1
|
Wang Z, Liu Y, Kuang S, Yang Y. Selective Hydroformylation of 1,3-Butadiene to Adipic Aldehyde Enabled by a Ligand-Relay Catalysis. J Org Chem 2024; 89:18504-18510. [PMID: 39652077 DOI: 10.1021/acs.joc.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The hydroformylation of 1,3-butadiene for the selective synthesis of adipic aldehyde (AA) has been a long-standing challenge due to its intricate reaction network, resulting in low reaction efficiency and poor chemo- and regioselectivity. Herein, we propose a dual ligand-relay catalysis strategy for the selective hydroformylation of 1,3-butadiene to an AA. This strategy entails a one-pot and two-step process, commencing with a Rh-catalyzed 1,3-butadiene hydroformylation, followed by Rh-catalyzed isomerizing hydroformylation. The reaction is facilitated by using two distinct biphosphites as auxiliary ligands, each with a specific individual role in the process. Remarkably, an unprecedented chemo- and regioselectivity of up to 65.9% toward AA was achieved with complete conversion of 1,3-butadiene, marking the highest value compared to the previous state-of-the-art catalyst systems thus far. Furthermore, the process also produced a 26.5% selectivity for n-valeraldehyde as the major byproduct, a key compound of industrial importance. This study therefore represents a significant advancement in the hydroformylation of 1,3-butadiene, showcasing the potential of this ligand-relay catalysis strategy for improving selectivity in the reaction.
Collapse
Affiliation(s)
- Zhaozhan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266001, China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Yifan Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266001, China
| | - Yong Yang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
2
|
Shi K, Li JM, Wang MQ, Zhang YK, Zhang ZJ, Chen Q, Hollmann F, Xu JH, Yu HL. Computation-driven redesign of an NRPS-like carboxylic acid reductase improves activity and selectivity. SCIENCE ADVANCES 2024; 10:eadp6775. [PMID: 39612335 PMCID: PMC11606446 DOI: 10.1126/sciadv.adp6775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Engineering nonribosomal peptide synthetases (NRPSs) has been a "holy grail" in synthetic biology due to their modular nature and limited understanding of catalytic mechanisms. Here, we reported a computational redesign of the "gate-keeper" adenylation domain of the model NRPS-like enzyme carboxylic acid reductases (CARs) by using approximate mechanism-based geometric criteria and the Rosetta energy score. Notably, MabCAR3 mutants ACA-1 and ACA-4 displayed a remarkable improvement in catalytic efficiency (kcat/KM) for 6-aminocaproic acid, up to 101-fold. Furthermore, G418K exhibited an 86-fold enhancement in substrate specificity for adipic acid compared to 6-aminocaproic acid. Our work provides not only promising biocatalysts for nylon monomer biosynthesis but also a strategy for efficient NRPSs engineering.
Collapse
Affiliation(s)
- Kun Shi
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Ju-Mou Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Mu-Qiang Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Yi-Ke Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Frank Hollmann
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, Netherlands
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| |
Collapse
|
3
|
Wang T, Ye P, Xu X, Lu M, Zhang X, Li N. Metabolic engineering combined with site-directed saturated mutations of α-keto acid decarboxylase for efficient production of 6-aminocaproic acid and 1,6-hexamethylenediamine. Biotechnol Bioeng 2024; 121:3329-3337. [PMID: 38956978 DOI: 10.1002/bit.28795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
6-Aminocaproic acid (6ACA) and 1,6-hexamethylenediamine (HMDA) are key precursors for nylon synthesis, and both are produced using petroleum-based chemical processes. However, the utilization of bio-based raw materials for biological production of monomers is crucial for nylon industry. In this study, we demonstrated that metabolic engineering of Escherichia coli and selected mutations of α-keto acid decarboxylase successfully synthesized 6ACA and HMDA. An artificial iterative cycle from l-lysine to chain-extended α-ketoacids was introduced into Escherichia coli BL21 (DE3). Then, the extended α-ketoacids were decarboxylated and oxidized for 6ACA production. Overexpression of catalase (KatE) combined with the site-directed mutations of α-isopropylmalate synthase (LeuA) contributed synergistic enhancement effect on synthesis of 6ACA, resulting in a 1.3-fold increase in 6ACA titer. Selected mutations in α-keto acid decarboxylase (KivD) improved its specificity and 170.00 ± 5.57 mg/L of 6ACA with a yield of 0.13 mol/mol (6ACA/l-lysine hydrochloride) was achieved by shake flask cultivation of the engineered strain with the KivD# (F381Y/V461I). Meanwhile, the engineered E. coli could accumulate 84.67 ± 4.04 mg/L of HMDA with a yield of 0.08 mol/mol (HMDA/l-lysine hydrochloride) by replacing aldehyde dehydrogenase with bi-aminotransferases. This achievement marks a significant advancement in the biological synthesis of 6-carbon compounds, since the biosynthetic pathways of HMDA are rarely identified.
Collapse
Affiliation(s)
- Tiantian Wang
- Innovation Center for Textile Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China
| | - Pan Ye
- Innovation Center for Textile Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China
| | - Xue Xu
- Innovation Center for Textile Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China
| | - Mengqing Lu
- Innovation Center for Textile Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China
| | - Xinyu Zhang
- Innovation Center for Textile Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China
| | - Naiqiang Li
- Innovation Center for Textile Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Xiao K, Wang D, Liu X, Kang Y, Luo R, Hu L, Peng Z. Novel Bioproduction of 1,6-Hexamethylenediamine from l-Lysine Based on an Artificial One-Carbon Elongation Cycle. ACS OMEGA 2024; 9:40970-40979. [PMID: 39372007 PMCID: PMC11447709 DOI: 10.1021/acsomega.4c06289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
1,6-hexamethylenediamine (HMD) is an important precursor for nylon-66 material synthesis, while research on the bioproduction of HMD has been relatively scarce in scientific literature. As concerns about climate change, environmental pollution, and the depletion of fossil fuel reserves continue to grow, the significance of producing fundamental chemicals from renewable sources is becoming increasingly prominent. In recent investigations, the bioproduction of HMD from adipic acid has been reported but with lingering challenges concerning costly raw materials and low yields. Here, we have undertaken the reconstruction of the HMD synthetic pathway within Escherichia coli, which was constituted with l-lysine α-oxidase (Raip), LeuABCD, α-ketoacid decarboxylase (KivD), and transaminases (Vfl), leveraging a carbon chain extension module and a metabolic pathway of transaminase-decarboxylase cascade catalysis within the strain WD20, which successfully produce 46.7 ± 2.0 mg/L HMD. To increase the cascade activity and create a higher tolerance to external environmental disturbance for l-lysine to convert into HMD, another two enzymes d-alanine aminotransferase (Dat) and alpha-ketoacid decarboxylase (KdcA) were introduced into WD21 to provide flux flexibility for α-ketoacid metabolization, which was named "Smart-net metabolic engineering" in our research, and high-efficiency synthesis of HMD utilizing l-lysine as the substrate has been successfully achieved. Finally, we established a + 1C bioconversion multienzyme cascade catalyzing up to 65% conversion of l-lysine to HMD. Notably, our fermentation process yielded an impressive 213.5 ± 8.7 mg/L, representing the highest reported yield to date for the bioproduction of HMD from l-lysine.
