1
|
Hu D, Long D, Xia T, Wang Y, Zhang S, Wang J, Shi X, Wang Y. Accelerated healing of intractable biofilm-infected diabetic wounds by trypsin-loaded quaternized chitosan hydrogels that disrupt extracellular polymeric substances and eradicate bacteria. Int J Biol Macromol 2024; 278:134677. [PMID: 39142478 DOI: 10.1016/j.ijbiomac.2024.134677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Complex and stubborn bacterial biofilm infections significantly hinder diabetic wound healing and threaten public health. Therefore, a dressing material that effectively clears biofilms and promotes wound healing is urgently required. Herein, we introduce a novel strategy for simultaneously dispersing extracellular polymeric substances and eradicating drug-resistant bacteria. We prepared an ultrabroad-spectrum and injectable quaternized chitosan (QCS) hydrogel loaded with trypsin, which degrades biofilm extracellular proteins. Increased temperature initiated QCS gelation to form the hydrogel, enabling the sustained release of trypsin and effective adherence of the hydrogel to irregularly shaped wounds. To reproduce clinical scenarios, biofilms formed by a mixture of Staphylococcus aureus (S. aureus), Methicillin-resistant S. aureus, and Pseudomonas aeruginosa were administered to the wounds of rats with streptozotocin-induced diabetes. Under these severe infection conditions, the hydrogel efficiently suppressed inflammation, promoted angiogenesis, and enhanced collagen deposition, resulting in accelerated healing of diabetic wounds. Notably, the hydrogel demonstrates excellent biocompatibility without cytotoxicity. In summary, we present a trypsin-loaded QCS hydrogel with tremendous clinical applications potential for the treatment of chronic infected wounds.
Collapse
Affiliation(s)
- Di Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Dakun Long
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Tian Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunhao Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Shicheng Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Jianjie Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China.
| |
Collapse
|
2
|
Mei Z, Szczepanski CR, Montreuil O, Kuzhir P, Godeau G. Investigation on novel chitin and chitosan from dung beetle Heteronitis castelnaui (Harold, 1865) and its potential application for organic dyes removal from aqueous solution. Int J Biol Macromol 2024; 280:135605. [PMID: 39288848 DOI: 10.1016/j.ijbiomac.2024.135605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Chitosan, a natural polysaccharide, has attracted considerable attention as an environmentally friendly and highly efficient adsorbent for dye removal. It is usually produced by deacetylation or partial deacetylation of chitin. However, conventional sources of chitin and chitosan are limited, prompting the need for alternative sources with improved adsorption capabilities. Herein, this study focuses on exploring a novel chitin and chitosan source derived from the dung beetle and evaluates its potential for organic dye removal from aqueous solutions. The research involves the extraction and characterization of chitin and chitosan from dung beetle Heteronitis castelnaui (Harold, 1865) using various analytical techniques, including SEM, FT-IR, TGA, XRD, NMR, deacetylation degree and elemental analysis. The chitosan obtained was used for the formation of hydrogels with sodium alginate via cross-linking with calcium chloride. And then the prepared hydrogels were evaluated for its adsorption capacity through batch adsorption experiments using methylene blue as a model pollutant. The adsorption capacity for methylene blue was 1294.3 mg/g at room temperature with solution pH = 12, MB concentration of 1800 mg/L. Furthermore, the kinetics of the adsorption process were analyzed using pseudo-first-order and pseudo-second-order models to understand the rate of adsorption. The maximum adsorption capacities were determined using Langmuir and Freundlich isotherm models. This study provides valuable insights for the development of sustainable dye adsorption technologies, specifically investigating a novel chitosan source derived from the dung beetle.
Collapse
Affiliation(s)
- Zhenying Mei
- Université Côte d'Azur, CNRS UMR 7010 INPHYNI, 17 rue Julien Laupêtre, 06200 Nice, France
| | - Caroline R Szczepanski
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Olivier Montreuil
- UMR 7179 MNHN/CNRS, MECADEV, Muséum National d'Histoire Naturelle, Entomologie, CP 50, 45 rue Buffon, 75231, Paris cedex 05, France
| | - Pavel Kuzhir
- Université Côte d'Azur, CNRS UMR 7010 INPHYNI, 17 rue Julien Laupêtre, 06200 Nice, France
| | - Guilhem Godeau
- Université Côte d'Azur, CNRS UMR 7010 INPHYNI, 17 rue Julien Laupêtre, 06200 Nice, France; Université Côte d'Azur, IMREDD, 06200 Nice, France.
| |
Collapse
|
3
|
Meresa BK, Ayimut KM, Weldemichael MY, Geberemedhin KH, Kassegn HH, Geberemikael BA, Egigu EM. Carbohydrate elicitor-induced plant immunity: Advances and prospects. Heliyon 2024; 10:e34871. [PMID: 39157329 PMCID: PMC11327524 DOI: 10.1016/j.heliyon.2024.e34871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The perceived negative impacts of synthetic agrochemicals gave way to alternative, biological plant protection strategies. The deployment of induced resistance, comprising boosting the natural defense responses of plants, is one of those. Plants developed multi-component defense mechanisms to defend themselves against biotic and abiotic stresses. These are activated upon recognition of stress signatures via membrane-localized receptors. The induced immune responses enable plants to tolerate and limit the impact of stresses. A systemic cascade of signals enables plants to prime un-damaged tissues, which is crucial during secondary encounters with stress. Comparable stress tolerance mechanisms can be induced in plants by the application of carbohydrate elicitors such as chitin/chitosan, β-1,3-glucans, oligogalacturonides, cellodextrins, xyloglucans, alginates, ulvans, and carrageenans. Treating plants with carbohydrate-derived elicitors enable the plants to develop resistance appliances against diverse stresses. Some carbohydrates are also known to have been involved in promoting symbiotic signaling. Here, we review recent progresses on plant resistance elicitation effect of various carbohydrate elicitors and the molecular mechanisms of plant cell perception, cascade signals, and responses to cascaded cues. Besides, the molecular mechanisms used by plants to distinguish carbohydrate-induced immunity signals from symbiotic signals are discussed. The structure-activity relationships of the carbohydrate elicitors are also described. Furthermore, we forwarded future research outlooks that might increase the utilization of carbohydrate elicitors in agriculture in order to improve the efficacy of plant protection strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kiros-Meles Ayimut
- Department of Crop and Horticultural Sciences, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kalayou Hiluf Geberemedhin
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Hagos Hailu Kassegn
- Department of Food Science and Postharvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Bruh Asmelash Geberemikael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Etsay Mesele Egigu
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
4
|
Hellmann MJ, Gillet D, Trombotto S, Raetz S, Moerschbacher BM, Cord-Landwehr S. Heterogeneously deacetylated chitosans possess an unexpected regular pattern favoring acetylation at every third position. Nat Commun 2024; 15:6695. [PMID: 39107282 PMCID: PMC11303684 DOI: 10.1038/s41467-024-50857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
Chitosans are promising biopolymers for diverse applications, with material properties and bioactivities depending i.a. on their pattern of acetylation (PA). Commercial chitosans are typically produced by heterogeneous deacetylation of chitin, but whether this process yields chitosans with a random or block-wise PA has been debated for decades. Using a combination of recently developed in vitro assays and in silico modeling surprisingly revealed that both hypotheses are wrong; instead, we found a more regular PA in heterogeneously deacetylated chitosans, with acetylated units overrepresented at every third position in the polymer chain. Compared to random-PA chitosans produced by homogeneous deacetylation of chitin or chemical N-acetylation of polyglucosamine, this regular PA increases the elicitation activity in plants, and generates different product profiles and distributions after enzymatic and chemical cleavage. A regular PA may be beneficial for some applications but detrimental for others, stressing the relevance of the production process for product development.
Collapse
Affiliation(s)
- Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| | - Dominique Gillet
- Gillet Chitosan SAS, La Ville Es Comte, 22350, Plumaudan, France
| | - Stéphane Trombotto
- Ingénierie des Matériaux Polymères (IMP), UMR 5223, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Université Jean Monnet Saint-Etienne, F-69622, Villeurbanne, France
| | - Sonja Raetz
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany.
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| |
Collapse
|
5
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
Giraldo JD, García Y, Vera M, Garrido-Miranda KA, Andrade-Acuña D, Marrugo KP, Rivas BL, Schoebitz M. Alternative processes to produce chitin, chitosan, and their oligomers. Carbohydr Polym 2024; 332:121924. [PMID: 38431399 DOI: 10.1016/j.carbpol.2024.121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Sustainable recovery of chitin and its derivatives from shellfish waste will be achieved when the industrial production of these polymers is achieved with a high control of their molecular structure, low costs, and acceptable levels of pollution. Therefore, the conventional chemical method for obtaining these biopolymers needs to be replaced or optimized. The goal of the present review is to ascertain what alternative methods are viable for the industrial-scale production of chitin, chitosan, and their oligomers. Therefore, a detailed review of recent literature was undertaken, focusing on the advantages and disadvantages of each method. The analysis of the existing data allows suggesting that combining conventional, biological, and alternative methods is the most efficient strategy to achieve sustainable production, preventing negative impacts and allowing for the recovery of high added-value compounds from shellfish waste. In conclusion, a new process for obtaining chitinous materials is suggested, with the potential of reducing the consumption of reagents, energy, and water by at least 1/10, 1/4, and 1/3 part with respect to the conventional process, respectively.
