1
|
Yang H, Duan P, Zhuang Z, Luo Y, Shen J, Xiong Y, Liu X, Wang D. Understanding the Dynamic Evolution of Active Sites among Single Atoms, Clusters, and Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415265. [PMID: 39748626 DOI: 10.1002/adma.202415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Catalysis remains a cornerstone of chemical research, with the active sites of catalysts being crucial for their functionality. Identifying active sites, particularly during the reaction process, is crucial for elucidating the relationship between a catalyst's structure and its catalytic property. However, the dynamic evolution of active sites within heterogeneous metal catalysts presents a substantial challenge for accurately pinpointing the real active sites. The advent of in situ and operando characterization techniques has illuminated the path toward understanding the dynamic changes of active sites, offering robust scientific evidence to support the rational design of catalysts. There is a pressing need for a comprehensive review that systematically explores the dynamic evolution among single atoms, clusters, and nanoparticles as active sites during the reaction process, utilizing in situ and operando characterization techniques. This review aims to delineate the effects of various reaction factors on dynamic evolution of active sites among single atoms, clusters, and nanoparticles. Moreover, several in situ and operando techniques are elaborated with emphases on tracking the dynamic evolution of active sites, linking them to catalytic properties. Finally, it discusses challenges and future perspectives in identifying active sites during the reaction process and advancing in situ and operando characterization techniques.
Collapse
Affiliation(s)
- Hongchen Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Pengfei Duan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yaowu Luo
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ji Shen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Sharma D, Sajwan D, Mishra S, Gouda A, Mittal P, Choudhary P, Mishra BP, Kumar S, Krishnan V. Tailoring catalysis at the atomic level: trends and breakthroughs in single atom catalysts for organic transformation reactions. NANOSCALE HORIZONS 2024. [PMID: 39635733 DOI: 10.1039/d4nh00479e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The utilization of precise materials in heterogeneous catalysis will provide various new possibilities for developing superior catalysts to tackle worldwide energy and environmental issues. In recent years, single atom catalysts (SACs) with excellent atom utilization and isolated active sites have progressed dramatically as a thriving sector of catalysis research. Additionally, SACs bridge the gap between homogeneous and heterogeneous catalysts and overcome the limitations of both categories. Current research on SACs is highly oriented towards the organic synthesis of high-significance molecules with promising potential for large-scale applicability and industrialization. In this context, this review aims to comprehensively analyze the state-of-the-art research in the synthesis of SACs and analyze their structural, electronic, and geometric properties. Moreover, the unprecedented catalytic performance of the SACs towards various organic transformation reactions is succinctly summarized with recent reports. Further, a detailed summary of the current state of the research field of SACs in organic transformation is discussed. Finally, a critical analysis of the existing challenges in this emerging field of SACs and the possible countermeasures are provided. We believe that SACs have the potential to profoundly alter the chemical industry, pushing the boundaries of catalysis in new and undiscovered territory.
Collapse
Affiliation(s)
- Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Shubhankar Mishra
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Ashrumochan Gouda
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Prerna Mittal
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Bhagyashree Priyadarshini Mishra
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| |
Collapse
|
3
|
Ye BC, Li WH, Zhang X, Chen J, Gao Y, Wang D, Pan H. Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402747. [PMID: 39291881 DOI: 10.1002/adma.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
For traditional metal complexes, intricate chemistry is required to acquire appropriate ligands for controlling the electron and steric hindrance of metal active centers. Comparatively, the preparation of single-atom catalysts is much easier with more straightforward and effective accesses for the arrangement and control of metal active centers. The presence of coordination atoms or neighboring functional atoms on the supports' surface ensures the stability of metal single-atoms and their interactions with individual metal atoms substantially regulate the performance of metal active centers. Therefore, the collaborative interaction between metal and the surrounding coordination environment enhances the initiation of reaction substrates and the formation and transformation of crucial intermediate compounds, which imparts single-atom catalysts with significant catalytic efficacy, rendering them a valuable framework for investigating the correlation between structure and activity, as well as the reaction mechanism of catalysts in organic reactions. Herein, comprehensive overviews of the coordination interaction for both homogeneous metal complexes and single-atom catalysts in organic reactions are provided. Additionally, reflective conjectures about the advancement of single-atom catalysts in organic synthesis are also proposed to present as a reference for later development.