Collapse
Affiliation(s)
- Kaixing Xiao
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Dan Wang
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xuemei Liu
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Yaqi Kang
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Ruoshi Luo
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Lin Hu
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Zhiyao Peng
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
5
|
Kim YC, Yoo HW, Park BG, Sarak S, Hahn JS, Kim BG, Yun H. One-Pot Biocatalytic Route from Alkanes to α,ω-Diamines by Whole-Cell Consortia of Engineered Yarrowia lipolytica and Escherichia coli. ACS Synth Biol 2024; 13:2188-2198. [PMID: 38912892 DOI: 10.1021/acssynbio.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Metabolically engineered microbial consortia can contribute as a promising production platform for the supply of polyamide monomers. To date, the biosynthesis of long-chain α,ω-diamines from n-alkanes is challenging because of the inert nature of n-alkanes and the complexity of the overall synthesis pathway. We combined an engineered Yarrowia lipolytica module with Escherichia coli modules to obtain a mixed strain microbial consortium that could catalyze an efficient biotransformation of n-alkanes into corresponding α,ω-diamines. The engineered Y. lipolytica strain was constructed (YALI10) wherein the two genes responsible for β-oxidation and the five genes responsible for the overoxidation of fatty aldehydes were deleted. This newly constructed YALI10 strain expressing transaminase (TA) could produce 0.2 mM 1,12-dodecanediamine (40.1 mg/L) from 10 mM n-dodecane. The microbial consortia comprising engineered Y. lipolytica strains for the oxidation of n-alkanes (OM) and an E. coli amination module (AM) expressing an aldehyde reductase (AHR) and transaminase (TA) improved the production of 1,12-diamine up to 1.95 mM (391 mg/L) from 10 mM n-dodecane. Finally, combining the E. coli reduction module (RM) expressing a carboxylic acid reductase (CAR) and an sfp phosphopantetheinyl transferase with OM and AM further improved the production of 1,12-diamine by catalyzing the reduction of undesired 1,12-diacids into 1,12-diols, which further undergo amination to give 1,12-diamine as the target product. This newly constructed mixed strain consortium comprising three modules in one pot gave 4.1 mM (41%; 816 mg/L) 1,12-diaminododecane from 10 mM n-dodecane. The whole-cell consortia reported herein present an elegant "greener" alternative for the biosynthesis of various α,ω-diamines (C8, C10, C12, and C14) from corresponding n-alkanes.
Collapse
Affiliation(s)
- Ye Chan Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Hee-Wang Yoo
- Manufacfuring development, Pyeongtaek plant, Hanmi Pharm. Co., Pyeontaek 17118, South Korea
| | - Beom Gi Park
- CutisBio Co., Ltd., 8F Apgujeong B/D, 842 Nonhyeon-ro, Gangnam-gu, Seoul 08826, South Korea
| | - Sharad Sarak
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Saint Paul campus, Saint Paul, Minnesota 55108, United States of America
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
6
|
Ni P, Gao C, Wu J, Song W, Li X, Wei W, Chen X, Liu L. Production of 1,4-Butanediol from Succinic Acid Using Escherichia Coli Whole-Cell Catalysis. Chembiochem 2024:e202400142. [PMID: 38742957 DOI: 10.1002/cbic.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The widespread attention towards 1,4-butanediol (BDO) as a key chemical raw material stems from its potential in producing biodegradable plastics. However, the efficiency of its biosynthesis via current bioprocesses is limited. In this study, a dual-pathway approach for 1,4-BDO production from succinic acid was developed. Specifically, a double-enzyme catalytic pathway involving carboxylic acid reductase and ethanol dehydrogenase was proposed. Optimization of the expression levels of the pathway enzymes led to a significant 318 % increase in 1,4-BDO titer. Additionally, the rate-limiting enzyme MmCAR was engineered to enhance the kcat/KM values by 50 % and increase 1,4-BDO titer by 46.7 %. To address cofactor supply limitations, an NADPH and ATP cycling system was established, resulting in a 48.9 % increase in 1,4-BDO production. Ultimately, after 48 hours, 1,4-BDO titers reached 201 mg/L and 1555 mg/L in shake flask and 5 L fermenter, respectively. This work represents a significant advancement in 1,4-BDO synthesis from succinic acid, with potential applications in the organic chemical and food industries.
Collapse
Affiliation(s)
- Ping Ni
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomin Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| |
Collapse
|
7
|
Hua W, Liang B, Zhou S, Zhang Q, Xu S, Chen K, Wang X. An integrated cofactor and co-substrate recycling pathway for the biosynthesis of 1,5-pentanediol. Microb Cell Fact 2024; 23:132. [PMID: 38711050 DOI: 10.1186/s12934-024-02408-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND 1,5-pentanediol (1,5-PDO) is a linear diol with an odd number of methylene groups, which is an important raw material for polyurethane production. In recent years, the chemical methods have been predominantly employed for synthesizing 1,5-PDO. However, with the increasing emphasis on environmentally friendly production, it has been a growing interest in the biosynthesis of 1,5-PDO. Due to the limited availability of only three reported feasible biosynthesis pathways, we developed a new biosynthetic pathway to form a cell factory in Escherichia coli to produce 1,5-PDO. RESULTS In this study, we reported an artificial pathway for the synthesis of 1,5-PDO from lysine with an integrated cofactor and co-substrate recycling and also evaluated its feasibility in E.coli. To get through the pathway, we first screened aminotransferases originated from different organisms to identify the enzyme that could successfully transfer two amines from cadaverine, and thus GabT from E. coli was characterized. It was then cascaded with lysine decarboxylase and alcohol dehydrogenase from E. coli to achieve the whole-cell production of 1,5-PDO from lysine. To improve the whole-cell activity for 1,5-PDO production, we employed a protein scaffold of EutM for GabT assembly and glutamate dehydrogenase was also validated for the recycling of NADPH and α-ketoglutaric acid (α-KG). After optimizing the cultivation and bioconversion conditions, the titer of 1,5-PDO reached 4.03 mM. CONCLUSION We established a novel pathway for 1,5-PDO production through two consecutive transamination reaction from cadaverine, and also integrated cofactor and co-substrate recycling system, which provided an alternative option for the biosynthesis of 1,5-PDO.
Collapse
Affiliation(s)
| | - Bo Liang
- Nanjing Tech University, Nanjing, China
| | | | | | - Shuang Xu
- Nanjing Tech University, Nanjing, China
| | | | - Xin Wang
- Nanjing Tech University, Nanjing, China.
| |
Collapse
|
8
|
Agosto-Maldonado A, Guo J, Niu W. Engineering carboxylic acid reductases and unspecific peroxygenases for flavor and fragrance biosynthesis. J Biotechnol 2024; 385:1-12. [PMID: 38428504 PMCID: PMC11062483 DOI: 10.1016/j.jbiotec.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Emerging consumer demand for safer, more sustainable flavors and fragrances has created new challenges for the industry. Enzymatic syntheses represent a promising green production route, but the broad application requires engineering advancements for expanded diversity, improved selectivity, and enhanced stability to be cost-competitive with current methods. This review discusses recent advances and future outlooks for enzyme engineering in this field. We focus on carboxylic acid reductases (CARs) and unspecific peroxygenases (UPOs) that enable selective productions of complex flavor and fragrance molecules. Both enzyme types consist of natural variants with attractive characteristics for biocatalytic applications. Applying protein engineering methods, including rational design and directed evolution in concert with computational modeling, present excellent examples for property improvements to unleash the full potential of enzymes in the biosynthesis of value-added chemicals.
Collapse
Affiliation(s)
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.
| |
Collapse
|
9
|
Gopal MR, Kunjapur AM. Harnessing biocatalysis to achieve selective functional group interconversion of monomers. Curr Opin Biotechnol 2024; 86:103093. [PMID: 38417202 DOI: 10.1016/j.copbio.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
Polymeric materials are ubiquitous to modern life. However, reliance of petroleum for polymeric building blocks is not sustainable. The synthesis of macromolecules from recalcitrant polymer waste feedstocks, such as plastic waste and lignocellulosic biomass, presents an opportunity to bypass the use of petroleum-based feedstocks. However, the deconstruction and transformation of these alternative feedstocks remained limited until recently. Herein, we highlight examples of monomers liberated from the deconstruction of recalcitrant polymers, and more extensively, we showcase the state-of-the-art in biocatalytic technologies that are enabling synthesis of diverse upcycled monomeric starting materials for a wide variety of macromolecules. Overall, this review emphasizes the importance of functional group interconversion as a promising strategy by which biocatalysis can aid the diversification and upcycling of monomers.
