapse
Affiliation(s)
- Fei Ding
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Shuangye Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian Chen
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Hao Feng
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaolei Zuo
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, World Laureates Association, Shanghai, 201203, P. R. China
| | - Qiang Xia
- Shanghai Institute of Transplantation, Department of Liver Surgery, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
35
|
Mao M, Lin Z, Chen L, Zou Z, Zhang J, Dou Q, Wu J, Chen J, Wu M, Niu L, Fan C, Zhang Y. Modular DNA-Origami-Based Nanoarrays Enhance Cell Binding Affinity through the "Lock-and-Key" Interaction. J Am Chem Soc 2023; 145:5447-5455. [PMID: 36812464 DOI: 10.1021/jacs.2c13825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Surface proteins of cells are generally recognized through receptor-ligand interactions (RLIs) in disease diagnosis, but their nonuniform spatial distribution and higher-order structure lead to low binding affinity. Constructing nanotopologies that match the spatial distribution of membrane proteins to improve the binding affinity remains a challenge. Inspired by the multiantigen recognition of immune synapses, we developed modular DNA-origami-based nanoarrays with multivalent aptamers. By adjusting the valency and interspacing of the aptamers, we constructed specific nanotopology to match the spatial distribution of target protein clusters and avoid potential steric hindrance. We found that the nanoarrays significantly enhanced the binding affinity of target cells and synergistically recognized low-affinity antigen-specific cells. In addition, DNA nanoarrays used for the clinical detection of circulating tumor cells successfully verified their precise recognition ability and high-affinity RLIs. Such nanoarrays will further promote the potential application of DNA materials in clinical detection and even cell membrane engineering.
Collapse
Affiliation(s)
- Miao Mao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Liang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Zhengyu Zou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Quanhao Dou
- Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jiacheng Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Jinglin Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
36
|
Zhao H, Li M, Lu S, Cao N, Zuo X, Wang S, Li M. The enhancement of enzyme cascading via tetrahedral DNA framework modification. Analyst 2023; 148:906-911. [PMID: 36692072 DOI: 10.1039/d2an02097a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Enzyme clustering is widely used in many organisms to increase the catalytic efficiency of cascade reactions. Inspired by nature, organizing enzymes within a cascade reaction also draws much attention in both basic research and industrial processes. An important step for organizing enzymes precisely in vitro is enzyme modification. However, modifying enzymes without sacrificing their activity remains challenging until now. For example, labeling enzymes with DNA, one of the well-established enzyme modification methods, has been shown to significantly reduce the enzymatic activity. Herein we report an enzyme conjugation method that can rescue the reduction of enzymatic activity caused by DNA labeling. We demonstrate that immobilizing DNA-modified enzymes on the vertex of TDNs (tetrahedral DNA nanostructures) enhances the enzymatic activity compared with their unmodified counterparts. Using this strategy, we have further developed an ultra-sensitive and high-throughput electrochemical biosensor for sarcosine detection, which holds great promise for prostate cancer screening.
Collapse
Affiliation(s)
- Haipei Zhao
- School of Chemistry and Chemical Engineering, and Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, and Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shasha Lu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Nan Cao
- School of Chemistry and Chemical Engineering, and Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, and Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Shaopeng Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
37
|
Liu H, Chen Y, Ju H. Functional DNA structures for cytosensing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Xu F, Xia Q, Ye J, Dong L, Yang D, Xue W, Wang P. Programming DNA Aptamer Arrays of Prescribed Spatial Features with Enhanced Bioavailability and Cell Growth Modulation. NANO LETTERS 2022; 22:9935-9942. [PMID: 36480429 DOI: 10.1021/acs.nanolett.2c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Epithelial cell adhesion molecules (EpCAMs) play pivotal roles in tumorigenesis in many cancer types, which is reported to reside within nano- to microscale membrane domains, forming small clusters. We propose that building multivalent ligands that spatially patch to EpCAM clusters may largely enhance their targeting capability. Herein, we assembled EpCAM aptamers into nanoscale arrays of prescribed valency and spatial arrangements by using a rectangular DNA pegboard. Our results revealed that EpCAM aptamer arrays exhibited significantly higher binding avidity to MCF-7 cells than free monovalent aptamers, which was affected by both valency and spatial arrangement of aptamers. Furthermore, EpCAM aptamer arrays showed improved tolerance against competing targets in an extracellular environment and potent bioavailability and targeting specificity in a xenograft tumor model in mice. This work may shed light on rationally designing multivalent ligand complexes of defined parameters with optimized binding avidity and targeting capability toward various applications in the biomedical fields.