Collapse
Affiliation(s)
- Bo-Chao Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Xia Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
4
|
Erbasan A, Ustunel H, Toffoli D. Electronic Structure of Rh and Ir Single Atom Catalysts Supported on Defective and Doped ZnO: Assessment of Their Activity Towards CO Oxidation. Molecules 2024; 29:5082. [PMID: 39519723 PMCID: PMC11547260 DOI: 10.3390/molecules29215082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigated the electronic structure of single-atom Rhodium (Rh) and Iridium (Ir) adsorbed on defective and impurity-doped ZnO(0001) surfaces, and assessed their activity towards the CO oxidation reaction. Our findings reveal that surface impurities significantly influence the binding energies and electronic properties of the metal atoms, with Al and Cr serving as particularly effective promoters. While Rh and Ir acquire a positive charge upon incorporation on the unpromoted Zn(0001) surface, adsorption directly on the promoter results in a net negative charge, thus facilitating the activation of both CO and O2 species. These results highlight the potential of impurity-promoted ZnO surfaces in modulating and tailoring the electronic properties of SACs, which can be used for a rational design of active single-atom catalysts.
Collapse
Affiliation(s)
- Arda Erbasan
- Department of Physics, Middle East Technical University, Dumlupinar Blv 1, Ankara 06800, Turkey;
| | - Hande Ustunel
- Department of Physics, Middle East Technical University, Dumlupinar Blv 1, Ankara 06800, Turkey;
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- IOM-CNR, Istituto Officina dei Materiali-CNR, S.S.14, Km 163.5, 34149 Trieste, Italy
| |
Collapse
|
5
|
Deshmukh MA, Bakandritsos A, Zbořil R. Bimetallic Single-Atom Catalysts for Water Splitting. NANO-MICRO LETTERS 2024; 17:1. [PMID: 39317789 PMCID: PMC11422407 DOI: 10.1007/s40820-024-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 09/26/2024]
Abstract
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.
Collapse
Affiliation(s)
- Megha A Deshmukh
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| |
Collapse
|
6
|
Seredina YV, Oreshonkov AS, Molokeev MS, Sedykh AE, Aleksandrovsky AS, Zhernakov MA, Khritokhin NA, Azarapin NO, Glukhova PO, Shelpakova NA, Müller-Buschbaum K, Denisenko YG. Thermochemistry of Solid-State Formation, Structure, Optical, and Luminescent Properties of Complex Oxides Eu 2MeO 6 (Me-Mo, W), Eu 2W 2O 9: A Combined Experimental and DFT Study. Chemistry 2024; 30:e202402084. [PMID: 38975664 DOI: 10.1002/chem.202402084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Complex oxides Eu2MeO6 (Me-Mo, W), Eu2W2O9 were obtained by a solid-phase reaction between binary oxides. The thermodynamic and kinetic mechanisms of the reaction processes were established using a variety of physical-chemical methods. All compounds obtained in this work crystallize in the low-symmetry monoclinic system, forming complex framework structures, which determine a set of very valuable physical-chemical properties. Comparison of experimental Kubelka-Munk functions and DFT- calculated absorption spectra shows adequate agreement and reveals the origin of the fundamental absorption. In addition, the deficiency in DFT calculations in the part of mutual contribution of CTBs of Mo-O and W-O, from one side, and Eu-O contributions, from the other side, is reported. Calculations of absorption spectra are shown to be superior to band structure analysis in the determination of optical band gaps. Additionally, luminescent properties of Eu2MeO6 and Eu2W2O9 compounds were investigated. These studies provide a better understanding of the electronic and optical properties of the compounds Eu2MeO6 and Eu2W2O9, along with their potential applications in various areas.