Collapse
Affiliation(s)
- Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Balneario Pelluco, Los Pinos s/n, Chile.
| | - Yadiris García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Karla A Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de la Frontera, Temuco 4811230, Chile; Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile
| | - Daniela Andrade-Acuña
- Centro de Docencia Superior en Ciencias Básicas, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n. Balneario Pelluco, Puerto Montt, Chile
| | - Kelly P Marrugo
- Departamento de Química Orgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Centro de Investigaciones en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Bernabé L Rivas
- Universidad San Sebastián, Sede Concepción 4080871, Concepción, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Casilla 160-C, Universidad de Concepción, Chile; Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| |
Collapse
|
7
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Wang J, Duan X, Zhong D, Zhang M, Li J, Hu Z, Han F. Pharmaceutical applications of chitosan in skin regeneration: A review. Int J Biol Macromol 2024; 261:129064. [PMID: 38161006 DOI: 10.1016/j.ijbiomac.2023.129064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Skin regeneration is the process that restores damaged tissues. When the body experiences trauma or surgical incisions, the skin and tissues on the wound surface become damaged. The body repairs this damage through complex physiological processes to restore the original structural and functional states of the affected tissues. Chitosan, a degradable natural bioactive polysaccharide, has attracted widespread attention partly owing to its excellent biocompatibility and antimicrobial properties; additionally, a modified form of this compound has been shown to promote skin regeneration. This review evaluates the recent research progress in the application of chitosan to promote skin regeneration. First, we discuss the basic principles of the extraction and preparation processes of chitosan from its source. Subsequently, we describe the functional properties of chitosan and the optimization of these properties through modification. We then focus on the existing chitosan-based biomaterials developed for clinical applications and their corresponding effects on skin regeneration, particularly in cases of diabetic and burn wounds. Finally, we explore the challenges and prospects associated with the use of chitosan in skin regeneration. Overall, this review provides a reference for related research and contributes to the further development of chitosan-based products in cutaneous skin regeneration.
Collapse
Affiliation(s)
- Jie Wang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Donghuo Zhong
- Medical college of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Mengqi Zhang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Jianying Li
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Zhijian Hu
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Feng Han
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China.
| |
Collapse
|
9
|
Romany A, Payne GF, Shen J. Effect of Acetylation on the Nanofibril Formation of Chitosan from All-Atom De Novo Self-Assembly Simulations. Molecules 2024; 29:561. [PMID: 38338306 PMCID: PMC10856132 DOI: 10.3390/molecules29030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Chitosan-based materials have broad applications, from biotechnology to pharmaceutics. Recent experiments showed that the degree and pattern of acetylation along the chitosan chain modulate its biological and physicochemical properties; however, the molecular mechanism remains unknown. Here, we report, to the best of our knowledge, the first de novo all-atom molecular dynamics (MD) simulations to investigate chitosan's self-assembly process at different degrees and patterns of acetylation. Simulations revealed that 10 mer chitosan chains with 50% acetylation in either block or alternating patterns associate to form ordered nanofibrils comprised of mainly antiparallel chains in agreement with the fiber diffraction data of deacetylated chitosan. Surprisingly, regardless of the acetylation pattern, the same intermolecular hydrogen bonds mediate fibril sheet formation while water-mediated interactions stabilize sheet-sheet stacking. Moreover, acetylated units are involved in forming strong intermolecular hydrogen bonds (NH-O6 and O6H-O7), which offers an explanation for the experimental observation that increased acetylation lowers chitosan's solubility. Taken together, the present study provides atomic-level understanding the role of acetylation plays in modulating chitosan's physiochemical properties, contributing to the rational design of chitosan-based materials with the ability to tune by its degree and pattern of acetylation. Additionally, we disseminate the improved molecular mechanics parameters that can be applied in MD studies to further understand chitosan-based materials.
Collapse
Affiliation(s)
- Aarion Romany
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA;
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA;
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA;
| |
Collapse
|
10
|
Yamabhai M, Khamphio M, Min TT, Soem CN, Cuong NC, Aprilia WR, Luesukprasert K, Teeranitayatarn K, Maneedaeng A, Tuveng TR, Lorentzen SB, Antonsen S, Jitprasertwong P, Eijsink VGH. Valorization of shrimp processing waste-derived chitosan into anti-inflammatory chitosan-oligosaccharides (CHOS). Carbohydr Polym 2024; 324:121546. [PMID: 37985116 DOI: 10.1016/j.carbpol.2023.121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/02/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Bioconversion of chitosan into soluble anti-inflammatory chitosan oligosaccharides (CHOS) using a Bacillus chitosanase, BsCsn46A, was investigated, including food-grade approaches. After 48 h of enzymatic reaction, most of the final products were dimers and trimers. None of the CHOS products showed toxicity to human fibroblasts. Analysis of CHOS bioactivity against LPS-induced inflammation of human macrophages indicated that CHOS generated from different bioconversion processes have anti-inflammatory activity, the magnitude of which depends on the type of substrate and production process. Both lactic acid and HCl can be used to dissolve chitosan; however, the product generated from lactic acid solution was highly hygroscopic after lyophilization, hence not suitable for long-term storage. Downstream processes, i.e., centrifugation and filtration, affect its anti-inflammatory activity. Analysis of standard CHOS with known structure showed that an acetyl group at the reducing end and the degree of polymerization (DP) are critical for biological activity. Importantly, when applied at levels above the optimal concentrations, certain standard CHOS and CHOS mixtures could induce inflammation. These results support the potential of CHOS as anti-inflammatory agents but reveal batch-to-batch variation and possible side effects, indicating that careful quality assurance of CHOS preparations is essential.
Collapse
Affiliation(s)
- Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Munthipha Khamphio
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Thae Thae Min
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chai Noy Soem
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nguyen Cao Cuong
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Faculty of Engineering and Food Technology, Hue University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
| | - Waheni Rizki Aprilia
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | - Atthaphon Maneedaeng
- School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Tina R Tuveng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Silje B Lorentzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Simen Antonsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Paiboon Jitprasertwong
- SUT Oral Health Center, Suranaree University of Technology Hospital (SUTH), Nakhon Ratchasima 30000, Thailand; School of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
11
|
Bonin M, Irion AL, Jürß A, Pascual S, Cord-Landwehr S, Planas A, Moerschbacher BM. Engineering of a chitin deacetylase to generate tailor-made chitosan polymers. PLoS Biol 2024; 22:e3002459. [PMID: 38236907 PMCID: PMC10796014 DOI: 10.1371/journal.pbio.3002459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Chitin deacetylases (CDAs) emerge as a valuable tool to produce chitosans with a nonrandom distribution of N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) units. We hypothesized before that CDAs tend to bind certain sequences within the substrate matching their subsite preferences for either GlcNAc or GlcN units. Thus, they deacetylate or N-acetylate their substrates at nonrandom positions. To understand the molecular basis of these preferences, we analyzed the binding site of a CDA from Pestalotiopsis sp. (PesCDA) using a detailed activity screening of a site-saturation mutagenesis library. In addition, molecular dynamics simulations were conducted to get an in-depth view of crucial interactions along the binding site. Besides elucidating the function of several amino acids, we were able to show that only 3 residues are responsible for the highly specific binding of PesCDA to oligomeric substrates. The preference to bind a GlcNAc unit at subsite -2 and -1 can mainly be attributed to N75 and H199, respectively. Whereas an exchange of N75 at subsite -2 eliminates enzyme activity, H199 can be substituted with tyrosine to increase the GlcN acceptance at subsite -1. This change in substrate preference not only increases enzyme activity on certain substrates and changes composition of oligomeric products but also significantly changes the pattern of acetylation (PA) when N-acetylating polyglucosamine. Consequently, we could clearly show how subsite preferences influence the PA of chitosans produced with CDAs.