Collapse
Affiliation(s)
- Fan Xu
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qing Xia
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Ye
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liang Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
39
|
Ling J, Liu D, Zhang J, Zhu L, Wan S, Yang C, Song Y. Thermodynamic and Kinetic Modulation of Microfluidic Interfaces by DNA Nanoassembly Mediated Merit-Complementary Heteromultivalency. ACS NANO 2022; 16:20915-20921. [PMID: 36416763 DOI: 10.1021/acsnano.2c08507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The multivalent effect is often used to engineer microfluidic affinity interfaces to improve the target separation efficiency. Currently, no design rules exist for thermodynamic and kinetic tuning of properly joining multiple ligands. Herein, we developed a thermodynamic and kinetic modulating strategy of the microfluidic affinity interface via a merit-complementary-heteromultivalent aptamers functionalized DNA nanoassembly. Our strategy is built on the two types of identified aptamers that bind to distinct sites of EpCAM. The aptamer binding of one type is more rapid but less tight, while the other is opposite. By assembling the two types of aptamers together with a tetrahedral DNA framework, we fully exploited these aptamers' merits for tight and rapid recognition of EpCAM, leading to target cell capture with high efficiency and throughput. Our strategy provides a perspective on engineering multivalent recognition molecules through thermodynamic and kinetic tuning.
Collapse
Affiliation(s)
- Jiajun Ling
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Dan Liu
- School of Biomedical Sciences, Huaqiao University, Fujian361000, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Lin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| |
Collapse
|
40
|
Fischer A, Zhang P, Ouyang Y, Sohn YS, Karmi O, Nechushtai R, Pikarsky E, Willner I. DNA-Tetrahedra Corona-Modified Hydrogel Microcapsules: "Smart" ATP- or microRNA-Responsive Drug Carriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204108. [PMID: 36351764 DOI: 10.1002/smll.202204108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The assembly of adenosine triphosphate (ATP)-responsive and miRNA-responsive DNA tetrahedra-functionalized carboxymethyl cellulose hydrogel microcapsules is presented. The microcapsules are loaded with the doxorubicin-dextran drug or with CdSe/ZnS quantum dots as a drug model. Selective unlocking of the respective microcapsules and the release of the loads in the presence of ATP or miRNA-141 are demonstrated. Functionalization of the hydrogel microcapsules a with corona of DNA tetrahedra nanostructures yields microcarriers that revealed superior permeation into cells. This is demonstrated by the effective permeation of the DNA tetrahedra-functionalized microcapsules into MDA-MB-231 breast cancer cells, as compared to epithelial MCF-10A nonmalignant breast cells. The superior permeation of the tetrahedra-functionalized microcapsules into MDA-MB-231 breast cancer cells, as compared to analog control hydrogel microcapsules modified with a corona of nucleic acid duplexes. The effective permeation of the stimuli-responsive, drug-loaded, DNA tetrahedra-modified microcapsules yields drug carriers of superior and selective cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Amit Fischer
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Pu Zhang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ola Karmi
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, The Hebrew University, of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
41
|
Liu J, Li M, Zuo X. DNA Nanotechnology-Empowered Live Cell Measurements. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204711. [PMID: 36124715 DOI: 10.1002/smll.202204711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The systematic analysis and precise manipulation of a variety of biomolecules should lead to unprecedented findings in fundamental biology. However, conventional technology cannot meet the current requirements. Despite this, there has been progress as DNA nanotechnology has evolved to generate DNA nanostructures and circuits over the past four decades. Many potential applications of DNA nanotechnology for live cell measurements have begun to emerge owing to the biocompatibility, nanometer addressability, and stimulus responsiveness of DNA. In this review, the DNA nanotechnology-empowered live cell measurements which are currently available are summarized. The stability of the DNA nanostructures, in a cellular microenvironment, which is crucial for accomplishing precise live cell measurements, is first summarized. Thereafter, measurements in the extracellular and intracellular microenvironment, in live cells, are introduced. Finally, the challenges that are innate to, and the further developments that are possible in this nascent field are discussed.