Collapse
Affiliation(s)
- Yulia V Seredina
- School of Natural Sciences, University of Tyumen, Tyumen, 625003, Russia
| | - Aleksandr S Oreshonkov
- Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
- School of Engineering and Construction, Siberian Federal University, Krasnoyarsk, 660041, Russia
| | - Maxim S Molokeev
- Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RASK, Krasnoyarsk, 660036, Russia
- Laboratory of Theory and Optimization of Chemical and Technological Processes, Tyumen State University, Tyumen, 625003, Russia
| | - Alexander E Sedykh
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Giessen, 35392, Germany
| | - Aleksandr S Aleksandrovsky
- Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
- Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia
| | - Maksim A Zhernakov
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Giessen, 35392, Germany
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kazan, 420008, Russia
| | | | - Nikita O Azarapin
- School of Natural Sciences, University of Tyumen, Tyumen, 625003, Russia
| | - Polina O Glukhova
- School of Natural Sciences, University of Tyumen, Tyumen, 625003, Russia
| | | | - Klaus Müller-Buschbaum
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Giessen, 35392, Germany
- Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Giessen, 35392, Germany
| | - Yuriy G Denisenko
- School of Natural Sciences, University of Tyumen, Tyumen, 625003, Russia
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Giessen, 35392, Germany
- Department of Construction Materials, Industrial University of Tyumen, Tyumen, 625000, Russia
| |
Collapse
|
7
|
Vidal M, Pandey J, Navarro-Ruiz J, Langlois J, Tison Y, Yoshii T, Wakabayashi K, Nishihara H, Frenkel AI, Stavitski E, Urrutigoïty M, Campos CH, Godard C, Placke T, Del Rosal I, Gerber IC, Petkov V, Serp P. Probing Basal and Prismatic Planes of Graphitic Materials for Metal Single Atom and Subnanometer Cluster Stabilization. Chemistry 2024; 30:e202400669. [PMID: 38924194 DOI: 10.1002/chem.202400669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Supported metal single atom catalysis is a dynamic research area in catalysis science combining the advantages of homogeneous and heterogeneous catalysis. Understanding the interactions between metal single atoms and the support constitutes a challenge facing the development of such catalysts, since these interactions are essential in optimizing the catalytic performance. For conventional carbon supports, two types of surfaces can contribute to single atom stabilization: the basal planes and the prismatic surface; both of which can be decorated by defects and surface oxygen groups. To date, most studies on carbon-supported single atom catalysts focused on nitrogen-doped carbons, which, unlike classic carbon materials, have a fairly well-defined chemical environment. Herein we report the synthesis, characterization and modeling of rhodium single atom catalysts supported on carbon materials presenting distinct concentrations of surface oxygen groups and basal/prismatic surface area. The influence of these parameters on the speciation of the Rh species, their coordination and ultimately on their catalytic performance in hydrogenation and hydroformylation reactions is analyzed. The results obtained show that catalysis itself is an interesting tool for the fine characterization of these materials, for which the detection of small quantities of metal clusters remains a challenge, even when combining several cutting-edge analytical methods.
Collapse
Affiliation(s)
- Mathieu Vidal
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| | - Jyoti Pandey
- Department of Physics, Central Michigan University, Dow Hall 203, MI 48859, Mount Pleasant, USA
| | - Javier Navarro-Ruiz
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Joris Langlois
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Carrer de Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Yann Tison
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000, Pau, France
| | - Takeharu Yoshii
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Keigo Wakabayashi
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering Stony Brook, University Stony Brook, 11794, New York, USA
- National Synchrotron Light Source (E. Stavitski) and Chemistry Division (A. I. Frenkel), Brookhaven National Laboratory, 11973, New York, USA
| | - Eli Stavitski
- National Synchrotron Light Source (E. Stavitski) and Chemistry Division (A. I. Frenkel), Brookhaven National Laboratory, 11973, New York, USA
| | - Martine Urrutigoïty
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| | - Cristian H Campos
- Departamento de Físico-Química Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción, Chile
| | - Cyril Godard
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Carrer de Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Tobias Placke
- MEET Battery Research Center, University of Münster, Corrensstraße 46, 48149, Münster, Germany
| | - Iker Del Rosal
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Iann C Gerber
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Valeri Petkov
- Department of Physics, Central Michigan University, Dow Hall 203, MI 48859, Mount Pleasant, USA
| | - Philippe Serp
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| |
Collapse
|
8
|
Zhang X, Tang D, He L, Cao Y. Polyoxometalates Based Catalysts for Carbonylation Reactions: A Review. Chem Asian J 2024; 19:e202400464. [PMID: 38861115 DOI: 10.1002/asia.202400464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
As a type of diverse and structurally adjustable metal-oxo clusters, polyoxometalates (POMs) based materials have been extensively applied as a catalysis in various valuable reactions. This review summarized recent progress in the application of POMs-based catalysts for various carbonylation reactions including (1). Carbonylation of olefins, (2). Carbonylation of formaldehyde, (3). Carbonylation of methanol or dimethyl ether, (4). Oxidative carbonylation of methane, (5). Oxidative carbonylation of phenol and (6). Reductive carbonylation of nitrobenzene. A brief perspective on POMs-based catalysts for the carbonylation reactions is proposed.