Collapse
Affiliation(s)
- Martin Bonin
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Barcelona, Spain
| | - Antonia L. Irion
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Anika Jürß
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Sergi Pascual
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Barcelona, Spain
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Barcelona, Spain
| | - Bruno M. Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| |
Collapse
|
12
|
Zhao Y, Li B, Zhang W, Zhang L, Zhao H, Wang S, Huang C. Recent Advances in Sustainable Antimicrobial Food Packaging: Insights into Release Mechanisms, Design Strategies, and Applications in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11806-11833. [PMID: 37467345 DOI: 10.1021/acs.jafc.3c02608] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In response to the issues of foodborne microbial contamination and carbon neutrality goals, sustainable antimicrobial food packaging (SAFP) composed of renewable or biodegradable biopolymer matrices with ecofriendly antimicrobial agents has emerged. SAFP offers longer effectiveness, wider coverage, more controllability, and better environmental performance. Analyzing SAFP information, including the release profile of each antimicrobial agent for each food, the interaction of each biomass matrix with each food, the material size, form, and preparation methods, and its service quality in real foods, is crucial. While encouraging reports exist, a comprehensive review summarizing these developments is lacking. Therefore, this review critically examines recent release-antimicrobial mechanisms, kinetics models, preparation methods, and key regulatory parameters for SAFPs based on slow- or controlled-release theory. Furthermore, it discusses fundamental physicochemical characteristics, effective concentrations, advantages, release approaches, and antimicrobial and preservative effects of various materials in food simulants or actual food. Lastly, inadequacies and future trends are explored, providing practical references to regulate the movement of active substances in different media, reduce the reliance on petrochemical-based materials, and advance food packaging and preservation technologies.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Bo Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenping Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Lanyu Zhang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| |
Collapse
|
13
|
Mohammadi P, Taghavi E, Foong SY, Rajaei A, Amiri H, de Tender C, Peng W, Lam SS, Aghbashlo M, Rastegari H, Tabatabaei M. Comparison of shrimp waste-derived chitosan produced through conventional and microwave-assisted extraction processes: Physicochemical properties and antibacterial activity assessment. Int J Biol Macromol 2023:124841. [PMID: 37182628 DOI: 10.1016/j.ijbiomac.2023.124841] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Depending on its physicochemical properties and antibacterial activities, chitosan can have a wide range of applications in food, pharmaceutical, medicine, cosmetics, agriculture, and aquaculture. In this experimental study, chitosan was extracted from shrimp waste through conventional extraction, microwave-assisted extraction, and conventional extraction under microwave process conditions. The effects of the heating source on the physicochemical properties and antibacterial activity were investigated. The results showed that the heating process parameters affected the physicochemical properties considerably. The conventional procedure yielded high molecular weight chitosan with a 12.7 % yield, while the microwave extraction procedure yielded a porous medium molecular weight chitosan at 11.8 %. The conventional extraction under microwave process conditions led to medium molecular weight chitosan with the lowest yield (10.8 %) and crystallinity index (79 %). Antibacterial assessment findings revealed that the chitosan extracted using the conventional method had the best antibacterial activity in the agar disk diffusion assay against Listeria monocytogenes (9.48 mm), Escherichia coli. (8.79 mm), and Salmonella Typhimurium (8.57 mm). While the chitosan obtained by microwave-assisted extraction possessed the highest activity against E. coli. (8.37 mm), and Staphylococcus aureus (8.05 mm), with comparable antibacterial activity against S. typhimurium (7.34 mm) and L. monocytogenes (6.52 mm). Moreover, the minimal inhibitory concentration and minimal bactericidal concentration assays demonstrated that among the chitosan samples investigated, the conventionally-extracted chitosan, followed by the chitosan extracted by microwave, had the best antibacterial activity against the target bacteria.
Collapse
Affiliation(s)
- Pouya Mohammadi
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Elham Taghavi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Caroline de Tender
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Zwijnaarde 9052, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Merelbeke 9820, Belgium
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Mortaza Aghbashlo
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
14
|
Ma LS, Tsai WL, Damei FA, Kalunke RM, Xu MY, Lin YH, Lee HC. Maize Antifungal Protein AFP1 Elevates Fungal Chitin Levels by Targeting Chitin Deacetylases and Other Glycoproteins. mBio 2023; 14:e0009323. [PMID: 36946727 PMCID: PMC10128019 DOI: 10.1128/mbio.00093-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Pathogenic fungi convert chitin to chitosan to evade plant perception and disarm chitin-triggered immune responses. Whether plants have evolved factors to counteract this evasion mechanism remains obscure. Here, we decipher the mechanism underlying the antifungal activity of maize secretory mannose-binding cysteine-rich receptor-like secreted protein (CRRSP), antifungal protein 1 (AFP1). AFP1 binds to multiple sites on the surface of sporidial cells, filaments, and germinated spores of the biotrophic fungus Ustilago maydis. It inhibits cell growth and budding, as well as spore germination. AFP1 promiscuously interacts with most chitin deacetylases (CDAs) by recognizing the conserved NodB domain to interfere with the enzyme activity. Deletion of O-mannosyltransferase 4 decreases protein mannosylation, which correlates with reduced AFP1 binding and antifungal activity, suggesting that AFP1 interacts with mannosylated proteins to exhibit an inhibitory effect. AFP1 also has extended inhibitory activity against Saccharomyces cerevisiae; however, AFP1 did not reduce binding to the double ΔΔcda1,2 mutant, suggesting the targets of AFP1 have expanded to other cell surface glycoproteins, probably facilitated by its mannose-binding property. Increasing chitin levels by modulating the activity of cell surface glycoproteins is a universal feature of AFP1 interacting with a broad spectrum of fungi to inhibit their growth. IMPORTANCE Plants alert immune systems by recognizing the fungal pathogen cell wall component chitin via pattern recognition cell surface receptors. Successful fungal pathogens escape the perception by deacetylating chitin to chitosan, which is also necessary for fungal cell development and virulence. Targeting glycoproteins that are associated with regulating chitin metabolism and maintaining cell wall morphogenesis presents an effective strategy to combat fungal pathogens by simultaneously altering cell wall plasticity, activating chitin-triggered immunity, and impairing fungal viability. Our study provides molecular insights into a plant DUF26 domain-containing secretory protein in warding off a broad range of fungal pathogens by acting on more than one glycoprotein target.
Collapse
Affiliation(s)
- Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Lun Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Raviraj M Kalunke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Meng-Yun Xu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Han Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hui-Chun Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
15
|
Petroni S, Tagliaro I, Antonini C, D’Arienzo M, Orsini SF, Mano JF, Brancato V, Borges J, Cipolla L. Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications. Mar Drugs 2023; 21:md21030147. [PMID: 36976196 PMCID: PMC10059909 DOI: 10.3390/md21030147] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Chitosan is a marine-origin polysaccharide obtained from the deacetylation of chitin, the main component of crustaceans’ exoskeleton, and the second most abundant in nature. Although this biopolymer has received limited attention for several decades right after its discovery, since the new millennium chitosan has emerged owing to its physicochemical, structural and biological properties, multifunctionalities and applications in several sectors. This review aims at providing an overview of chitosan properties, chemical functionalization, and the innovative biomaterials obtained thereof. Firstly, the chemical functionalization of chitosan backbone in the amino and hydroxyl groups will be addressed. Then, the review will focus on the bottom-up strategies to process a wide array of chitosan-based biomaterials. In particular, the preparation of chitosan-based hydrogels, organic–inorganic hybrids, layer-by-layer assemblies, (bio)inks and their use in the biomedical field will be covered aiming to elucidate and inspire the community to keep on exploring the unique features and properties imparted by chitosan to develop advanced biomedical devices. Given the wide body of literature that has appeared in past years, this review is far from being exhaustive. Selected works in the last 10 years will be considered.
Collapse
Affiliation(s)
- Simona Petroni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | | | - Sara Fernanda Orsini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Virginia Brancato
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| |
Collapse
|
16
|
Su H, Zhao H, Jia Z, Guo C, Sun J, Mao X. Biochemical Characterization of a GH46 Chitosanase Provides Insights into the Novel Digestion Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2038-2048. [PMID: 36661321 DOI: 10.1021/acs.jafc.2c08127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Endo-chitosanases (EC 3.2.1.132) are generally considered to selectively release functional chito-oligosaccharides (COSs) with degrees of polymerization (DPs) ≥ 2. Although numerous endo-chitosanases have been characterized, the digestion specificity of endo-chitosanases needs to be further explored. In this study, a GH46 endo-chitosanase OUC-CsnPa was cloned, expressed, and characterized from Paenibacillus sp. 1-18. The digestion pattern analysis indicated that OUC-CsnPa could produce monosaccharides from chitotetraose [(GlcN)4], the smallest recognized substrate, in a random endo-acting manner. Especially, the enzyme specificities during chitosan digestion including the regulation of product abundance through a transglycosylation reaction were also evaluated. It was hypothesized that an insertion region in OUC-CsnPa may form a strong force to be involved in stabilizing (GlcN)4 at its negative subsite for efficient hydrolysis. This is the first comprehensive report to reveal the digestion specificity and subsite specificity of monosaccharide production by endo-chitosanases. Overall, OUC-CsnPa described here highlights the previously unknown digestion properties of the endo-acting chitosanases and provides a unique example of possible structure-function relationships.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hongjun Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhenrong Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chaoran Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
17
|
Giraldo JD, Garrido-Miranda KA, Schoebitz M. Chitin and its derivatives: Functional biopolymers for developing bioproducts for sustainable agriculture-A reality? Carbohydr Polym 2023; 299:120196. [PMID: 36876809 DOI: 10.1016/j.carbpol.2022.120196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Chitinous materials (chitin and its derivatives) are obtained from renewable sources, mainly shellfish waste, having a great potential for the development of bioproducts as alternatives to synthetic agrochemicals. Recent studies have provided evidence that the use of these biopolymers can help control postharvest diseases, increase the content of nutrients available to plants, and elicit positive metabolic changes that lead to higher plant resistance against pathogens. However, agrochemicals are still widely and intensively used in agriculture. This perspective addresses the gap in knowledge and innovation to make bioproducts based on chitinous materials more competitive in the market. It also provides the readers with background to understand why these products are scarcely used and the aspects that need to be considered to increase their use. Finally, information on the development and commercialization of agricultural bioproducts containing chitin or its derivatives in the Chilean market is also provided.
Collapse
Affiliation(s)
- Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Balneario Pelluco, Los Pinos s/n, Chile.
| | - Karla A Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de la Frontera, P.O. Box 54-D, Temuco, Chile; Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile.