Collapse
Affiliation(s)
- Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Center for Plastics Innovation, University of Delaware, Newark, DE, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Center for Plastics Innovation, University of Delaware, Newark, DE, USA.
| |
Collapse
|
10
|
Li JM, Shi K, Li AT, Zhang ZJ, Yu HL, Xu JH. Development of a Thermodynamically Favorable Multi-enzyme Cascade Reaction for Efficient Sustainable Production of ω-Amino Fatty Acids and α,ω-Diamines. CHEMSUSCHEM 2024; 17:e202301477. [PMID: 38117609 DOI: 10.1002/cssc.202301477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/25/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Aliphatic ω-amino fatty acids (ω-AFAs) and α,ω-diamines (α,ω-DMs) are essential monomers for the production of nylons. Development of a sustainable biosynthesis route for ω-AFAs and α,ω-DMs is crucial in addressing the challenges posed by climate change. Herein, we constructed an unprecedented thermodynamically favorable multi-enzyme cascade (TherFavMEC) for the efficient sustainable biosynthesis of ω-AFAs and α,ω-DMs from cheap α,ω-dicarboxylic acids (α,ω-DAs). This TherFavMEC was developed by incorporating bioretrosynthesis analysis tools, reaction Gibbs free energy calculations, thermodynamic equilibrium shift strategies and cofactor (NADPH&ATP) regeneration systems. The molar yield of 6-aminohexanoic acid (6-ACA) from adipic acid (AA) was 92.3 %, while the molar yield from 6-ACA to 1,6-hexanediamine (1,6-HMD) was 96.1 %, which were significantly higher than those of previously reported routes. Furthermore, the biosynthesis of ω-AFAs and α,ω-DMs from 20.0 mM α,ω-DAs (C6-C9) was also performed, giving 11.2 mM 1,6-HMD (56.0 % yield), 14.8 mM 1,7-heptanediamine (74.0 % yield), 17.4 mM 1,8-octanediamine (87.0 % yield), and 19.7 mM 1,9-nonanediamine (98.5 % yield), respectively. The titers of 1,9-nonanediamine, 1,8-octanediamine, 1,7-heptanediamine and 1,6-HMD were improved by 328-fold, 1740-fold, 87-fold and 3.8-fold compared to previous work. Therefore, this work holds great potential for the bioproduction of ω-AFAs and α,ω-DMs.
Collapse
Affiliation(s)
- Ju-Mou Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Kun Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, P.R. China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
11
|
Nain P, Dickey RM, Somasundaram V, Sulzbach M, Kunjapur AM. Reductive amination cascades in cell-free and resting whole cell formats for valorization of lignin deconstruction products. Biotechnol Bioeng 2024; 121:593-604. [PMID: 37986639 PMCID: PMC10872919 DOI: 10.1002/bit.28604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/22/2023] [Indexed: 11/22/2023]
Abstract
The selective introduction of amine groups within deconstruction products of lignin could provide an avenue for valorizing waste biomass while achieving a green synthesis of industrially relevant building blocks from sustainable sources. Here, we built and characterized enzyme cascades that create aldehydes and subsequently primary amines from diverse lignin-derived carboxylic acids using a carboxylic acid reductase (CAR) and an ω-transaminase (TA). Unlike previous studies that have paired CAR and TA enzymes, here we examine multiple homologs of each of these enzymes and a broader set of candidate substrates. In addition, we compare the performance of these systems in cell-free and resting whole-cell biocatalysis formats using the conversion of vanillate to vanillyl amine as model chemistry. We also demonstrate that resting whole cells can be recycled for multiple batch reactions. We used the knowledge gained from this study to produce several amines from carboxylic acid precursors using one-pot biocatalytic reactions, several of which we report for the first time. These results expand our knowledge of these industrially relevant enzyme families to new substrates and contexts for environmentally friendly and potentially low-cost synthesis of diverse aryl aldehydes and amines.
Collapse
Affiliation(s)
- Priyanka Nain
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Roman M. Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Vishal Somasundaram
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Morgan Sulzbach
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Aditya M. Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
12
|
Min Lee S, Young Lee J, Hahn JS, Baek SH. Engineering of Yarrowia lipolytica as a platform strain for producing adipic acid from renewable resource. BIORESOURCE TECHNOLOGY 2024; 391:129920. [PMID: 37931767 DOI: 10.1016/j.biortech.2023.129920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
There is an increasing demand for bio-based dicarboxylic acids (DCA) as an eco-friendly alternatives to chemically synthesized DCA. Adipic acid, which is not naturally produced by microorganisms, is an essential DCA with significant industrial importance. This study aimed to develop a platform strain using Yarrowia lipolytica for efficient bioconversion of renewable resources into adipic acid. To prevent the complete oxidation of adipic acid, peroxisomal β-oxidation was engineered by selectively disrupting acyl-CoA oxidases. Furthermore, ω-oxidation activity was improved via introducing an additional copy of cytochrome P450 monooxygenase (ALK5) and reductase (CPR1) with fatty alcohol oxidase (FAO1). The production phase used SP92D medium in a two-stage bioconversion process, during which the engineered strain exhibited the highest production level, achieving a remarkable 9.7-fold increase compared to that of the parental strain. To our knowledge, this is the first report demonstrating that engineered Y. lipolytica can produce adipic acid from fatty acid methyl esters.
Collapse
Affiliation(s)
- Sang Min Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Ji-Sook Hahn
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Ho Baek
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| |
Collapse
|
13
|
Choi SY, Lee Y, Yu HE, Cho IJ, Kang M, Lee SY. Sustainable production and degradation of plastics using microbes. Nat Microbiol 2023; 8:2253-2276. [PMID: 38030909 DOI: 10.1038/s41564-023-01529-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Plastics are indispensable in everyday life and industry, but the environmental impact of plastic waste on ecosystems and human health is a huge concern. Microbial biotechnology offers sustainable routes to plastic production and waste management. Bacteria and fungi can produce plastics, as well as their constituent monomers, from renewable biomass, such as crops, agricultural residues, wood and organic waste. Bacteria and fungi can also degrade plastics. We review state-of-the-art microbial technologies for sustainable production and degradation of bio-based plastics and highlight the potential contributions of microorganisms to a circular economy for plastics.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Hye Eun Yu
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Minju Kang
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea.
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea.
- BioInformatics Research Center, KAIST, Daejeon, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
14
|
Shen Q, Zhang SJ, Xu BH, Chen ZY, Peng F, Xiong N, Xue YP, Zheng YG. Semirational engineering of Cytophaga hutchinsonii polyphosphate kinase for developing a cost-effective, robust, and efficient adenosine 5'-triphosphate regeneration system. Appl Environ Microbiol 2023; 89:e0110623. [PMID: 37902313 PMCID: PMC10686093 DOI: 10.1128/aem.01106-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The adenosine 5'-triphosphate (ATP) regeneration system can significantly reduce the cost of many biocatalytic processes. Numerous studies have endeavored to utilize the ATP regeneration system based on Cytophaga hutchinsonii PPK (ChPPK). However, the wild-type ChPPK enzyme possesses limitations such as low enzymatic activity, poor stability, and limited substrate tolerance, impeding its application in catalytic reactions. To enhance the performance of ChPPK, we employed a semi-rational design approach to obtain the variant ChPPK/A79G/S106C/I108F/L285P. The enzymatic kinetic parameters and the catalytic performance in the synthesis of nicotinamide mononucleotide demonstrated that the variant ChPPK/A79G/S106C/I108F/L285P exhibited superior enzymatic properties than the wild-type enzyme. All data indicated that our engineered ATP regeneration system holds inherent potential for implementation in biocatalytic processes.