Collapse
Affiliation(s)
- Xuehua Zhang
- Yancheng Teachers University, School of Chemical and Environmental Engineering, No. 2 Hope Avenue South Road, Yancheng, 224007, China
| | - Dechang Tang
- CNSG ANHUI HONG SIFANG CO., LTD, No. 1084 Jinzhai South Road, Hefei, 230000, China
| | - Lin He
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No.18 Tianshui Middle Road, Lanzhou, 730000, China
| | - Yanwei Cao
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No.18 Tianshui Middle Road, Lanzhou, 730000, China
| |
Collapse
|
9
|
Sarma BB, Neukum D, Doronkin DE, Lakshmi Nilayam AR, Baumgarten L, Krause B, Grunwaldt JD. Understanding the role of supported Rh atoms and clusters during hydroformylation and CO hydrogenation reactions with in situ/ operando XAS and DRIFT spectroscopy. Chem Sci 2024; 15:12369-12379. [PMID: 39118611 PMCID: PMC11304778 DOI: 10.1039/d4sc02907k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
Supported Rh single-atoms and clusters on CeO2, MgO, and ZrO2 were investigated as catalysts for hydroformylation of ethylene to propionaldehyde and CO hydrogenation to methanol/ethanol with in situ/operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and X-ray absorption spectroscopy (XAS). Under hydroformylation reaction conditions, operando spectroscopic investigations unravel the presence of both single atoms and clusters and detected at first propanal and then methanol. We find that the formation of methanol is associated with CO hydrogenation over Rh clusters which was further confirmed under CO hydrogenation conditions at elevated pressure. The activity of catalysts synthesized via a precipitation (PP) method over various supports towards the hydroformylation reaction follows the order: Rh/ZrO2 > Rh/CeO2 > Rh/MgO. Comparing Rh/CeO2 catalysts synthesized via different methods, catalysts prepared by flame spray pyrolysis (FSP) showed catalytic activity for the hydroformylation reaction at lower temperatures (413 K), whereas catalysts prepared by wet impregnation (WI) showed the highest stability. These results not only provide fundamental insights into the atomistic level of industrially relevant reactions but also pave the way for a rational design of new catalysts in the future.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology, KIT Hermann-von Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie de Coordination (LCC), CNRS, Université de Toulouse, INPT, 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Dominik Neukum
- Institute of Catalysis Research and Technology, KIT Hermann-von Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Dmitry E Doronkin
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology, KIT Hermann-von Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Ajai Raj Lakshmi Nilayam
- Institute of Nanotechnology, KIT Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Lorena Baumgarten
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology, KIT Hermann-von Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Bärbel Krause
- Institut für Photonenforschung und Synchrotronstrahlung (IPS), KIT Hermann-von-Helmholtz Platz 1 D-76021 Karlsruhe Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology, KIT Hermann-von Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
10
|
Zeng JS, Cosner EL, Delgado-Kukuczka SP, Jiang C, Adams JS, Román-Leshkov Y, Manthiram K. Electrifying Hydroformylation Catalysts Exposes Voltage-Driven C-C Bond Formation. J Am Chem Soc 2024; 146:16521-16530. [PMID: 38856020 PMCID: PMC11191585 DOI: 10.1021/jacs.4c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Electrochemical reactions can access a significant range of driving forces under operationally mild conditions and are thus envisioned to play a key role in decarbonizing chemical manufacturing. However, many reactions with well-established thermochemical precedents remain difficult to achieve electrochemically. For example, hydroformylation (thermo-HFN) is an industrially important reaction that couples olefins and carbon monoxide (CO) to make aldehydes. However, the electrochemical analogue of hydroformylation (electro-HFN), which uses protons and electrons instead of hydrogen gas, represents a complex C-C bond-forming reaction that is difficult to achieve at heterogeneous electrocatalysts. In this work, we import Rh-based thermo-HFN catalysts onto electrode surfaces to unlock electro-HFN reactivity. At mild conditions of room temperature and 5 bar CO, we achieve Faradaic efficiencies of up to 15% and turnover frequencies of up to 0.7 h-1. This electro-HFN rate is an order of magnitude greater than the corresponding thermo-HFN rate at the same catalyst, temperature, and pressure. Reaction kinetics and operando X-ray absorption spectroscopy provide evidence for an electro-HFN mechanism that involves distinct elementary steps relative to thermo-HFN. This work demonstrates a step-by-step experimental strategy for electrifying a well-studied thermochemical reaction to unveil a new electrocatalyst for a complex and underexplored electrochemical reaction.