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Casilla 160-C, Universidad de Concepción, Chile; Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, University of Concepción, Barrio Universitario s/n, Concepción, Chile.
| |
Collapse
|
18
|
Weyer R, Hellmann MJ, Hamer-Timmermann SN, Singh R, Moerschbacher BM. Customized chitooligosaccharide production-controlling their length via engineering of rhizobial chitin synthases and the choice of expression system. Front Bioeng Biotechnol 2022; 10:1073447. [PMID: 36588959 PMCID: PMC9795070 DOI: 10.3389/fbioe.2022.1073447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chitooligosaccharides (COS) have attracted attention from industry and academia in various fields due to their diverse bioactivities. However, their conventional chemical production is environmentally unfriendly and in addition, defined and pure molecules are both scarce and expensive. A promising alternative is the in vivo synthesis of desired COS in microbial platforms with specific chitin synthases enabling a more sustainable production. Hence, we examined the whole cell factory approach with two well-established microorganisms-Escherichia coli and Corynebacterium glutamicum-to produce defined COS with the chitin synthase NodC from Rhizobium sp. GRH2. Moreover, based on an in silico model of the synthase, two amino acids potentially relevant for COS length were identified and mutated to direct the production. Experimental validation showed the influence of the expression system, the mutations, and their combination on COS length, steering the production from originally pentamers towards tetramers or hexamers, the latter virtually pure. Possible explanations are given by molecular dynamics simulations. These findings pave the way for a better understanding of chitin synthases, thus allowing a more targeted production of defined COS. This will, in turn, at first allow better research of COS' bioactivities, and subsequently enable sustainable large-scale production of oligomers.
Collapse
|
19
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
20
|
Aghbashlo M, Amiri H, Moosavi Basri SM, Rastegari H, Lam SS, Pan J, Gupta VK, Tabatabaei M. Tuning chitosan’s chemical structure for enhanced biological functions. Trends Biotechnol 2022; 41:785-797. [PMID: 36535818 DOI: 10.1016/j.tibtech.2022.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Chitosan, an amino polysaccharide mostly derived from crustaceans, has been recently highlighted for its biological activities that depend on its molecular weight (MW), degree of deacetylation (DD), and acetylation pattern (AP). More importantly, for some advanced biomaterials, the homogeneity of the chitosan structure is an important factor in determining its biological activity. Here we review emerging enzymes and cell factories, respectively, for in vitro and in vivo preparation of chitosan oligosaccharides (COSs), focusing on advances in the analysis of the AP and structural modification of chitosan to tune its functions. By 'mapping' current knowledge on chitosan's in vitro and in vivo activity with its MW and AP, this work could pave the way for future studies in the field.
Collapse
Affiliation(s)
- Mortaza Aghbashlo
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
21
|
Sreekumar S, Wattjes J, Niehues A, Mengoni T, Mendes AC, Morris ER, Goycoolea FM, Moerschbacher BM. Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nat Commun 2022; 13:7125. [PMID: 36418307 PMCID: PMC9684148 DOI: 10.1038/s41467-022-34483-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Chitosans are versatile biopolymers with multiple biological activities and potential applications. They are linear copolymers of glucosamine and N-acetylglucosamine defined by their degree of polymerisation (DP), fraction of acetylation (FA), and pattern of acetylation (PA). Technical chitosans produced chemically from chitin possess defined DP and FA but random PA, while enzymatically produced natural chitosans probably have non-random PA. This natural process has not been replicated using biotechnology because chitin de-N-acetylases do not efficiently deacetylate crystalline chitin. Here, we show that such enzymes can partially N-acetylate fully deacetylated chitosan in the presence of excess acetate, yielding chitosans with FA up to 0.7 and an enzyme-dependent non-random PA. The biotech chitosans differ from technical chitosans both in terms of physicochemical and nanoscale solution properties and biological activities. As with synthetic block co-polymers, controlling the distribution of building blocks within the biopolymer chain will open a new dimension of chitosan research and exploitation.
Collapse
Affiliation(s)
- Sruthi Sreekumar
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Jasper Wattjes
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anna Niehues
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Tamara Mengoni
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Ana C. Mendes
- grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Edwin R. Morris
- grid.7872.a0000000123318773School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Francisco M. Goycoolea
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Bruno M. Moerschbacher
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| |
Collapse
|
22
|
Amiri H, Aghbashlo M, Sharma M, Gaffey J, Manning L, Moosavi Basri SM, Kennedy JF, Gupta VK, Tabatabaei M. Chitin and chitosan derived from crustacean waste valorization streams can support food systems and the UN Sustainable Development Goals. NATURE FOOD 2022; 3:822-828. [PMID: 37117878 DOI: 10.1038/s43016-022-00591-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/11/2022] [Indexed: 04/30/2023]
Abstract
Crustacean waste, consisting of shells and other inedible fractions, represents an underutilized source of chitin. Here, we explore developments in the field of crustacean-waste-derived chitin and chitosan extraction and utilization, evaluating emerging food systems and biotechnological applications associated with this globally abundant waste stream. We consider how improving the efficiency and selectivity of chitin separation from wastes, redesigning its chemical structure to improve biotechnology-derived chitosan, converting it into value-added chemicals, and developing new applications for chitin (such as the fabrication of advanced nanomaterials used in fully biobased electric devices) can contribute towards the United Nations Sustainable Development Goals. Finally, we consider how gaps in the research could be filled and future opportunities could be developed to make optimal use of this important waste stream for food systems and beyond.
Collapse
Affiliation(s)
- Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- Environmental Research Institute, University of Isfahan, Isfahan, Iran
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Minaxi Sharma
- Laboratoire de 'Chimie Verte et Produits Biobasés', Haute Ecole Provinciale de Hainaut-Département AgroBioscience et Chimie, Ath, Belgium
| | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Munster, Ireland
- BiOrbic, Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Louise Manning
- The Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln, UK
| | | | | | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh, UK.
- Center for Safe and Improved Food, SRUC, Edinburgh, UK.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia.
| |
Collapse
|
23
|
Hao W, Li K, Ge X, Yang H, Xu C, Liu S, Yu H, Li P, Xing R. The Effect of N-Acetylation on the Anti-Inflammatory Activity of Chitooligosaccharides and Its Potential for Relieving Endotoxemia. Int J Mol Sci 2022; 23:ijms23158205. [PMID: 35897781 PMCID: PMC9330575 DOI: 10.3390/ijms23158205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Endotoxemia is mainly caused by a massive burst of inflammatory cytokines as a result of lipopolysaccharide (LPS) invasion. Chitooligosaccharides (COS) is expected to be a potential drug for relieving endotoxemia due to its anti-inflammatory properties. However, the structural parameters of COS are often ambiguous, and the effect of degree of acetylation (DA) of COS on its anti-inflammatory remains unknown. In this study, four COSs with different DAs (0%, 12%, 50% and 85%) and the same oligomers distribution were successfully obtained. Their structures were confirmed by 1H NMR and MS analysis. Then, the effect of DA on the anti-inflammatory activity and relieving endotoxemia potential of COS was researched. The results revealed that COS with a DA of 12% had better anti-inflammatory activity than COSs with other DAs, mainly in inhibiting LPS-induced inflammatory cytokines burst, down-regulating its mRNA expression and reducing phosphorylation of IκBα. Furthermore, this COS showed an obviously protective effect on endotoxemia mice, such as inhibiting the increase in inflammatory cytokines and transaminases, alleviating the injury of liver and intestinal tissue. This study explored the effect of DA on the anti-inflammatory activity of COS for the first time and lays the foundation for the development of COS as an anti-inflammatory drug against endotoxemia.
Collapse
Affiliation(s)
- Wentong Hao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (X.G.); (H.Y.); (C.X.); (S.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (X.G.); (H.Y.); (C.X.); (S.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (K.L.); (R.X.); Tel.: +86-0532-82898512 (K.L.); +86-0532-82898780 (R.X.)
| | - Xiangyun Ge
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (X.G.); (H.Y.); (C.X.); (S.L.); (H.Y.); (P.L.)
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Haoyue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (X.G.); (H.Y.); (C.X.); (S.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Chaojie Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (X.G.); (H.Y.); (C.X.); (S.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (X.G.); (H.Y.); (C.X.); (S.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (X.G.); (H.Y.); (C.X.); (S.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (X.G.); (H.Y.); (C.X.); (S.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (X.G.); (H.Y.); (C.X.); (S.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (K.L.); (R.X.); Tel.: +86-0532-82898512 (K.L.); +86-0532-82898780 (R.X.)
| |
Collapse
|
24
|
Bhuvanachandra B, Sivaramakrishna D, Alim S, Swamy MJ, Podile AR. Deciphering the thermotolerance of chitinase O from Chitiniphilus shinanonensis by in vitro and in silico studies. Int J Biol Macromol 2022; 210:44-52. [PMID: 35537581 DOI: 10.1016/j.ijbiomac.2022.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/05/2022]
Abstract
Biochemical and biophysical studies revealed that chitinase O from Chitiniphilus shinanonensis (CsChiO) exhibits considerable thermotolerance, possibly due to the formation of a stable structural conformation. CsChiO is an exochitinase with a temperature optimum of 70 °C. The secondary structures of CsChiO and its catalytic domain (Cat-CsChiO) are only marginally affected upon heating up to 90 °C, as revealed by circular dichroism (CD) spectroscopy. Differential scanning calorimetric (DSC) studies revealed that CsChiO exhibits two endothermic transitions at ca. 51 °C (Tm1) and 59 °C (Tm2), whereas Cat-CsChiO shows a single endothermic transition at 52 °C. Together, the CD and DSC analyses suggested that the catalytic domain of CsChiO undergoes a thermotropic transition at ~52 °C from native state to another stable structural conformation. Results from molecular dynamic simulations corroborated that Cat-CsChiO adopts a stable structural conformation above 50 °C by partial unfolding. Thermotolerant CsChiO would be useful for the conversion of chitin, which is highly abundant, to biologically active COS. This study unveiled the adaptability of enzymes/proteins in nature to perform biological functions at elevated temperatures.