Collapse
Affiliation(s)
- Jiangbo Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
42
|
Zhou Y, Wang X, Luo Z, Liu X, Hou J, Zhou S. Efficient Isolation and In Situ Identification of Viable Circulating Tumor Cells Using Dual‐Responsive Fluorescent‐Magnetic Nanoparticles. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yuwei Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Xiaoshan Wang
- Cancer Center Hospital of The University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu 610072 China
| | - Zhouying Luo
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Xia Liu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| |
Collapse
|
43
|
Liu J, Mao J, Hou M, Hu Z, Sun G, Zhang S. A Rapid SARS-CoV-2 Nucleocapsid Protein Profiling Assay with High Sensitivity Comparable to Nucleic Acid Detection. Anal Chem 2022; 94:14627-14634. [PMID: 36226357 PMCID: PMC9578372 DOI: 10.1021/acs.analchem.2c02670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/06/2022] [Indexed: 12/27/2022]
Abstract
Existing nucleic acid and antigen profiling methods for COVID-19 diagnosis fail to simultaneously meet the demands in sensitivity and detection speed, hampering them from being a comprehensive way for epidemic prevention and control. Thus, effective screening of COVID-19 requires a simple, fast, and sensitive method. Here, we report a rapid assay for ultrasensitive and highly specific profiling of COVID-19 associated antigen. The assay is based on a binding-induced DNA assembly on a nanoparticle scaffold that acts by fluorescence translation. By binding two aptamers to a target protein, the protein brings the DNA regions into close proximity, forming closed-loop conformation and resulting in the formation of the fluorescence translator. Using this assay, saliva nucleocapsid protein (N protein) has been profiled quantitatively by converting the N protein molecule information into a fluorescence signal. The fluorescence intensity is enhanced with increasing N protein concentration caused by the metal enhanced fluorescence using a simple, specific, and fast profiling assay within 3 min. On this basis, the assay enables a high recognition ratio and a limit of detection down to 150 fg mL-1. It is 1-2 orders of magnitude lower than existing commercial antigen ELISA kits, which is comparative to or superior than the PCR based nucleic acid testing. Owing to its rapidity, ultrasensitivity, as well as easy operation, it holds great promise as a tool for screening of COVID-19 and other epidemics such as monkey pox.
Collapse
Affiliation(s)
- Jie Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jinpeng Mao
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Mengyu Hou
- Beijing
Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Zhian Hu
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Gongwei Sun
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Beijing
TASI Technology CO., LTD, Beijing 100085, P. R. China
| | - Sichun Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
44
|
Wan S, Liu S, Sun M, Zhang J, Wei X, Song T, Li Y, Liu X, Chen H, Yang CJ, Song Y. Spatial- and Valence-Matched Neutralizing DNA Nanostructure Blocks Wild-Type SARS-CoV-2 and Omicron Variant Infection. ACS NANO 2022; 16:15310-15317. [PMID: 36073793 PMCID: PMC9469956 DOI: 10.1021/acsnano.2c06803] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/06/2022] [Indexed: 06/02/2023]
Abstract
Natural ligand-receptor interactions that play pivotal roles in biological events are ideal models for design and assembly of artificial recognition molecules. Herein, aiming at the structural characteristics of the spike trimer and infection mechanism of SARS-CoV-2, we have designed a DNA framework-guided spatial-patterned neutralizing aptamer trimer for SARS-CoV-2 neutralization. The ∼5.8 nm tetrahedral DNA framework affords precise spatial organization and matched valence as four neutralizing aptamers (MATCH-4), which matches with nanometer precision the topmost surface of SARS-CoV-2 spike trimer, enhancing the interaction between MATCH-4 and spike trimer. Moreover, the DNA framework provides a dimensionally complementary nanoscale barrier to prevent the spike trimer-ACE2 interaction and the conformational transition, thereby inhibiting SARS-CoV-2-host cell fusion and infection. As a result, the spatial- and valence-matched MATCH-4 ensures improved binding affinity and neutralizing activity against SARS-CoV-2 and its varied mutant strains, particularly the current Omicron variant, that are evasive of the majority of existing neutralizing antibodies. In addition, because neutralizing aptamers specific to other targets can be evolved and assembled, the present design has the potential to inhibit other wide-range and emerging pathogens.