Collapse
Affiliation(s)
- Joy S. Zeng
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Emma L. Cosner
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Spencer P. Delgado-Kukuczka
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Chenyu Jiang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Jason S. Adams
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Karthish Manthiram
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
12
|
Yu Z, Zhang S, Zhang L, Liu X, Jia Z, Li L, Ta N, Wang A, Liu W, Wang A, Zhang T. Suppressing Metal Leaching and Sintering in Hydroformylation Reaction by Modulating the Coordination of Rh Single Atoms with Reactants. J Am Chem Soc 2024; 146:11955-11967. [PMID: 38640231 DOI: 10.1021/jacs.4c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Hydroformylation reaction is one of the largest homogeneously catalyzed industrial processes yet suffers from difficulty and high cost in catalyst separation and recovery. Heterogeneous single-atom catalysts (SACs), on the other hand, have emerged as a promising alternative due to their high initial activity and reasonable regioselectivity. Nevertheless, the stability of SACs against metal aggregation and leaching during the reaction has rarely been addressed. Herein, we elucidate the mechanism of Rh aggregation and leaching by investigating the structural evolution of Rh1@silicalite-1 SAC in response to different adsorbates (CO, H2, alkene, and aldehydes) by using diffuse reflectance infrared Fourier transform spectroscopy, X-ray adsorption fine structure, and scanning transmission electron microscopy techniques and kinetic studies. It is discovered that the aggregation and leaching of Rh are induced by the strong adsorption of CO and aldehydes on Rh, as well as the reduction of Rh3+ by CO/H2 which weakens the binding of Rh with support. In contrast, alkene effectively counteracts this effect by the competitive adsorption on Rh atoms with CO/aldehyde, and the disintegration of Rh clusters. Based on these results, we propose a strategy to conduct the reaction under conditions of high alkene concentration, which proves to be able to stabilize Rh single atom against aggregation and/or leaching for more than 100 h time-on-stream.
Collapse
Affiliation(s)
- Zhounan Yu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxin Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenghao Jia
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Na Ta
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - An Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
13
|
Wang C, Sombut P, Puntscher L, Jakub Z, Meier M, Pavelec J, Bliem R, Schmid M, Diebold U, Franchini C, Parkinson GS. CO-Induced Dimer Decay Responsible for Gem-Dicarbonyl Formation on a Model Single-Atom Catalyst. Angew Chem Int Ed Engl 2024; 63:e202317347. [PMID: 38294119 DOI: 10.1002/anie.202317347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
The ability to coordinate multiple reactants at the same active site is important for the wide-spread applicability of single-atom catalysis. Model catalysts are ideal to investigate the link between active site geometry and reactant binding, because the structure of single-crystal surfaces can be precisely determined, the adsorbates imaged by scanning tunneling microscopy (STM), and direct comparisons made to density functional theory. In this study, we follow the evolution of Rh1 adatoms and minority Rh2 dimers on Fe3O4(001) during exposure to CO using time-lapse STM at room temperature. CO adsorption at Rh1 sites results exclusively in stable Rh1CO monocarbonyls, because the Rh atom adapts its coordination to create a stable pseudo-square planar environment. Rh1(CO)2 gem-dicarbonyl species are also observed, but these form exclusively through the breakup of Rh2 dimers via an unstable Rh2(CO)3 intermediate. Overall, our results illustrate how minority species invisible to area-averaging spectra can play an important role in catalytic systems, and show that the decomposition of dimers or small clusters can be an avenue to produce reactive, metastable configurations in single-atom catalysis.
Collapse
Affiliation(s)
- Chunlei Wang
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
| | - Panukorn Sombut
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
| | - Lena Puntscher
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
| | - Zdenek Jakub
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
- Central European Institute of Technology (CEITEC), Brno University of Technology, Brno, 612 00, Czechia
| | - Matthias Meier
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
- Faculty of Physics, Center for Computational Materials Science, University of Vienna, Vienna, 1090, Austria
| | - Jiri Pavelec
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
| | - Roland Bliem
- Advanced Research Center for Nanolithography, 1098XG, Amsterdam, Netherlands
| | - Michael Schmid
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
| | - Ulrike Diebold
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
| | - Cesare Franchini
- Faculty of Physics, Center for Computational Materials Science, University of Vienna, Vienna, 1090, Austria
- Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, 40127, Italy
| | | |
Collapse
|
14
|
Vice A, Langer N, Reinhart B, Kedem O. Surface-Modified Pd/CeO 2 Single-Atom Catalyst Shows Increased Activity for Suzuki Cross-Coupling. Inorg Chem 2023; 62:21479-21486. [PMID: 38054605 DOI: 10.1021/acs.inorgchem.3c03649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Single-atom catalysts (SACs) comprise catalytically active atoms dispersed on supports; they combine the high activity and site uniformity of homogeneous catalysts with the ease of separability of heterogeneous catalysts. However, SACs lack fine control over the active site, provided by ligands in homogeneous catalysts. In this work, we demonstrate that modification of the support with an organic monolayer is a viable approach to improving the catalytic performance. The addition of catechol-type monolayers to a Pd/CeO2 SAC increases its catalytic activity for Suzuki cross-coupling, a central reaction in the synthesis of fine chemicals and pharmaceuticals. Kinetic trials reveal that the coating reduces the activation energy from 49 ± 9 to 22 ± 5 kJ/mol and produces a 4-fold rate enhancement at 25 °C, an effect we attribute to π-π interactions between the reactant and the catechol coating. Further development of this approach could vastly increase the utility of SACs in organic synthesis.