Collapse
Affiliation(s)
- Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Dokku Sivaramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Sk Alim
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
25
|
Qiu S, Zhou S, Tan Y, Feng J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Biodegradation and Prospect of Polysaccharide from Crustaceans. Mar Drugs 2022; 20:310. [PMID: 35621961 PMCID: PMC9146327 DOI: 10.3390/md20050310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
26
|
Protective, Biostimulating, and Eliciting Effects of Chitosan and Its Derivatives on Crop Plants. Molecules 2022; 27:molecules27092801. [PMID: 35566152 PMCID: PMC9101998 DOI: 10.3390/molecules27092801] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chitosan is a biodegradable and biocompatible polysaccharide obtained by partial deacetylation of chitin. This polymer has been gaining increasing popularity due to its natural origin, favorable physicochemical properties, and multidirectional bioactivity. In agriculture, the greatest hopes are raised by the possibility of using chitosan as a biostimulant, a plant protection product, an elicitor, or an agent to increase the storage stability of plant raw materials. The most important properties of chitosan include induction of plant defense mechanisms and regulation of metabolic processes. Additionally, it has antifungal, antibacterial, antiviral, and antioxidant activity. The effectiveness of chitosan interactions is determined by its origin, deacetylation degree and acetylation pattern, molecular weight, type of chemical modifications, pH, concentration, and solubility. There is a need to conduct research on alternative sources of chitosan, extraction methods, optimization of physicochemical properties, and commercial implementation of scientific progress outcomes in this field. Moreover, studies are necessary to assess the bioactivity and toxicity of chitosan nanoparticles and chitosan conjugates with other substances and to evaluate the consequences of the large-scale use thereof. This review presents the unique properties of chitosan and its derivatives that have the greatest importance for plant production and yield quality as well as the benefits and limitations of their application.
Collapse
|
27
|
Secondary Metabolism Rearrangements in Linum usitatissimum L. after Biostimulation of Roots with COS Oligosaccharides from Fungal Cell Wall. Molecules 2022; 27:molecules27072372. [PMID: 35408773 PMCID: PMC9000297 DOI: 10.3390/molecules27072372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
In vitro culture of flax (Linum usitatissimum L.) was exposed to chitosan oligosaccharides (COS) in order to investigate the effects on the growth and secondary metabolites content in roots and shoots. COS are fragments of chitosan released from the fungal cell wall during plant–pathogen interactions. They can be perceived by the plant as pathogen-associated signals, mediating local and systemic innate immune responses. In the present study, we report a novel COS oligosaccharide fraction with a degree of polymerization (DP) range of 2–10, which was produced from fungal chitosan by a thermal degradation method and purified by an alcohol-precipitation process. COS was dissolved in hydroponic medium at two different concentrations (250 and 500 mg/L) and applied to the roots of growing flax seedlings. Our observations indicated that the growth of roots and shoots decreased markedly in COS-treated flax seedlings compared to the control. In addition, the results of a metabolomics analysis showed that COS treatment induced the accumulation of (neo)lignans locally at roots, flavones luteolin C-glycosides, and chlorogenic acid in systemic responses in the shoots of flax seedlings. These phenolic compounds have been previously reported to exhibit a strong antioxidant and antimicrobial activities. COS oligosaccharides, under the conditions applied in this study (high dose treatment with a much longer exposure time), can be used to indirectly trigger metabolic response modifications in planta, especially secondary metabolism, because during fungal pathogen attack, COS oligosaccharides are among the signals exchanged between the pathogen and host plant.
Collapse
|
28
|
Lemke P, Jünemann L, Moerschbacher BM. Synergistic Antimicrobial Activities of Chitosan Mixtures and Chitosan–Copper Combinations. Int J Mol Sci 2022; 23:ijms23063345. [PMID: 35328766 PMCID: PMC8951000 DOI: 10.3390/ijms23063345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Several recent studies revealed the significant contribution of intensive agriculture to global climate change and biodiversity decline. However, synthetic pesticides and fertilizers, which are among the main reasons for these negative effects, are required to achieve the high performance of elite crops needed to feed the growing world population. Modern agro-biologics, such as biopesticides, biostimulants, and biofertilizers are intended to replace or reduce the current agro-chemicals, but the former are often difficult to combine with the latter. Chitosans, produced from the fisheries’ byproduct chitin, are among the most promising agro-biologics, and copper fungicides are among the most widely used plant protectants in organic farming. However, the two active ingredients tend to form precipitates, hindering product development. Here, we show that partial hydrolysis of a chitosan polymer can yield a mixture of smaller polymers and oligomers that act synergistically in their antifungal activity. The low molecular weight (Mw) of this hydrolysate allows its combination with copper acetate, again leading to a synergistic effect. Combined, these synergies allow a 50% reduction in copper concentration, while maintaining the antifungal activity. This is potentially a significant step towards a more sustainable agriculture.
Collapse
|
29
|
Xie F, Jiang L, Xiao X, Lu Y, Liu R, Jiang W, Cai J. Quaternized Polysaccharide-Based Cationic Micelles as a Macromolecular Approach to Eradicate Multidrug-Resistant Bacterial Infections while Mitigating Antimicrobial Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104885. [PMID: 35129309 DOI: 10.1002/smll.202104885] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Microbial infections and microbial resistance lead to a high demand for new antimicrobial agents. Quaternized polysaccharides are cationic antimicrobial candidates; however, the limitation of homogeneous synthesis solvents that affect the molecular structure and biological activities, as well as their drug resistance remains unclear. Therefore, the authors homogeneously synthesize a series of quaternized chitin (QC) and quaternized chitosan (QCS) derivatives via a green and effective KOH/urea system and investigate their structure-activity relationship and biological activity in vivo and in vitro. Their study reveals that a proper match of degree of quaternization (DQ) and degree of deacetylation (DD') of QC or QCS is key to balance antimicrobial property and cytotoxicity. They identify QCS-2 as the optimized antimicrobial agent with a DQ of 0.46 and DD' of 82%, which exhibits effective broad-spectrum antimicrobial properties, good hemocompatibility, excellent cytocompatibility, and effective inhibition of bacterial biofilm formation and eradication of mature bacterial biofilms. Moreover, QCS-2 exhibits a low propensity for development of drug resistance and significant anti-infective effects on MRSA in vivo comparable to that of vancomycin, avoiding excessive inflammation and promoting the formation of new blood vessels, hair follicles, and collagen deposition to thus expedite wound healing.
Collapse
Affiliation(s)
- Fang Xie
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lai Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiwen Lu
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Jie Cai
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, China
| |
Collapse
|
30
|
Fittolani G, Djalali S, Chaube MA, Tyrikos-Ergas T, Dal Colle MCS, Grafmüller A, Seeberger PH, Delbianco M. Deoxyfluorination tunes the aggregation of cellulose and chitin oligosaccharides and highlights the role of specific hydroxyl groups in the crystallization process. Org Biomol Chem 2022; 20:8228-8235. [DOI: 10.1039/d2ob01601j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using synthetic oligosaccharides, we examined how deoxyfluorination (site and pattern) impact the solubility and aggregation of cellulose and chitin oligomers.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Surusch Djalali
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Manishkumar A. Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Marlene C. S. Dal Colle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Andrea Grafmüller
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
31
|
Cord-Landwehr S, Moerschbacher BM. Deciphering the ChitoCode: fungal chitins and chitosans as functional biopolymers. Fungal Biol Biotechnol 2021; 8:19. [PMID: 34893090 PMCID: PMC8665597 DOI: 10.1186/s40694-021-00127-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Chitins and chitosans are among the most widespread and versatile functional biopolymers, with interesting biological activities and superior material properties. While chitins are evolutionary ancient and present in many eukaryotes except for higher plants and mammals, the natural distribution of chitosans, i.e. extensively deacetylated derivatives of chitin, is more limited. Unequivocal evidence for its presence is only available for fungi where chitosans are produced from chitin by the action of chitin deacetylases. However, neither the structural details such as fraction and pattern of acetylation nor the physiological roles of natural chitosans are known at present. We hypothesise that the chitin deacetylases are generating chitins and chitosans with specific acetylation patterns and that these provide information for the interaction with specific chitin- and chitosan-binding proteins. These may be structural proteins involved in the assembly of the complex chitin- and chitosan-containing matrices such as fungal cell walls and insect cuticles, chitin- and chitosan-modifying and -degrading enzymes such as chitin deacetylases, chitinases, and chitosanases, but also chitin- and chitosan-recognising receptors of the innate immune systems of plants, animals, and humans. The acetylation pattern, thus, may constitute a kind of 'ChitoCode', and we are convinced that new in silico, in vitro, and in situ analytical tools as well as new synthetic methods of enzyme biotechnology and organic synthesis are currently offering an unprecedented opportunity to decipher this code. We anticipate a deeper understanding of the biology of chitin- and chitosan-containing matrices, including their synthesis, assembly, mineralisation, degradation, and perception. This in turn will improve chitin and chitosan biotechnology and the development of reliable chitin- and chitosan-based products and applications, e.g. in medicine and agriculture, food and feed sciences, as well as cosmetics and material sciences.