Collapse
Affiliation(s)
- Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinyu Wei
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ting Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuhao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xinyang Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chaoyong James Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
45
|
Zhang J, Huang Y, Sun M, Song T, Wan S, Yang C, Song Y. Mechanosensing view of SARS-CoV-2 infection by a DNA nano-assembly. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101048. [PMID: 36157982 PMCID: PMC9490855 DOI: 10.1016/j.xcrp.2022.101048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The mechanical force between a virus and its host cell plays a critical role in viral infection. However, characterization of the virus-cell mechanical force at the whole-virus level remains a challenge. Herein, we develop a platform in which the virus is anchored with multivalence-controlled aptamers to achieve transfer of the virus-cell mechanical force to a DNA tension gauge tether (Virus-TGT). When the TGT is ruptured, the complex of binding module-virus-cell is detached from the substrate, accompanied by decreased host cell-substrate adhesion, thus revealing the mechanical force between whole-virus and cell. Using Virus-TGT, direct evidence about the biomechanical force between SARS-CoV-2 and the host cell is obtained. The relative mechanical force gap (<10 pN) at the cellular level between the wild-type virus to cell and a variant virus to cell is measured, suggesting a possible positive correlation between virus-cell mechanical force and infectivity. Overall, this strategy provides a new perspective to probe the SARS-CoV-2 mechanical force.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ting Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
46
|
Cui M, Xiaoyu Chen, Luo X, Zhou Z, Chen Z, Zhou Z, Zhou X, Zou H, Xu T, Wang S, Yang M. Dually stimulative single-chain polymeric nano lock with dynamic ligands for sensitive detection of circulating tumor cells. Biosens Bioelectron 2022; 217:114692. [PMID: 36150325 DOI: 10.1016/j.bios.2022.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Circulating tumor cells (CTCs) are important markers for cancer diagnosis and monitoring. However, CTCs detection remains challenging due to their scarcity, where most of the detection methods are compromised by the loss of CTCs in pre-enrichment, and by the lack of universal antibodies for capturing different kinds of cancer cells. Herein, we report a single-chain based nano lock (SCNL) polymer incorporating dually stimulative dynamic ligands that can bind with a broad spectrum of cancer cells and CTCs overexpressing sialic acid (SA) with high sensitivity and selectivity. The high sensitivity is realized by the polymeric single chain structure and the multi-valent functional moieties, which improve the accessibility and binding stability between the target cells and the SCNL. The highly selective targeting of cancer cells is achieved by the dynamic and dually stimulative nano lock structures, which can be unlocked and functionalized upon simultaneous exposure to overexpressed SA and acidic microenvironment. We applied the SCNL to detecting cancer cells and CTCs in clinical samples, where the detection threshold of SCNL reached 4 cells/mL. Besides CTCs enumeration, the SCNL approach could also be extended to metastasis assessment through monitoring the expressing level of surface SA on cancer cells.
Collapse
Affiliation(s)
- Miao Cui
- Shenzhen Bay Laboratory, Shenzhen, 518132, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xu Luo
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Zhihang Zhou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhiji Chen
- Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhengdong Zhou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Xiaoyu Zhou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Heng Zou
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Cellomics (Shenzhen) Limited, Shenzhen, China
| | - Tao Xu
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Cellomics (Shenzhen) Limited, Shenzhen, China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
47
|
Wang X, Wang Z, Yu C, Ge Z, Yang W. Advances in precise single-cell capture for analysis and biological applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3047-3063. [PMID: 35946358 DOI: 10.1039/d2ay00625a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cells are the basic structural and functional units of living organisms. However, conventional cell analysis only averages millions of cell populations, and some important information is lost. It is essential to quantitatively characterize the physiology and pathology of single-cell activities. Precise single-cell capture is an extremely challenging task during cell sample preparation. In this review, we summarize the category of technologies to capture single cells precisely with a focus on the latest development in the last five years. Each technology has its own set of benefits and specific challenges, which provide opportunities for researchers in different fields. Accordingly, we introduce the applications of captured single cells in cancer diagnosis, analysis of metabolism and secretion, and disease treatment. Finally, some perspectives are provided on the current development trends, future research directions, and challenges of single-cell capture.