Collapse
Affiliation(s)
- Audrey Vice
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Nicholas Langer
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Benjamin Reinhart
- X-ray Science Division, Argonne National Laboratory, Argonne, Lemont, Illinois 60439, United States
| | - Ofer Kedem
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
15
|
Zhao M, Li C, Gómez D, Gonell F, Diaconescu VM, Simonelli L, Haro ML, Calvino JJ, Meira DM, Concepción P, Corma A. Low-temperature hydroformylation of ethylene by phosphorous stabilized Rh sites in a one-pot synthesized Rh-(O)-P-MFI zeolite. Nat Commun 2023; 14:7174. [PMID: 37935688 PMCID: PMC10630368 DOI: 10.1038/s41467-023-42938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Zeolites containing Rh single sites stabilized by phosphorous were prepared through a one-pot synthesis method and are shown to have superior activity and selectivity for ethylene hydroformylation at low temperature (50 °C). Catalytic activity is ascribed to confined Rh2O3 clusters in the zeolite which evolve under reaction conditions into single Rh3+ sites. These Rh3+ sites are effectively stabilized in a Rh-(O)-P structure by using tetraethylphosphonium hydroxide as a template, which generates in situ phosphate species after H2 activation. In contrast to Rh2O3, confined Rh0 clusters appear less active in propanal production and ultimately transform into Rh(I)(CO)2 under similar reaction conditions. As a result, we show that it is possible to reduce the temperature of ethylene hydroformylation with a solid catalyst down to 50 °C, with good activity and high selectivity, by controlling the electronic and morphological properties of Rh species and the reaction conditions.
Collapse
Affiliation(s)
- Minjie Zhao
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Chengeng Li
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Daviel Gómez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Francisco Gonell
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Vlad Martin Diaconescu
- CELLS - ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Spain
| | - Laura Simonelli
- CELLS - ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Spain
| | - Miguel Lopez Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica. Facultad Ciencias, Universidad de Cádiz, Campus Rio San Pedro, Puerto Real, 11510-Cádiz, Spain
| | - Jose Juan Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica. Facultad Ciencias, Universidad de Cádiz, Campus Rio San Pedro, Puerto Real, 11510-Cádiz, Spain
| | - Debora Motta Meira
- Debora CLS@APS, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, USA
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| |
Collapse
|
16
|
Puntscher L, Sombut P, Wang C, Ulreich M, Pavelec J, Rafsanjani-Abbasi A, Meier M, Lagin A, Setvin M, Diebold U, Franchini C, Schmid M, Parkinson GS. A Multitechnique Study of C 2H 4 Adsorption on Fe 3O 4(001). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:18378-18388. [PMID: 37752903 PMCID: PMC10518864 DOI: 10.1021/acs.jpcc.3c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Indexed: 09/28/2023]
Abstract
The adsorption/desorption of ethene (C2H4), also commonly known as ethylene, on Fe3O4(001) was studied under ultrahigh vacuum conditions using temperature-programmed desorption (TPD), scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT)-based computations. To interpret the TPD data, we have employed a new analysis method based on equilibrium thermodynamics. C2H4 adsorbs intact at all coverages and interacts most strongly with surface defects such as antiphase domain boundaries and Fe adatoms. On the regular surface, C2H4 binds atop surface Fe sites up to a coverage of 2 molecules per (√2 × √2)R45° unit cell, with every second Fe occupied. A desorption energy of 0.36 eV is determined by analysis of the TPD spectra at this coverage, which is approximately 0.1-0.2 eV lower than the value calculated by DFT + U with van der Waals corrections. Additional molecules are accommodated in between the Fe rows. These are stabilized by attractive interactions with the molecules adsorbed at Fe sites. The total capacity of the surface for C2H4 adsorption is found to be close to 4 molecules per (√2 × √2)R45° unit cell.