Collapse
Affiliation(s)
- Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Shi-Jia Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Bin-Hui Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Yu Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Feng Peng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Neng Xiong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
15
|
Grandi E, Feyza Özgen F, Schmidt S, Poelarends GJ. Enzymatic Oxy- and Amino-Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angew Chem Int Ed Engl 2023; 62:e202309012. [PMID: 37639631 DOI: 10.1002/anie.202309012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fatma Feyza Özgen
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
16
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
17
|
Gao H, Li M, Wang Q, Liu T, Zhang X, Yang T, Xu M, Rao Z. A high-throughput dual system to screen polyphosphate kinase mutants for efficient ATP regeneration in L-theanine biocatalysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:122. [PMID: 37537682 PMCID: PMC10401862 DOI: 10.1186/s13068-023-02361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/22/2023] [Indexed: 08/05/2023]
Abstract
ATP, an important cofactor, is involved in many biocatalytic reactions that require energy. Polyphosphate kinases (PPK) can provide energy for ATP-consuming reactions due to their cheap and readily available substrate polyphosphate. We determined the catalytic properties of PPK from different sources and found that PPK from Cytophaga hutchinsonii (ChPPK) had the best catalytic activity for the substrates ADP and polyP6. An extracellular-intracellular dual system was constructed to high-throughput screen for better catalytic activity of ChPPK mutants. Finally, the specific activity of ChPPKD82N-K103E mutant was increased by 4.3 times. Therefore, we focused on the production of L-theanine catalyzed by GMAS as a model of ATP regeneration. Supplying 150 mM ATP, GMAS enzyme could produce 16.8 ± 1.3 g/L L-theanine from 100 mM glutamate. When 5 mM ATP and 5 U/mL ChPPKD82N-K103E were added, the yield of L-theanine was 16.6 ± 0.79 g/L with the conversion rate of 95.6 ± 4.5% at 4 h. Subsequently, this system was scaled up to 200 mM and 400 mM glutamate, resulting in the yields of L-theanine for 32.3 ± 1.6 g/L and 62.7 ± 1.1 g/L, with the conversion rate of 92.8 ± 4.6% and 90.1 ± 1.6%, respectively. In addition, we also constructed an efficient ATP regeneration system from glutamate to glutamine, and 13.8 ± 0.2 g/L glutamine was obtained with the conversion rate of 94.4 ± 1.4% in 4 h after adding 6 U/ mL GS enzyme and 5 U/ mL ChPPKD82N-K103E, which further laid the foundation from glutamine to L-theanine catalyzed by GGT enzyme. This proved that giving the reaction an efficient ATP supply driven by the mutant enzyme enhanced the conversion rate of substrate to product and maximized the substrate value. This is a positively combination of high yield, high conversion rate and high economic value of enzyme catalysis. The mutant enzyme will further power the ATP-consuming biocatalytic reaction platform sustainably.
Collapse
Affiliation(s)
- Hui Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Mengxuan Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Qing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Tingting Liu
- Yantai Shinho Enterprise Foods Co., Ltd., Yantai, 265503, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
18
|
Zhou D, Wu F, Peng Y, Qazi MA, Li R, Wang Y, Wang Q. Multi-step biosynthesis of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid from glucose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:92. [PMID: 37264438 DOI: 10.1186/s13068-023-02350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND 2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudoaromatic dicarboxylic acid, represents a promising building block for the manufacture of biodegradable polyesters. Microbial production of PDC has been extensively investigated, but low titers and yields have limited industrial applications. RESULTS In this study, a multi-step biosynthesis strategy for the microbial production of PDC was demonstrated using engineered Escherichia coli whole-cell biocatalysts. The PDC biosynthetic pathway was first divided into three synthetic modules, namely the 3-dehydroshikimic acid (DHS) module, the protocatechuic acid (PCA) module and the PDC module. Several effective enzymes, including 3-dehydroshikimate dehydratase for the PCA module as well as protocatechuate 4,5-dioxygenase and 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase for the PDC module were isolated and characterized. Then, the highly efficient whole-cell bioconversion systems for producing PCA and PDC were constructed and optimized, respectively. Finally, the efficient multi-step biosynthesis of PDC from glucose was achieved by smoothly integrating the above three biosynthetic modules, resulting in a final titer of 49.18 g/L with an overall 27.2% molar yield, which represented the highest titer for PDC production from glucose reported to date. CONCLUSIONS This study lays the foundation for the microbial production of PDC, including one-step de novo biosynthesis from glucose as well as the microbial transformation of monoaromatics.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Fengli Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Yanfeng Peng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Muneer Ahmed Qazi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, 66020, Sindh, Pakistan
| | - Ruosong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yongzhong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
19
|
Shi K, Li JM, Zhang ZJ, Chen Q, Xu JH, Yu HL. Virtual screening of carboxylic acid reductases for biocatalytic synthesis of 6-aminocaproic acid and 1,6-hexamethylenediamine. Biotechnol Bioeng 2023. [PMID: 37130074 DOI: 10.1002/bit.28408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 05/03/2023]
Abstract
The key precursors for nylon synthesis, that is, 6-aminocaproic acid (6-ACA) and 1,6-hexamethylenediamine (HMD), are produced from petroleum-based feedstocks. A sustainable biocatalytic alternative method from bio-based adipic acid has been demonstrated recently. However, the low efficiency and specificity of carboxylic acid reductases (CARs) used in the process hampers its further application. Herein, we describe a highly accurate protein structure prediction-based virtual screening method for the discovery of new CARs, which relies on near attack conformation frequency and the Rosetta Energy Score. Through virtual screening and functional detection, five new CARs were selected, each with a broad substrate scope and the highest activities toward various di- and ω-aminated carboxylic acids. Compared with the reported CARs, KiCAR was highly specific with regard to adipic acid without detectable activity to 6-ACA, indicating a potential for 6-ACA biosynthesis. In addition, MabCAR3 had a lower Km with regard to 6-ACA than the previously validated CAR MAB4714, resulting in twice conversion in the enzymatic cascade synthesis of HMD. The present work highlights the use of structure-based virtual screening for the rapid discovery of pertinent new biocatalysts.
Collapse
Affiliation(s)
- Kun Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ju-Mou Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Tan Z, Li J, Hou J, Gonzalez R. Designing artificial pathways for improving chemical production. Biotechnol Adv 2023; 64:108119. [PMID: 36764336 DOI: 10.1016/j.biotechadv.2023.108119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Metabolic engineering exploits manipulation of catalytic and regulatory elements to improve a specific function of the host cell, often the synthesis of interesting chemicals. Although naturally occurring pathways are significant resources for metabolic engineering, these pathways are frequently inefficient and suffer from a series of inherent drawbacks. Designing artificial pathways in a rational manner provides a promising alternative for chemicals production. However, the entry barrier of designing artificial pathway is relatively high, which requires researchers a comprehensive and deep understanding of physical, chemical and biological principles. On the other hand, the designed artificial pathways frequently suffer from low efficiencies, which impair their further applications in host cells. Here, we illustrate the concept and basic workflow of retrobiosynthesis in designing artificial pathways, as well as the most currently used methods including the knowledge- and computer-based approaches. Then, we discuss how to obtain desired enzymes for novel biochemistries, and how to trim the initially designed artificial pathways for further improving their functionalities. Finally, we summarize the current applications of artificial pathways from feedstocks utilization to various products synthesis, as well as our future perspectives on designing artificial pathways.