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
| | - Zhen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
| | - Chang Yu
- College of Computer Science, Chongqing University, Chongqing 400000, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
48
|
Wang D, Yang Y, Chen F, Lyu Y, Tan W. Network topology-directed design of molecular CPU for cell-like dynamic information processing. SCIENCE ADVANCES 2022; 8:eabq0917. [PMID: 35947658 PMCID: PMC9365278 DOI: 10.1126/sciadv.abq0917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Natural cells (NCs) can automatically and continuously respond to fluctuant external information and distinguish meaningful stimuli from weak noise depending on their powerful genetic and protein networks. We herein report a network topology-directed design of dynamic molecular processing system (DMPS) as a molecular central processing unit that powers an artificial cell (AC) able to process fluctuant information in its immediate environment similar to NCs. By constructing a mixed cell community, ACs and NCs have synchronous response to fluctuant extracellular stimuli under physiological condition and in a blood vessel-mimic circulation system. We also show that fluctuant bioinformation released by NCs can be received and processed by ACs. The molecular design of DMPS-powered AC is expected to allow a profound understanding of biological systems, advance the construction of intelligent molecular systems, and promote more elegant bioengineering applications.
Collapse
Affiliation(s)
- Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yani Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
49
|
Liang C, Chen J, Li M, Li Q, Fan C, Luo S, Shen J. Programming the self-assembly of amphiphilic DNA frameworks for sequential boolean logic functions. Chem Commun (Camb) 2022; 58:8786-8789. [PMID: 35838012 DOI: 10.1039/d2cc03150g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we examined the utilization of the orthogonal noncovalent interaction to program the self-assembly of amphiphilic DNA frameworks (am-FNAs). By finely controlling reaction parameters such as ionic strength, the length of amphiphilic DNA, and mechanical agitation, we constructed a series of amphiphilic DNA-based primary logic gates (NOT, AND, OR and INH) and a secondary logic gate (NOT-OR).
Collapse
Affiliation(s)
- Chengpin Liang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jielin Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
50
|
Li R, Wu X, Li J, Lu X, Zhao RC, Liu J, Ding B. A covalently conjugated branched DNA aptamer cluster-based nanoplatform for efficiently targeted drug delivery. NANOSCALE 2022; 14:9369-9378. [PMID: 35726974 DOI: 10.1039/d2nr01252a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Targeted delivery of therapeutic drugs is essential for precise treatment of various diseases to reduce possible serious side-effects. A screened DNA aptamer has been widely developed for active targeting delivery. Herein, we report a facile strategy for the construction of a branched DNA aptamer cluster-based nanoplatform for efficiently targeted drug delivery. In our design, the terminal-modified DNA aptamer can be covalently conjugated to form a branched aptamer cluster by click reaction easily. The branched aptamer cluster-modified DNA tetrahedron (TET) demonstrates highly targeted cellular uptake with the modification of only one site. After loading the chemotherapeutic drug (doxorubicin, DOX), the DNA aptamer cluster-based nanoplatform elicits a remarkable and selective inhibition of tumor cell proliferation by much-enhanced targeted delivery. This covalently conjugated branched DNA aptamer cluster-based nanoplatform provides a new strategy for the development of targeted drug delivery.
Collapse
Affiliation(s)
- Runze Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Dongdan Santiao No. 5, Beijing 100005, China.
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Dongdan Santiao No. 5, Beijing 100005, China.
| | - Xuehe Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Dongdan Santiao No. 5, Beijing 100005, China.
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|