Collapse
Affiliation(s)
- Lena Puntscher
- Institute
of Applied Physics, TU Wien, Vienna 1040, Austria
| | | | - Chunlei Wang
- Institute
of Applied Physics, TU Wien, Vienna 1040, Austria
| | - Manuel Ulreich
- Institute
of Applied Physics, TU Wien, Vienna 1040, Austria
| | - Jiri Pavelec
- Institute
of Applied Physics, TU Wien, Vienna 1040, Austria
| | | | - Matthias Meier
- Institute
of Applied Physics, TU Wien, Vienna 1040, Austria
- Faculty
of Physics, Center for Computational Materials Science, University of Vienna, Vienna 1090, Austria
| | - Adam Lagin
- Institute
of Applied Physics, TU Wien, Vienna 1040, Austria
| | - Martin Setvin
- Institute
of Applied Physics, TU Wien, Vienna 1040, Austria
- Department
of Surface and Plasma Science, Faculty of
Mathematics and Physics, Charles University, Prague 180 00, Czech Republic
| | - Ulrike Diebold
- Institute
of Applied Physics, TU Wien, Vienna 1040, Austria
| | - Cesare Franchini
- Faculty
of Physics, Center for Computational Materials Science, University of Vienna, Vienna 1090, Austria
- Dipartimento
di Fisica e Astronomia, Università
di Bologna, Bologna 40126, Italy
| | - Michael Schmid
- Institute
of Applied Physics, TU Wien, Vienna 1040, Austria
| | | |
Collapse
|
17
|
Saptal VB, Ruta V, Bajada MA, Vilé G. Single-Atom Catalysis in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202219306. [PMID: 36918356 DOI: 10.1002/anie.202219306] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023]
Abstract
Single-atom catalysts hold the potential to significantly impact the chemical sector, pushing the boundaries of catalysis in new, uncharted directions. These materials, featuring isolated metal species ligated on solid supports, can exist in many coordination environments, all of which have shown important functions in specific transformations. Their emergence has also provided exciting opportunities for mimicking metalloenzymes and bridging the gap between homogeneous and heterogeneous catalysis. This Review outlines the impressive progress made in recent years regarding the use of single-atom catalysts in organic synthesis. We also illustrate potential knowledge gaps in the search for more sustainable, earth-abundant single-atom catalysts for synthetic applications.
Collapse
Affiliation(s)
- Vitthal B Saptal
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Vincenzo Ruta
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Mark A Bajada
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
18
|
Liu Y, Liu Z, Hui Y, Wang L, Zhang J, Yi X, Chen W, Wang C, Wang H, Qin Y, Song L, Zheng A, Xiao FS. Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson's catalyst for hydroformylation of olefins. Nat Commun 2023; 14:2531. [PMID: 37137908 PMCID: PMC10156763 DOI: 10.1038/s41467-023-38181-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Hydroformylation is one of the largest industrially homogeneous processes that strongly relies on catalysts with phosphine ligands such as the Wilkinson's catalyst (triphenylphosphine coordinated Rh). Heterogeneous catalysts for olefin hydroformylation are highly desired but suffer from poor activity compared with homogeneous catalysts. Herein, we demonstrate that rhodium nanoparticles supported on siliceous MFI zeolite with abundant silanol nests are very active for hydroformylation, giving a turnover frequency as high as ~50,000 h-1 that even outperforms the classical Wilkinson's catalyst. Mechanism study reveals that the siliceous zeolite with silanol nests could efficiently enrich olefin molecules to adjacent rhodium nanoparticles, enhancing the hydroformylation reaction.
Collapse
Affiliation(s)
- Yifeng Liu
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiqiang Liu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yu Hui
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun, 113001, China
| | - Liang Wang
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jian Zhang
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xianfeng Yi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Chen
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chengtao Wang
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hai Wang
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun, 113001, China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun, 113001, China
| | - Anmin Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Feng-Shou Xiao
- Key Lab of Applied Chemistry of Zhejiang Province and Department of Chemistry & Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
19
|
Gao W, Liu S, Sun G, Zhang C, Pan Y. Single-Atom Catalysts for Hydrogen Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300956. [PMID: 36950768 DOI: 10.1002/smll.202300956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Selective hydrogenation is one of the most important reactions in fine chemical industry, and the activation of H2 is the key step for hydrogenation. Catalysts play a critical role in selective hydrogenation, and some single-atom catalysts (SACs) are highly capable of activating H2 in selective hydrogenation by virtue of the maximized atom utilization and the highly uniform active sites. Therefore, more research efforts are needed for the rational design of SACs with superior H2 -activating capabilities. Herein, the research progress on H2 activation in typical hydrogenation systems (such as alkyne hydrogenation, hydroformylation, hydrodechlorination, hydrodeoxygenation, nitroaromatics hydrogenation, and polycyclic aromatics hydrogenation) is reviewed, the mechanisms of SACs for H2 activation are summarized, and the structural regulation strategies for SACs are proposed to promote H2 activation and provide schemes for the design of high-selectivity hydrogenation catalysts from the atomic scale. At the end of this review, an outlook on the opportunities and challenges for SACs to be developed for selective hydrogenation is presented.