Collapse
Affiliation(s)
- Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
32
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
34
|
Attjioui M, Gillet D, El Gueddari NE, Moerschbacher BM. Synergistic Antimicrobial Effect of Chitosan Polymers and Oligomers. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:770-778. [PMID: 33683142 DOI: 10.1094/mpmi-07-20-0185-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study evaluated the efficacy of the combined application of well-characterized chitosan polymer (degree of acetylation = 10%, degree of polymerization [DPn] = 90, and dispersity [ÐDP] = 2.8) and oligomers (partially acetylated chitosan polymers and oligosaccharides [paCOS]) (DP = 2 to 17) on conidia germination and mycelial growth of Fusarium graminearum, the major causal agent of Fusarium head blight in wheat. The polymer alone showed a higher inhibitory effect than the paCOS mixture alone, with half-maximal inhibitory concentrations of less than 50 µg ml-1 and more than 100 µg ml-1, respectively. Using time-lapse microscopy, we also showed that paCOS did not affect conidia germination at 50 µg ml-1, whereas chitosan polymer at the same concentration led to a delay in germination and in elongation of germ tubes. Scanning electron microscopy was used to observe the chitosan-induced changes in hyphal morphology. Surprisingly, the combination of chitosan polymer and paCOS led to strong synergistic effects in inhibiting conidia germination and fungal growth, as quantified by both the Abbot and Wadley equations. To our knowledge, this is the first report on a synergistic effect of a combination of chitosan polymers and oligomers, also highlighting for the first time the importance of ÐDP when studying structure-function relationships of functional biopolymers such as chitosan. The consequences of this finding for the improvement of chitosan-based antimicrobial or plant protective products are discussed. Given the economic importance of F. graminearum, this study suggests that the combination of chitosan polymer and oligomers can be used to support an efficient, sustainable plant protection strategy.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Maha Attjioui
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | | | | | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| |
Collapse
|
35
|
Hao W, Li K, Ma Y, Li R, Xing R, Yu H, Li P. Preparation and Antioxidant Activity of Chitosan Dimers with Different Sequences. Mar Drugs 2021; 19:md19070366. [PMID: 34201994 PMCID: PMC8305433 DOI: 10.3390/md19070366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023] Open
Abstract
As a popular marine saccharide, chitooligosaccharides (COS) has been proven to have good antioxidant activity. Its antioxidant effect is closely related to its degree of polymerization, degree of acetylation and sequence. However, the specific structure-activity relationship remains unclear. In this study, three chitosan dimers with different sequences were obtained by the separation and enzymatic method, and the antioxidant activity of all four chitosan dimers were studied. The effect of COS sequence on its antioxidant activity was revealed for the first time. The amino group at the reducing end plays a vital role in scavenging superoxide radicals and in the reducing power of the chitosan dimer. At the same time, we found that the fully deacetylated chitosan dimer DD showed the strongest DPPH scavenging activity. When the amino groups of the chitosan dimer were acetylated, it showed better activity in scavenging hydroxyl radicals. Research on COS sequences opens up a new path for the study of COS, and is more conducive to the investigation of its mechanism.
Collapse
Affiliation(s)
- Wentong Hao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (K.L.); (R.X.); Tel.: +86-0532-82898512 (K.L.); +86-0532-82898780 (R.X.)
| | - Yuzhen Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (K.L.); (R.X.); Tel.: +86-0532-82898512 (K.L.); +86-0532-82898780 (R.X.)
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
36
|
López-Velázquez JC, Haro-González JN, García-Morales S, Espinosa-Andrews H, Navarro-López DE, Montero-Cortés MI, Qui-Zapata JA. Evaluation of the Physicochemical Properties of Chitosans in Inducing the Defense Response of Coffea arabica against the Fungus Hemileia vastatrix. Polymers (Basel) 2021; 13:polym13121940. [PMID: 34207947 PMCID: PMC8230575 DOI: 10.3390/polym13121940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/05/2022] Open
Abstract
Chitosan is a natural polymer, and its biological properties depend on factors such as the degree of deacetylation and polymerization, viscosity, molecular mass, and dissociation constant. Chitosan has multiple advantages: it is biodegradable, biocompatible, safe, inexpensive, and non-toxic. Due to these characteristics, it has a wide range of applications. In agriculture, one of the most promising properties of chitosan is as an elicitor in plant defense against pathogenic microorganisms. In this work, four kinds of chitosan (practical grade, low molecular weight, medium molecular weight, and high-density commercial food grade) were used in concentrations of 0.01 and 0.05% to evaluate its protective effect against coffee rust. The best treatment was chosen to evaluate the defense response in coffee plants. The results showed a protective effect using practical-grade and commercial food-grade chitosan. In addition, the activity of enzymes with β-1,3 glucanase and peroxidase was induced, and an increase in the amount of phenolic compounds was observed in plants treated with high-molecular-weight chitosan at 0.05%; therefore, chitosan can be considered an effective molecule for controlling coffee rust.
Collapse
Affiliation(s)
- Julio César López-Velázquez
- Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico;
| | - José Nabor Haro-González
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico; (J.N.H.-G.); (H.E.-A.)
| | - Soledad García-Morales
- Biotecnología Vegetal, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Zapopan 45019, Mexico;
| | - Hugo Espinosa-Andrews
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico; (J.N.H.-G.); (H.E.-A.)
| | - Diego Eloyr Navarro-López
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, General Ramón Corona 2514, Nuevo México, Zapopan 45201, Mexico;
| | | | - Joaquín Alejandro Qui-Zapata
- Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico;
- Correspondence: ; Tel.: +52-33-33-45-52-00 (ext. 1707)
| |
Collapse
|
37
|
Li J, Wang D, Chang SC, Liang PH, Srivastava V, Guu SY, Shie JJ, Khoo KH, Bulone V, Hsieh YSY. Production of Structurally Defined Chito-Oligosaccharides with a Single N-Acetylation at Their Reducing End Using a Newly Discovered Chitinase from Paenibacillus pabuli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3371-3379. [PMID: 33688734 PMCID: PMC8041281 DOI: 10.1021/acs.jafc.0c06804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 06/06/2023]
Abstract
Partially acetylated chito-oligosaccharides (paCOSs) are bioactive compounds with potential medical applications. Their biological activities are largely dependent on their structural properties, in particular their degree of polymerization (DP) and the position of the acetyl groups along the glycan chain. The production of structurally defined paCOSs in a purified form is highly desirable to better understand the structure/bioactivity relationship of these oligosaccharides. Here, we describe a newly discovered chitinase from Paenibacillus pabuli (PpChi) and demonstrate by mass spectrometry that it essentially produces paCOSs with a DP of three and four that carry a single N-acetylation at their reducing end. We propose that this specific composition of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) residues, as in GlcN(n)GlcNAc1, is due to a subsite specificity toward GlcN residues at the -2, -3, and -4 positions of the partially acetylated chitosan substrates. In addition, the enzyme is stable, as evidenced by its long shelf life, and active over a large temperature range, which is of high interest for potential use in industrial processes. It exhibits a kcat of 67.2 s-1 on partially acetylated chitosan substrates. When PpChi was used in combination with a recently discovered fungal auxilary activity (AA11) oxidase, a sixfold increase in the release of oligosaccharides from the lobster shell was measured. PpChi represents an attractive biocatalyst for the green production of highly valuable paCOSs with a well-defined structure and the expansion of the relatively small library of chito-oligosaccharides currently available.
Collapse
Affiliation(s)
- Jing Li
- College
of Life Sciences, Shanghai Normal University, Shanghai 220234, PR China
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Center, Stockholm SE10691, Sweden
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250
Wuxing Street, Taipei 110, Taiwan
| | - Damao Wang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Center, Stockholm SE10691, Sweden
- College
of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shu-Chieh Chang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Center, Stockholm SE10691, Sweden
| | - Pi-Hui Liang
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Vaibhav Srivastava
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Center, Stockholm SE10691, Sweden
| | - Shih-Yun Guu
- Institute
of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Jiun-Jie Shie
- Institute
of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute
of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Vincent Bulone
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Center, Stockholm SE10691, Sweden
- School
of Agriculture, Food and Wine, The University
of Adelaide, Urrbrae 5064, Australia
| | - Yves S. Y. Hsieh
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology
(KTH), AlbaNova University Center, Stockholm SE10691, Sweden
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250
Wuxing Street, Taipei 110, Taiwan
- Genomics
Research Center, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| |
Collapse
|
38
|
Jitprasertwong P, Khamphio M, Petsrichuang P, Eijsink VGH, Poolsri W, Muanprasat C, Rangnoi K, Yamabhai M. Anti-inflammatory activity of soluble chito-oligosaccharides (CHOS) on VitD3-induced human THP-1 monocytes. PLoS One 2021; 16:e0246381. [PMID: 33534833 PMCID: PMC7857634 DOI: 10.1371/journal.pone.0246381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/18/2021] [Indexed: 01/21/2023] Open
Abstract
Chito-oligosaccharides (CHOS) are oligomers of D-glucosamine and N-acetyl-glucosamine. Anti-inflammatory activities of a wide variety of CHOS mixtures have previously been reported, mainly based on studies with mouse models and murine macrophages. Since the mouse and human immune systems are quite different, gaining insight into the activity of CHOS on human cell lines, using well-characterized CHOS mixtures, is of considerable interest. Bacillus subtilis chitosanase (BsCsn46A) can efficiently convert chitosan to mixtures of water soluble low molecular weight CHOS. Here, the anti-inflammatory activity of a properly characterized CHOS mixture was studied, using human THP-1 cells that were differentiated to mature monocytes using vitamin D3. Addition of CHOS reduced the production of multiple pro-inflammatory cytokines associated with bacterial lipopolyssacharide (LPS)-stimulated inflammation, in a dose-dependent manner and without affecting cell viability. Interestingly, only minimal effects of CHOS were observed in similar experiments with phorbol 12-myristate 13-acetate- (PMA-) differentiated, macrophage-like, THP-1 cells. Altogether, in addition to showing promising biological effects of well-characterized low molecular weight soluble CHOS in a human system, the present study also points at Vitamin D3-stimulated THP-1 cells as a favorable system for assessing the anti-inflammatory activity of bioactive compounds.