Collapse
Affiliation(s)
- Zaigao Tan
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian Li
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ramon Gonzalez
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
21
|
Butler ND, Anderson SR, Dickey RM, Nain P, Kunjapur AM. Combinatorial gene inactivation of aldehyde dehydrogenases mitigates aldehyde oxidation catalyzed by E. coli resting cells. Metab Eng 2023; 77:294-305. [PMID: 37100193 DOI: 10.1016/j.ymben.2023.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
Aldehydes are attractive chemical targets both as end products in the flavors and fragrances industry and as intermediates due to their propensity for C-C bond formation. Here, we identify and address unexpected oxidation of a model collection of aromatic aldehydes, including many that originate from biomass degradation. When diverse aldehydes are supplemented to E. coli cells grown under aerobic conditions, as expected they are either reduced by the wild-type MG1655 strain or stabilized by a strain engineered for reduced aromatic aldehyde reduction (the E. coli RARE strain). Surprisingly, when these same aldehydes are supplemented to resting cell preparations of either E. coli strain, under many conditions we observe substantial oxidation. By performing combinatorial inactivation of six candidate aldehyde dehydrogenase genes in the E. coli genome using multiplexed automatable genome engineering (MAGE), we demonstrate that this oxidation can be substantially slowed, with greater than 50% retention of 6 out of 8 aldehydes when assayed 4 h after their addition. Given that our newly engineered strain exhibits reduced oxidation and reduction of aromatic aldehydes, we dubbed it the E. coli ROAR strain. We applied the new strain to resting cell biocatalysis for two kinds of reactions - the reduction of 2-furoic acid to furfural and the condensation of 3-hydroxy-benzaldehyde and glycine to form a beta hydroxylated non-standard amino acid. In each case, we observed substantial improvements in product titer 20 h after reaction initiation (9-fold and 10-fold, respectively). Moving forward, the use of this strain to generate resting cells should allow aldehyde product isolation, further enzymatic conversion, or chemical reactivity under cellular contexts that better accommodate aldehyde toxicity.
Collapse
Affiliation(s)
- Neil D Butler
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Shelby R Anderson
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Roman M Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Priyanka Nain
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newar, DE, 19716, USA.
| |
Collapse
|
22
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology. Int J Biol Macromol 2023; 240:124526. [PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the enzymes' dynamics, mechanisms, and unique features. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
23
|
Laboratory evolution reveals general and specific tolerance mechanisms for commodity chemicals. Metab Eng 2023; 76:179-192. [PMID: 36738854 DOI: 10.1016/j.ymben.2023.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Although strain tolerance to high product concentrations is a barrier to the economically viable biomanufacturing of industrial chemicals, chemical tolerance mechanisms are often unknown. To reveal tolerance mechanisms, an automated platform was utilized to evolve Escherichia coli to grow optimally in the presence of 11 industrial chemicals (1,2-propanediol, 2,3-butanediol, glutarate, adipate, putrescine, hexamethylenediamine, butanol, isobutyrate, coumarate, octanoate, hexanoate), reaching tolerance at concentrations 60%-400% higher than initial toxic levels. Sequencing genomes of 223 isolates from 89 populations, reverse engineering, and cross-compound tolerance profiling were employed to uncover tolerance mechanisms. We show that: 1) cells are tolerized via frequent mutation of membrane transporters or cell wall-associated proteins (e.g., ProV, KgtP, SapB, NagA, NagC, MreB), transcription and translation machineries (e.g., RpoA, RpoB, RpoC, RpsA, RpsG, NusA, Rho), stress signaling proteins (e.g., RelA, SspA, SpoT, YobF), and for certain chemicals, regulators and enzymes in metabolism (e.g., MetJ, NadR, GudD, PurT); 2) osmotic stress plays a significant role in tolerance when chemical concentrations exceed a general threshold and mutated genes frequently overlap with those enabling chemical tolerance in membrane transporters and cell wall-associated proteins; 3) tolerization to a specific chemical generally improves tolerance to structurally similar compounds whereas a tradeoff can occur on dissimilar chemicals, and 4) using pre-tolerized starting isolates can hugely enhance the subsequent production of chemicals when a production pathway is inserted in many, but not all, evolved tolerized host strains, underpinning the need for evolving multiple parallel populations. Taken as a whole, this study provides a comprehensive genotype-phenotype map based on identified mutations and growth phenotypes for 223 chemical tolerant isolates.
Collapse
|
24
|
Kolitha BS, Jayasekara SK, Tannenbaum R, Jasiuk IM, Jayakody LN. Repurposing of waste PET by microbial biotransformation to functionalized materials for additive manufacturing. J Ind Microbiol Biotechnol 2023; 50:kuad010. [PMID: 37248049 PMCID: PMC10549213 DOI: 10.1093/jimb/kuad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Plastic waste is an outstanding environmental thread. Poly(ethylene terephthalate) (PET) is one of the most abundantly produced single-use plastics worldwide, but its recycling rates are low. In parallel, additive manufacturing is a rapidly evolving technology with wide-ranging applications. Thus, there is a need for a broad spectrum of polymers to meet the demands of this growing industry and address post-use waste materials. This perspective article highlights the potential of designing microbial cell factories to upcycle PET into functionalized chemical building blocks for additive manufacturing. We present the leveraging of PET hydrolyzing enzymes and rewiring the bacterial C2 and aromatic catabolic pathways to obtain high-value chemicals and polymers. Since PET mechanical recycling back to original materials is cost-prohibitive, the biochemical technology is a viable alternative to upcycle PET into novel 3D printing materials, such as replacements for acrylonitrile butadiene styrene. The presented hybrid chemo-bio approaches potentially enable the manufacturing of environmentally friendly degradable or higher-value high-performance polymers and composites and their reuse for a circular economy. ONE-SENTENCE SUMMARY Biotransformation of waste PET to high-value platform chemicals for additive manufacturing.
Collapse
Affiliation(s)
- Bhagya S Kolitha
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Sandhya K Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, the Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Iwona M Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
25
|
An interactive metabolic map of bio-based chemicals. Trends Biotechnol 2023; 41:10-14. [PMID: 35961799 DOI: 10.1016/j.tibtech.2022.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/27/2022]
Abstract
Metabolic engineering for the bio-based production of chemicals requires thorough understanding of metabolic reactions including enzymes, cofactors, reactants, and products. Here we present an interactive bio-based chemicals map that visualizes compounds, enzymes, and reaction pathways together with strategies for the production of chemicals by biological, chemical, and combined methods.
Collapse
|
26
|
Cho JS, Kim GB, Eun H, Moon CW, Lee SY. Designing Microbial Cell Factories for the Production of Chemicals. JACS AU 2022; 2:1781-1799. [PMID: 36032533 PMCID: PMC9400054 DOI: 10.1021/jacsau.2c00344] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 05/24/2023]
Abstract
The sustainable production of chemicals from renewable, nonedible biomass has emerged as an essential alternative to address pressing environmental issues arising from our heavy dependence on fossil resources. Microbial cell factories are engineered microorganisms harboring biosynthetic pathways streamlined to produce chemicals of interests from renewable carbon sources. The biosynthetic pathways for the production of chemicals can be defined into three categories with reference to the microbial host selected for engineering: native-existing pathways, nonnative-existing pathways, and nonnative-created pathways. Recent trends in leveraging native-existing pathways, discovering nonnative-existing pathways, and designing de novo pathways (as nonnative-created pathways) are discussed in this Perspective. We highlight key approaches and successful case studies that exemplify these concepts. Once these pathways are designed and constructed in the microbial cell factory, systems metabolic engineering strategies can be used to improve the performance of the strain to meet industrial production standards. In the second part of the Perspective, current trends in design tools and strategies for systems metabolic engineering are discussed with an eye toward the future. Finally, we survey current and future challenges that need to be addressed to advance microbial cell factories for the sustainable production of chemicals.
Collapse
Affiliation(s)
- Jae Sung Cho
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- BioProcess
Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Gi Bae Kim
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Hyunmin Eun
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Cheon Woo Moon
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- BioProcess
Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
27
|
Romero‐Fernandez M, Heckmann CM, Paradisi F. Biocatalytic Production of a Nylon 6 Precursor from Caprolactone in Continuous Flow. CHEMSUSCHEM 2022; 15:e202200811. [PMID: 35671069 PMCID: PMC9546309 DOI: 10.1002/cssc.202200811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Indexed: 06/07/2023]
Abstract
6-Aminocaproic acid (6ACA) is a key building block and an attractive precursor of caprolactam, which is used to synthesize nylon 6, one of the most common polymers manufactured nowadays. (Bio)-production of platform chemicals from renewable feedstocks is instrumental to tackle climate change and decrease fossil fuel dependence. Here, the cell-free biosynthesis of 6ACA from 6-hydroxycaproic acid was achieved using a co-immobilized multienzyme system based on horse liver alcohol dehydrogenase, Halomonas elongata transaminase, and Lactobacillus pentosus NADH oxidase for in-situ cofactor recycling, with >90 % molar conversion (m.c.) The integration of a step to synthesize hydroxy-acid from lactone by immobilized Candida antarctica lipase B resulted in >80 % m.c. of ϵ-caprolactone to 6ACA, >20 % of δ-valerolactone to 5-aminovaleric acid, and 30 % of γ-butyrolactone to γ-aminobutyric acid in one-pot batch reactions. Two serial packed-bed reactors were set up using these biocatalysts and applied to the continuous-flow synthesis of 6ACA from ϵ-caprolactone, achieving a space-time yield of up to 3.31 g6ACA h-1 L-1 with a segmented liquid/air flow for constant oxygen supply.
Collapse
Affiliation(s)
- Maria Romero‐Fernandez
- School of ChemistryUniversity of NottinghamUniversity ParkNG7 2RDNottinghamUnited Kingdom
| | - Christian M. Heckmann
- School of ChemistryUniversity of NottinghamUniversity ParkNG7 2RDNottinghamUnited Kingdom
| | - Francesca Paradisi
- School of ChemistryUniversity of NottinghamUniversity ParkNG7 2RDNottinghamUnited Kingdom
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
28
|
Castillo MI, Freire E, Romero VI, Arias-Almeida B, Reyes C, Hosomichi K. Novel Variation in Acyl-CoA Synthetase Long Chain Family Member 6 (ACSL6) Results in Protein Structural Modification and Multiple Non-Related Neoplasia in a 46-Year-Old: Case Report. Front Oncol 2022; 12:899579. [PMID: 35756649 PMCID: PMC9215171 DOI: 10.3389/fonc.2022.899579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple non-related neoplasia does not have an established approach or benefits for performing whole-exome sequencing (WES) analysis. We report on a 46-year-old woman who developed astrocytoma, thyroid, and breast cancer within 10 years. The WES analysis found a novel missense variant in the ACSL6 gene, and the protein modeling showed altered secondary and tertiary structures, which modify the binding to cofactors and substrates. ACSL6 is involved in lipid metabolism, expressed in the brain, thyroid, and breast tissues, and is associated with diverse types of cancer. Our study demonstrates the benefit of WES analysis compared with commercial panels in patients with non-related neoplasia.
Collapse
Affiliation(s)
| | - Erick Freire
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Vanessa I Romero
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Benjamín Arias-Almeida
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Carlos Reyes
- Departamento de Genetica, Hospital de Especialidades Eugenio Espejo, Quito, Ecuador
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
29
|
Winkler M, Ling JG. Biocatalytic carboxylate reduction – recent advances and new enzymes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Margit Winkler
- Technische Universitat Graz Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz AUSTRIA
| | - Jonathan Guyang Ling
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Department of Biological Sciences and Biotechnology 43600 Bangi MALAYSIA
| |
Collapse
|
30
|
Self-sufficient whole-cell biocatalysis for 3-(aminomethyl) pyridine synthesis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Aleku GA, Titchiner GR, Roberts GW, Derrington SR, Marshall JR, Hollfelder F, Turner NJ, Leys D. Enzymatic N-Allylation of Primary and Secondary Amines Using Renewable Cinnamic Acids Enabled by Bacterial Reductive Aminases. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:6794-6806. [PMID: 35634269 PMCID: PMC9131517 DOI: 10.1021/acssuschemeng.2c01180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Allylic amines are a versatile class of synthetic precursors of many valuable nitrogen-containing organic compounds, including pharmaceuticals. Enzymatic allylic amination methods provide a sustainable route to these compounds but are often restricted to allylic primary amines. We report a biocatalytic system for the reductive N-allylation of primary and secondary amines, using biomass-derivable cinnamic acids. The two-step one-pot system comprises an initial carboxylate reduction step catalyzed by a carboxylic acid reductase to generate the corresponding α,β-unsaturated aldehyde in situ. This is followed by reductive amination of the aldehyde catalyzed by a bacterial reductive aminase pIR23 or BacRedAm to yield the corresponding allylic amine. We exploited pIR23, a prototype bacterial reductive aminase, self-sufficient in catalyzing formal reductive amination of α,β-unsaturated aldehydes with various amines, generating a broad range of secondary and tertiary amines accessed in up to 94% conversion under mild reaction conditions. Analysis of products isolated from preparative reactions demonstrated that only selective hydrogenation of the C=N bond had occurred, preserving the adjacent alkene moiety. This process represents an environmentally benign and sustainable approach for the synthesis of secondary and tertiary allylic amine frameworks, using renewable allylating reagents and avoiding harsh reaction conditions. The selectivity of the system ensures that bis-allylation of the alkylamines and (over)reduction of the alkene moiety are avoided.
Collapse
Affiliation(s)
- Godwin A. Aleku
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Gabriel R. Titchiner
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - George W. Roberts
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Sasha R. Derrington
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - James R. Marshall
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Nicholas J. Turner
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - David Leys
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
32
|
Ngivprom U, Lasin P, Khunnonkwao P, Worakaensai S, Jantama K, Kamkaew A, Lai RY. Synthesis of nicotinamide mononucleotide from xylose via coupling engineered Escherichia coli and a biocatalytic cascade. Chembiochem 2022; 23:e202200071. [PMID: 35362650 DOI: 10.1002/cbic.202200071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Indexed: 11/08/2022]
Abstract
β-Nicotinamide mononucleotide (NMN) has recently gained attention for nutritional supplement because it is an intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD + ). In this study, we develop NMN synthesis by coupling two modules. The first module is to culture E. coli MG1655 ∆ tktA ∆ tktB ∆ ptsG to metabolize xylose to generate D -ribose in the medium. The supernatant containing D -ribose was applied in the second module which is composed of Ec RbsK- Ec PRPS- Cp NAMPT reaction to synthesize NMN, that requires additional enzymes of CHU0107 and Ec PPase to remove feedback inhibitors, ADP and pyrophosphate. The second module can be rapidly optimized by comparing NMN production determined by the cyanide assay. Finally, 10 mL optimal biocascade reaction generated NMN with good yield of 84% from 1 mM D -ribose supplied from the supernatant of E. coli MG1655 ∆ tktA ∆ tktB ∆ ptsG . Our results can further guide researchers to metabolically engineer E. coli for NMN synthesis.