Collapse
Affiliation(s)
- Paiboon Jitprasertwong
- School of Geriatric Oral Health, Institute of Dentistry, Suranaree University of Technology (SUT), Nakhon Ratchasima, Thailand
| | - Munthipha Khamphio
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology (SUT), Nakhon Ratchasima, Thailand
| | - Phornsiri Petsrichuang
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology (SUT), Nakhon Ratchasima, Thailand
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Wanangkan Poolsri
- Faculty of Medicine, Chakri Naruebodindra Medical Institute, Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Chatchai Muanprasat
- Faculty of Medicine, Chakri Naruebodindra Medical Institute, Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Kuntalee Rangnoi
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology (SUT), Nakhon Ratchasima, Thailand
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology (SUT), Nakhon Ratchasima, Thailand
- * E-mail:
| |
Collapse
|
39
|
Tyrikos‐Ergas T, Bordoni V, Fittolani G, Chaube MA, Grafmüller A, Seeberger PH, Delbianco M. Systematic Structural Characterization of Chitooligosaccharides Enabled by Automated Glycan Assembly. Chemistry 2021; 27:2321-2325. [PMID: 33290603 PMCID: PMC7898498 DOI: 10.1002/chem.202005228] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 01/01/2023]
Abstract
Chitin, a polymer composed of β(1-4)-linked N-acetyl-glucosamine monomers, and its partially deacetylated analogue chitosan, are abundant biopolymers with outstanding mechanical as well as elastic properties. Their degradation products, chitooligosaccharides (COS), can trigger the innate immune response in humans and plants. Both material and biological properties are dependent on polymer length, acetylation, as well as the pH. Without well-defined samples, a complete molecular description of these factors is still missing. Automated glycan assembly (AGA) enabled rapid access to synthetic well-defined COS. Chitin-cellulose hybrid oligomers were prepared as important tools for a systematic structural analysis. Intramolecular interactions, identified by molecular dynamics simulations and NMR analysis, underscore the importance of the chitosan amino group for the stabilization of specific geometries.
Collapse
Affiliation(s)
- Theodore Tyrikos‐Ergas
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Vittorio Bordoni
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Manishkumar A. Chaube
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Andrea Grafmüller
- Department of TheoryMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
40
|
Kidibule PE, Costa J, Atrei A, Plou FJ, Fernandez-Lobato M, Pogni R. Production and characterization of chitooligosaccharides by the fungal chitinase Chit42 immobilized on magnetic nanoparticles and chitosan beads: selectivity, specificity and improved operational utility. RSC Adv 2021; 11:5529-5536. [PMID: 35423100 PMCID: PMC8694723 DOI: 10.1039/d0ra10409d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Chitin-active enzymes are of great biotechnological interest due to the wide industrial application of chitinolytic materials. Non-stability and high cost are among limitations that hinder industrial application of soluble enzymes. Here we report the production and characterization of chitooligosaccharides (COS) using the fungal exo-chitinase Chit42 immobilized on magnetic nanoparticles and food-grade chitosan beads with an immobilization yield of about 60% using glutaraldehyde and genipin linkers. The immobilized enzyme gained operational stability with increasing temperature and acidic pH values, especially when using chitosan beads-genipin that retained more than 80% activity at pH 3. Biocatalysts generated COS from colloidal chitin and different chitosan types. The immobilized enzyme showed higher hydrolytic activity than free enzyme on chitosan, and produced COS mixtures with higher variability of size and acetylation degree. In addition, biocatalysts were reusable, easy to handle and to separate from the reaction mixture.
Collapse
Affiliation(s)
- Peter E Kidibule
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid Nicolás Cabrera, 1. Cantoblanco 28049 Madrid Spain
| | - Jessica Costa
- Department of Biotechnology, Chemistry and Pharmacy, Università di Siena Via A. Moro 2 53100 Siena Italy
| | - Andrea Atrei
- Department of Biotechnology, Chemistry and Pharmacy, Università di Siena Via A. Moro 2 53100 Siena Italy
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC Marie Curie, 2. Cantoblanco 28049 Madrid Spain
| | - Maria Fernandez-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid Nicolás Cabrera, 1. Cantoblanco 28049 Madrid Spain
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, Università di Siena Via A. Moro 2 53100 Siena Italy
| |
Collapse
|
41
|
Bhuvanachandra B, Sivaramakrishna D, Alim S, Preethiba G, Rambabu S, Swamy MJ, Podile AR. New Class of Chitosanase from Bacillus amyloliquefaciens for the Generation of Chitooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:78-87. [PMID: 33393308 DOI: 10.1021/acs.jafc.0c05078] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chitooligosaccharides (COS) generated from either chitin (chitin oligosaccharides) or chitosan (chitosan oligosaccharides) have a wide range of applications in agriculture, medicine, and other fields. Here, we report the characterization of a chitosanase from Bacillus amyloliquefaciens (BamCsn) and the importance of a tryptophan (Trp), W204, for BamCsn activity. BamCsn hydrolyzed the chitosan polymer by an endo mode. It also hydrolyzed chitin oligosaccharides and interestingly exhibited transglycosylation activity on chitotetraose and chitopentaose. Mutation of W204, a nonconserved amino acid in chitosanases, to W204A abolished the hydrolytic activity of BamCsn, with a change in the structure that resulted in a decreased affinity for the substrate and impaired the catalytic ability. Phylogenetic analysis revealed that BamCsn could belong to a new class of chitosanases that showed unique properties like transglycosylation, cleavage of chitin oligosaccharides, and the presence of W204 residues, which is important for activity. Chitosanases belonging to the BamCsn class showed a high potential to generate COS from chitinous substrates.
Collapse
Affiliation(s)
- Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Dokku Sivaramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Sk Alim
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Gopi Preethiba
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Samudrala Rambabu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| |
Collapse
|
42
|
Selection and mutational analyses of the substrate interacting residues of a chitinase from Enterobacter cloacae subsp. cloacae (EcChi2) to improve transglycosylation. Int J Biol Macromol 2020; 165:2432-2441. [PMID: 33096170 DOI: 10.1016/j.ijbiomac.2020.10.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/05/2023]
Abstract
Transglycosylation (TG) by Enterobacter cloacae subsp. cloacae chitinase 2 (EcChi2) has been deciphered by site-directed mutagenesis. EcChi2 originally displayed feeble TG with chitin oligomer with a degree of polymerization (DP4), for a short duration. Based on the 3D modelling and molecular docking analyses, we altered the substrate interactions at the substrate-binding cleft, catalytic center, and catalytic groove of EcChi2 by mutational approach to improve TG. The mutation of W166A and T277A increased TG by EcChi2 and also affected its catalytic efficiency on the polymeric substrates. Whereas, R171A had a drastically decreased hydrolytic activity but, retained TG activity. In the increased hydrolytic activity of the T277A, altered interactions with the substrates played an indirect role in the catalysis. Mutation of the central Asp, in the conserved DxDxE motif, to Ala (D314A) and Asn (D314N) conversion yielded DP5-DP8 TG products. The quantifiable TG products (DP5 and DP6) increased to 8% (D314A) and 7% (D314N), resulting in a hyper-transglycosylating mutant. Mutation of W276A and W398A resulted in the loss of TG activity, indicating that the aromatic residues (W276 and W398) at +1 and +2 subsites are essential for the TG activity of EcChi2.
Collapse
|
43
|
Harmsen RAG, Aam BB, Madhuprakash J, Hamre AG, Goddard-Borger ED, Withers SG, Eijsink VGH, Sørlie M. Chemoenzymatic Synthesis of Chito-oligosaccharides with Alternating N-d-Acetylglucosamine and d-Glucosamine. Biochemistry 2020; 59:4581-4590. [DOI: 10.1021/acs.biochem.0c00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rianne A. G. Harmsen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Berit Bjugan Aam
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Jogi Madhuprakash
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Anne Grethe Hamre
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Ethan D. Goddard-Borger
- Walter & Eliza Hall, Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Chemistry, University of British Colombia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stephen G. Withers
- Department of Chemistry, University of British Colombia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Vincent G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| |
Collapse
|
44
|
Li K, Xing R, Liu S, Li P. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12203-12211. [PMID: 33095004 DOI: 10.1021/acs.jafc.0c05316] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chitin and chitosan are natural polysaccharides with huge application potential in agriculture, such as promoting plant growth, eliciting plant resistance against biotic and abiotic stress, and activating symbiotic signaling between plants and beneficial microorganisms. Chitin and chitosan offer a sustainable alternative for future crop production. The bioactivities of chitin and chitosan closely depend on their structural factors, including molecular size, degree of acetylation, and pattern of acetylation. It is of great significance to identify the key fragments in chitin and chitosan chains that are responsible for these agricultural bioactivities. Herein, we review the recent progress in the structure-function relationship of chitin and chitosan in the field of agriculture application. The preparation of chitin and chitosan fragments and their action mode for plant protection and growth are also discussed.