Collapse
Affiliation(s)
| | - Praphapan Lasin
- Suranaree University of Technology, School of Chemistry, THAILAND
| | | | | | - Kaemwich Jantama
- Suranaree University of Technology, School of Biotechnology, THAILAND
| | - Anyanee Kamkaew
- Suranaree University of Technology, School of Chemistry, THAILAND
| | - Rung-Yi Lai
- Suranaree University of Technology, School of Chemistry, C2-414, 111 University Avenue, School of Chemistry, Institute of Science, 30000, Mueang, THAILAND
| |
Collapse
|
33
|
Wang N, Lin JY, Luo SH, Zhou YJ, Yang K, Chen RH, Yang GX, Wang ZY. Furanonyl amino acid derivatives as hemostatic drugs: design, synthesis and hemostasis performance. Amino Acids 2022; 54:989-999. [PMID: 35305164 DOI: 10.1007/s00726-022-03155-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
Using 3,4-dihalo-2(5H)-furanones and easily available hemostatic drugs, such as tranexamic acid (TA), 4-aminomethylbenzoic acid (ABA), aminocaproic acid (AA) as starting materials, serial multi-functional molecules 2(5H)-furanonyl amino acids are designed by the combination of different pharmacophores, and successfully synthesized by a transition metal-free Michael addition-elimination reaction. The reaction is carried out under mild conditions with ethanol-dichloromethane as solvent and only stirring at room temperature for 24 h, and the yield can be up to 91%. All products are well characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), high-resolution mass spectra (HRMS). Ten typical target compounds among them are selected out for the experiments of hemostasis performance by the evaluation of in vitro clot formation model and liver hemorrhage model. The test results show that, their hemostasis effect is better than the original drugs. Especially the target compound G, a TA derivative from 5-borneoloxy-3,4-dibromo-2(5H)-furanone, has the best hemostasis effect among all the tested compounds. These obtained target molecules are expected to be used as multi-functional hemostatic drugs.
Collapse
Affiliation(s)
- Neng Wang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jian-Yun Lin
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Shi-He Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China. .,Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, People's Republic of China. .,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China. .,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Yong-Jun Zhou
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Kai Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China. .,College of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China. .,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China. .,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Ren-Hong Chen
- Guangdong Food and Drug Vocational College, Guangzhou, 510520, People's Republic of China.
| | - Guo-Xian Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhao-Yang Wang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China. .,Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, People's Republic of China. .,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China. .,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
34
|
Jayakody LN, Chinmoy B, Turner TL. Trends in valorization of highly-toxic lignocellulosic biomass derived-compounds via engineered microbes. BIORESOURCE TECHNOLOGY 2022; 346:126614. [PMID: 34954359 DOI: 10.1016/j.biortech.2021.126614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 05/26/2023]
Abstract
Lignocellulosic biomass-derived fuels, chemicals, and materials are promising sustainable solutions to replace the current petroleum-based production. The direct microbial conversion of thermos-chemically pretreated lignocellulosic biomass is hampered by the presence of highly toxic chemical compounds. Also, thermo-catalytic upgrading of lignocellulosic biomass generates wastewater that contains heterogeneous toxic chemicals, a mixture of unutilized carbon. Metabolic engineering efforts have primarily focused on the conversion of carbohydrates in lignocellulose biomass; substantial opportunities exist to harness value from toxic lignocellulose-derived toxic compounds. This article presents the comprehensive metabolic routes and tolerance mechanisms to develop robust synthetic microbial cell factories to valorize the highly toxic compounds to advanced-platform chemicals. The obtained platform chemicals can be used to manufacture high-value biopolymers and biomaterials via a hybrid biochemical approach for replacing petroleum-based incumbents. The proposed strategy enables a sustainable bio-based materials economy by microbial biofunneling of lignocellulosic biomass-derived toxic molecules, an untapped biogenic carbon.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| | - Baroi Chinmoy
- Illinois Sustainable Technology Center, University of Illinois Urbana Champaign, IL, USA
| | - Timothy L Turner
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
35
|
Jeong J, Fujita K. Selective Synthesis of Bisdimethylamine Derivatives from Diols and an Aqueous Solution of Dimethylamine through Iridium‐Catalyzed Borrowing Hydrogen Pathway. ChemCatChem 2021. [DOI: 10.1002/cctc.202101499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jaeyoung Jeong
- Graduate School of Human and Environmental Studies Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Ken‐ichi Fujita
- Graduate School of Human and Environmental Studies Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
36
|
Wang L, Sun Y, Diao S, Jiang S, Wang H, Wei D. Rational hinge engineering of carboxylic acid reductase from Mycobacterium smegmatis enhances its catalytic efficiency in biocatalysis. Biotechnol J 2021; 17:e2100441. [PMID: 34862729 DOI: 10.1002/biot.202100441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Carboxylic acid reductases (CARs) represent useful tools for the production of aldehydes from ubiquitous organic carboxylic acids. However, the low catalytic efficiency of these enzymes hampers their application. METHODS Herein, a CAR originating from Mycobacterium smegmatis was redesigned through rational hinge engineering to enhance the catalytic efficiency. RESULTS Based on the unique domain architecture of CARs and their superfamily, a mutagenesis library of the hinge region was designed. The best mutant R505I/N506K showed a 6.57-fold improved catalytic efficiency. Molecular dynamics simulations showed the increased catalytic efficiency was due to the strong binding of the acyl-AMP complex with it. Meanwhile, the ε-nitrogen atom of Lys610 frequently interacted with the ribose-ring oxygen atom of the complex, the distance (d1) between them represents a great indicator for that. The d1 value was used as a nimble indicator to evaluate unexplored mutants of that region for enhanced activity by in silico mutational experiments. Overall, eight mutants were identified to show higher enhanced activity compared with wild-type enzyme and R505F/N506G showed the highest catalytic efficiency. CONCLUSION Altogether, the two-step strategy used here provided useful references for the engineering of CARs and other similar multiple-domain enzymes.
Collapse
Affiliation(s)
- Liuzhu Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yangyang Sun
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Shiqing Diao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Shuiqin Jiang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
37
|
Tavanti M, Hosford J, Lloyd RC, Brown MJB. Recent Developments and Challenges for the Industrial Implementation of Polyphosphate Kinases. ChemCatChem 2021. [DOI: 10.1002/cctc.202100688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Michele Tavanti
- Synthetic Biochemistry Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
- Early Chemical development Pharmaceutical Sciences, R&D AstraZeneca Astrazeneca PLC 1 Francis Crick Avenue Cambridge Biomedical Campus Cambridge CB20AA UK
| | - Joseph Hosford
- Synthetic Biochemistry Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Richard C. Lloyd
- Chemical Development Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Murray J. B. Brown
- Synthetic Biochemistry Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| |
Collapse
|
38
|
Liu Q, Xie X, Tang M, Tao W, Shi T, Zhang Y, Huang T, Zhao Y, Deng Z, Lin S. One-Pot Asymmetric Synthesis of an Aminodiol Intermediate of Florfenicol Using Engineered Transketolase and Transaminase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qi Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinyue Xie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mancheng Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanzhen Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yilei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
39
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
40
|
Wang Z, Sundara Sekar B, Li Z. Recent advances in artificial enzyme cascades for the production of value-added chemicals. BIORESOURCE TECHNOLOGY 2021; 323:124551. [PMID: 33360113 DOI: 10.1016/j.biortech.2020.124551] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Enzyme cascades are efficient tools to perform multi-step synthesis in one-pot in a green and sustainable manner, enabling non-natural synthesis of valuable chemicals from easily available substrates by artificially combining two or more enzymes. Bioproduction of many high-value chemicals such as chiral and highly functionalised molecules have been achieved by developing new enzyme cascades. This review summarizes recent advances on engineering and application of enzyme cascades to produce high-value chemicals (alcohols, aldehydes, ketones, amines, carboxylic acids, etc) from simple starting materials. While 2-step enzyme cascades are developed for versatile enantioselective synthesis, multi-step enzyme cascades are engineered to functionalise basic chemicals, such as styrenes, cyclic alkanes, and aromatic compounds. New cascade reactions have also been developed for producing valuable chemicals from bio-based substrates, such as ʟ-phenylalanine, and renewable feedstocks such as glucose and glycerol. The challenges in current process and future outlooks in the development of enzyme cascades are also addressed.
Collapse
Affiliation(s)
- Zilong Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
41
|
Sarak S, Sung S, Jeon H, Patil MD, Khobragade TP, Pagar AD, Dawson PE, Yun H. An Integrated Cofactor/Co-Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angew Chem Int Ed Engl 2021; 60:3481-3486. [PMID: 33140477 DOI: 10.1002/anie.202012658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 11/10/2022]
Abstract
We report a highly atom-efficient integrated cofactor/co-product recycling cascade employing cycloalkylamines as multifaceted starting materials for the synthesis of nylon building blocks. Reactions using E. coli whole cells as well as purified enzymes produced excellent conversions ranging from >80 and 95 % into desired ω-amino acids, respectively with varying substrate concentrations. The applicability of this tandem biocatalytic cascade was demonstrated to produce the corresponding lactams by employing engineered biocatalysts. For instance, ϵ-caprolactam, a valuable polymer building block was synthesized with 75 % conversion from 10 mM cyclohexylamine by employing whole-cell biocatalysts. This cascade could be an alternative for bio-based production of ω-amino acids and corresponding lactam compounds.
Collapse
Affiliation(s)
- Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Sihyong Sung
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Taresh P Khobragade
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| |
Collapse
|
42
|
Schwarz A, Hecko S, Rudroff F, Kohrt JT, Howard RM, Winkler M. Cell-free in vitro reduction of carboxylates to aldehydes: With crude enzyme preparations to a key pharmaceutical building block. Biotechnol J 2021; 16:e2000315. [PMID: 33245607 DOI: 10.1002/biot.202000315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/03/2020] [Indexed: 11/07/2022]
Abstract
The scarcity of practical methods for aldehyde synthesis in chemistry necessitates the development of mild, selective procedures. Carboxylic acid reductases catalyze aldehyde formation from stable carboxylic acid precursors in an aqueous solution. Carboxylic acid reductases were employed to catalyze aldehyde formation in a cell-free system with activation energy and reducing equivalents provided through auxiliary proteins for ATP and NADPH recycling. In situ product removal was used to suppress over-reduction due to background enzyme activities, and an N-protected 4-formyl-piperidine pharma synthon was prepared in 61% isolated yield. This is the first report of preparative aldehyde synthesis with carboxylic acid reductases employing crude, commercially available enzyme preparations.
Collapse
Affiliation(s)
- Anna Schwarz
- Austrian Center of Industrial Biotechnology, Area Biotransformation, Graz, Austria
| | - Sebastian Hecko
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Jeffrey T Kohrt
- Pfizer Worldwide Research and Development, Applied Synthesis Technologies - Biocatalysis, Groton, USA
| | - Roger M Howard
- Pfizer Worldwide Research and Development, Applied Synthesis Technologies - Biocatalysis, Groton, USA
| | - Margit Winkler
- Austrian Center of Industrial Biotechnology, Area Biotransformation, Graz, Austria.,Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
43
|
Finnigan W, Hepworth LJ, Flitsch SL, Turner NJ. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat Catal 2021; 4:98-104. [PMID: 33604511 PMCID: PMC7116764 DOI: 10.1038/s41929-020-00556-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As the enzyme toolbox for biocatalysis has expanded, so has the potential for the construction of powerful enzymatic cascades for efficient and selective synthesis of target molecules. Additionally, recent advances in computer-aided synthesis planning are revolutionising synthesis design in both synthetic biology and organic chemistry. However, the potential for biocatalysis is not well captured by tools currently available in either field. Here we present RetroBioCat, an intuitive and accessible tool for computer-aided design of biocatalytic cascades, freely available at retrobiocat.com. Our approach uses a set of expertly encoded reaction rules encompassing the enzyme toolbox for biocatalysis, and a system for identifying literature precedent for enzymes with the correct substrate specificity where this is available. Applying these rules for automated biocatalytic retrosynthesis, we show our tool to be capable of identifying promising biocatalytic pathways to target molecules, validated using a test-set of recent cascades described in the literature.
Collapse
Affiliation(s)
- William Finnigan
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UK
| | - Lorna J Hepworth
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UK
| | - Sabine L Flitsch
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UK
| | - Nicholas J Turner
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UK
| |
Collapse
|
44
|
Sarak S, Sung S, Jeon H, Patil MD, Khobragade TP, Pagar AD, Dawson PE, Yun H. An Integrated Cofactor/Co‐Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sharad Sarak
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Sihyong Sung
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Mahesh D. Patil
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Taresh P. Khobragade
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Amol D. Pagar
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Philip E. Dawson
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Hyungdon Yun
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| |
Collapse
|
45
|
Abstract
Diamines are important monomers for polyamide plastics; they include 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane, among others. With increasing attention on environmental problems and green sustainable development, utilizing renewable raw materials for the synthesis of diamines is crucial for the establishment of a sustainable plastics industry. Recently, high-performance microbial factories, such as Escherichia coli and Corynebacterium glutamicum, have been widely used in the production of diamines. In particular, several synthetic pathways of 1,6-diaminohexane have been proposed based on glutamate or adipic acid. Here, we reviewed approaches for the biosynthesis of diamines, including metabolic engineering and biocatalysis, and the application of bio-based diamines in nylon materials. The related challenges and opportunities in the development of renewable bio-based diamines and nylon materials are also discussed.
Collapse
|
46
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
47
|
Lubberink M, Schnepel C, Citoler J, Derrington SR, Finnigan W, Hayes MA, Turner NJ, Flitsch SL. Biocatalytic Monoacylation of Symmetrical Diamines and Its Application to the Synthesis of Pharmaceutically Relevant Amides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Max Lubberink
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Christian Schnepel
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Joan Citoler
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sasha R. Derrington
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - William Finnigan
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Martin A. Hayes
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nicholas J. Turner
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sabine L. Flitsch
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
48
|
Kramer L, Le X, Rodriguez M, Wilson MA, Guo J, Niu W. Engineering Carboxylic Acid Reductase (CAR) through a Whole-Cell Growth-Coupled NADPH Recycling Strategy. ACS Synth Biol 2020; 9:1632-1637. [PMID: 32589835 DOI: 10.1021/acssynbio.0c00290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid evolution of enzyme activities is often hindered by the lack of efficient and affordable methods to identify beneficial mutants. We report the development of a new growth-coupled selection method for evolving NADPH-consuming enzymes based on the recycling of this redox cofactor. The method relies on a genetically modified Escherichia coli strain, which overaccumulates NADPH. This method was applied to the engineering of a carboxylic acid reductase (CAR) for improved catalytic activities on 2-methoxybenzoate and adipate. Mutant enzymes with up to 17-fold improvement in catalytic efficiency were identified from single-site saturated mutagenesis libraries. Obtained mutants were successfully applied to whole-cell conversions of adipate into 1,6-hexanediol, a C6 monomer commonly used in polymer industry.
Collapse
Affiliation(s)
- Levi Kramer
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Xuan Le
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Marisa Rodriguez
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Mark A. Wilson
- Department of Biochemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
49
|
Enzymatic Synthesis of Aliphatic Primary ω-Amino Alcohols from ω-Amino Fatty Acids by Carboxylic Acid Reductase. Catal Letters 2020. [DOI: 10.1007/s10562-020-03233-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|