Collapse
Affiliation(s)
- Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
45
|
Preparation of Defined Chitosan Oligosaccharides Using Chitin Deacetylases. Int J Mol Sci 2020; 21:ijms21217835. [PMID: 33105791 PMCID: PMC7660110 DOI: 10.3390/ijms21217835] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
During the past decade, detailed studies using well-defined 'second generation' chitosans have amply proved that both their material properties and their biological activities are dependent on their molecular structure, in particular on their degree of polymerisation (DP) and their fraction of acetylation (FA). Recent evidence suggests that the pattern of acetylation (PA), i.e., the sequence of acetylated and non-acetylated residues along the linear polymer, is equally important, but chitosan polymers with defined, non-random PA are not yet available. One way in which the PA will influence the bioactivities of chitosan polymers is their enzymatic degradation by sequence-dependent chitosan hydrolases present in the target tissues. The PA of the polymer substrates in conjunction with the subsite preferences of the hydrolases determine the type of oligomeric products and the kinetics of their production and further degradation. Thus, the bioactivities of chitosan polymers will at least in part be carried by the chitosan oligomers produced from them, possibly through their interaction with pattern recognition receptors in target cells. In contrast to polymers, partially acetylated chitosan oligosaccharides (paCOS) can be fully characterised concerning their DP, FA, and PA, and chitin deacetylases (CDAs) with different and known regio-selectivities are currently emerging as efficient tools to produce fully defined paCOS in quantities sufficient to probe their bioactivities. In this review, we describe the current state of the art on how CDAs can be used in forward and reverse mode to produce all of the possible paCOS dimers, trimers, and tetramers, most of the pentamers and many of the hexamers. In addition, we describe the biotechnological production of the required fully acetylated and fully deacetylated oligomer substrates, as well as the purification and characterisation of the paCOS products.
Collapse
|
46
|
Review: Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydr Polym 2020; 252:117206. [PMID: 33183640 DOI: 10.1016/j.carbpol.2020.117206] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Chitooligosaccharides has attracted increasing attention due to their diverse bioactivities and potential application. Previous studies on the bioactivity of chitooligosaccharides were mostly carried out using a mixture. The structure-function relationship of chitooligosaccharides is not clear. Recently, it is confirmed that chitooligosaccharides with different degrees of polymerization play different roles in many bioactivities. However, heterogeneous chitooligosaccharides with a single degree of polymerization is still a mixture of many uncertain sequences and it is difficult to determine which structure is responsible for biological effects. Therefore, an interesting and challenging field of studying chitooligosaccharides with heterogeneous sequences has emerged. Herein, we reviewed the current methods for preparing heterogeneous chitooligosaccharides, including chemical synthesis, separation techniques and enzymatic methods. Advances in the bioactivities of chitooligosaccharides with heterogeneous sequences are also reviewed.
Collapse
|
47
|
Lopez JM, Sánchez LF, Nakamatsu J, Maruenda H. Study of the Acetylation Pattern of Chitosan by Pure Shift NMR. Anal Chem 2020; 92:12250-12256. [PMID: 32822156 DOI: 10.1021/acs.analchem.0c01638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chitosan is a biodegradable, antibacterial, and nontoxic biopolymer used in a wide range of applications including biotechnology, pharmacy, and medicine. The physicochemical and biological properties of chitosan have been associated with parameters such as the degree of polymerization (DP) and the fraction of acetylation (FA). New methods are being developed to yield chitosans of specific acetylation patterns, and, recently, a correlation between biological activity and the distribution of the acetylated units (PA: pattern of acetylation) has been demonstrated. Although there are numerous well-established methods for the determination of DP and FA values, this is not the case for PA. The methods available are either not straightforward or not sensitive enough, limiting their use for routine analysis. In this study, we demonstrate that by applying HOmodecoupled Band-Selective (HOBS) decoupling NMR on signals assigned by multidimensional Pure Shift NMR methods, PA can be easily and accurately determined on various chitosan samples. This novel methodology-easily implemented for routine analysis-could become a standard for chitosan PA assessment. In addition, by applying Spectral Aliased Pure Shift HSQC, the analysis was enhanced with the determination of triads.
Collapse
Affiliation(s)
- Juan M Lopez
- Departamento de Ciencias - Química, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, 32, Perú
| | - Luis F Sánchez
- Departamento de Ciencias - Química, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, 32, Perú
| | - Javier Nakamatsu
- Departamento de Ciencias - Química, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, 32, Perú
| | - Helena Maruenda
- Departamento de Ciencias - Química, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, 32, Perú
| |
Collapse
|
48
|
Jia X, Rajib MR, Yin H. Recognition Pattern, Functional Mechanism and Application of Chitin and Chitosan Oligosaccharides in Sustainable Agriculture. Curr Pharm Des 2020; 26:3508-3521. [DOI: 10.2174/1381612826666200617165915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Background:
Application of chitin attracts much attention in the past decades as the second abundant
polysaccharides in the world after cellulose. Chitin oligosaccharides (CTOS) and its deacetylated derivative chitosan
oligosaccharides (COS) were shown great potentiality in agriculture by enhancing plant resistance to abiotic
or biotic stresses, promoting plant growth and yield, improving fruits quality and storage, etc. Those applications
have already served huge economic and social benefits for many years. However, the recognition mode and functional
mechanism of CTOS and COS on plants have gradually revealed just in recent years.
Objective:
Recognition pattern and functional mechanism of CTOS and COS in plant together with application
status of COS in agricultural production will be well described in this review. By which we wish to promote
further development and application of CTOS and COS–related products in the field.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mijanur R. Rajib
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
49
|
Lemke P, Moerschbacher BM, Singh R. Transcriptome Analysis of Solanum Tuberosum Genotype RH89-039-16 in Response to Chitosan. FRONTIERS IN PLANT SCIENCE 2020; 11:1193. [PMID: 32903855 PMCID: PMC7438930 DOI: 10.3389/fpls.2020.01193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Potato (Solanum tuberosum L.) is the worldwide most important nongrain crop after wheat, rice, and maize. The autotetraploidy of the modern commercial potato makes breeding of new resistant and high-yielding cultivars challenging due to complicated and time-consuming identification and selection processes of desired crop features. On the other hand, plant protection of existing cultivars using conventional synthetic pesticides is increasingly restricted due to safety issues for both consumers and the environment. Chitosan is known to display antimicrobial activity against a broad range of plant pathogens and shows the ability to trigger resistance in plants by elicitation of defense responses. As chitosan is a renewable, biodegradable and nontoxic compound, it is considered as a promising next-generation plant-protecting agent. However, the molecular and cellular modes of action of chitosan treatment are not yet understood. In this study, transcriptional changes in chitosan-treated potato leaves were investigated via RNA sequencing. Leaves treated with a well-defined chitosan polymer at low concentration were harvested 2 and 5 h after treatment and their expression profile was compared against water-treated control plants. We observed 32 differentially expressed genes (fold change ≥ 1; p-value ≤ 0.05) 2 h after treatment and 83 differentially expressed genes 5 h after treatment. Enrichment analysis mainly revealed gene modulation associated with electron transfer chains in chloroplasts and mitochondria, accompanied by the upregulation of only a very limited number of genes directly related to defense. As chitosan positively influences plant growth, yield, and resistance, we conclude that activation of electron transfer might result in the crosstalk of different organelles via redox signals to activate immune responses in preparation for pathogen attack, concomitantly resulting in a generally improved metabolic state, fostering plant growth and development. This conclusion is supported by the rapid and transient production of reactive oxygen species in a typical oxidative burst in the potato leaves upon chitosan treatment. This study furthers our knowledge on the mode of action of chitosan as a plant-protecting agent, as a prerequisite for improving its ability to replace or reduce the use of less environmentally friendly agro-chemicals.
Collapse
Affiliation(s)
| | - Bruno M. Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Ratna Singh
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| |
Collapse
|
50
|
Chitosan-based particulate systems for drug and vaccine delivery in the treatment and prevention of neglected tropical diseases. Drug Deliv Transl Res 2020; 10:1644-1674. [PMID: 32588282 DOI: 10.1007/s13346-020-00806-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neglected tropical diseases (NTDs) are a diverse group of infections which are difficult to prevent or control, affecting impoverished communities that are unique to tropical or subtropical regions. In spite of the low number of drugs that are currently used for the treatment of these diseases, progress on new drug discovery and development for NTDs is still very limited. Therefore, strategies on the development of new delivery systems for current drugs have been the main focus of formulators to provide improved efficacy and safety. In recent years, particulate delivery systems at micro- and nanosize, including polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, metallic nanoparticles, and nanoemulsions, have been widely investigated in the treatment and control of NTDs. Among these polymers used for the preparation of such systems is chitosan, which is a marine biopolymer obtained from the shells of crustaceans. Chitosan has been investigated as a delivery system due to the versatility of its physicochemical properties as well as bioadhesive and penetration-enhancing properties. Furthermore, chitosan can be also used to improve treatment due to its bioactive properties such as antimicrobial, tissue regeneration, etc. In this review, after giving a brief introduction to neglected diseases and particulate systems developed for the treatment and control of NTDs, the chitosan-based systems will be described in more detail and the recent studies on these systems will be reviewed. Graphical abstract.
Collapse
|