Collapse
Affiliation(s)
- Wenwen Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Shihuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| |
Collapse
|
20
|
Tao S, Yang D, Wang M, Sun G, Xiong G, Gao W, Zhang Y, Pan Y. Single-atom catalysts for hydroformylation of olefins. iScience 2023; 26:106183. [PMID: 36922997 PMCID: PMC10009200 DOI: 10.1016/j.isci.2023.106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Hydroformylation is one of the most significant homogeneous reactions. Compared with homogeneous catalysts, heterogeneous catalysts are easy to be separated from the system. However, heterogeneous catalysis faces the problems of low activity and poor chemical/regional selectivity. Therefore, there are theoretical and practical significance to develop efficient heterogeneous catalysts. SACs can be widely applied in hydroformylation in the future, due to the high atom utilization efficiency, stable active sites, easy separation, and recovery. In this review, the recent advances of SACs for hydroformylation are summarized. The regulation of microstructure affected on the reactivity, stability of SACs, and chem/regioselectivity of SACs for hydroformylation are discussed. The support effect, ligand effect, and electron effect on the performance of SACs are proposed, and the catalytic mechanism of SACs is elaborated. Finally, we summarize the current challenges in this field, and propose the design and research ideas of SACs for hydroformylation of olefins.
Collapse
Affiliation(s)
- Shu Tao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Da Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Minmin Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guangxun Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Gaoyan Xiong
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenwen Gao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Youzhi Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuan Pan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
21
|
Jurado L, Esvan J, Luque-Álvarez LA, Bobadilla LF, Odriozola JA, Posada-Pérez S, Poater A, Comas-Vives A, Axet MR. Highly dispersed Rh single atoms over graphitic carbon nitride as a robust catalyst for the hydroformylation reaction. Catal Sci Technol 2023; 13:1425-1436. [PMID: 36895514 PMCID: PMC9986719 DOI: 10.1039/d2cy02094g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Rhodium-catalysed hydroformylation, effective tool in bulk and fine-chemical synthesis, predominantly uses soluble metal complexes. For that reason, the metal leaching and the catalyst recycling are still the major drawbacks of this process. Single-atom catalysts have emerged as a powerful tool to combine the advantages of both homogeneous and heterogeneous catalysts. Since using an appropriate support material is key to create stable, finely dispersed, single-atom catalysts, here we show that Rh atoms anchored on graphitic carbon nitride are robust catalysts for the hydroformylation reaction of styrene.
Collapse
Affiliation(s)
- Lole Jurado
- CNRS, LCC (Laboratoire de Chimie de Coordination), UPS, INPT, Université de Toulouse 205 Route de Narbonne F-31077 Toulouse Cedex 4 France
| | - Jerome Esvan
- CIRIMAT, CNRS-INPT-UPS, Université de Toulouse 4 Allée Emile Monso 31030 Toulouse France
| | - Ligia A Luque-Álvarez
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla Av. Américo Vespucio 49 41092 Sevilla Spain
| | - Luis F Bobadilla
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla Av. Américo Vespucio 49 41092 Sevilla Spain
| | - José A Odriozola
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla Av. Américo Vespucio 49 41092 Sevilla Spain
| | - Sergio Posada-Pérez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona c/ Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona c/ Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Aleix Comas-Vives
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria.,Departament de Química, Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Catalonia Spain
| | - M Rosa Axet
- CNRS, LCC (Laboratoire de Chimie de Coordination), UPS, INPT, Université de Toulouse 205 Route de Narbonne F-31077 Toulouse Cedex 4 France
| |
Collapse
|
22
|
Wang Y, Jiang M, Yan L, Li C, Wang G, He W, Ding Y. Influence of phosphite ligands concentration on 1-butene hydroformylation over Rh-supported porous organic polymer catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
23
|
Qi L, Das S, Zhang Y, Nozik D, Gates BC, Bell AT. Ethene Hydroformylation Catalyzed by Rhodium Dispersed with Zinc or Cobalt in Silanol Nests of Dealuminated Zeolite Beta. J Am Chem Soc 2023; 145:2911-2929. [PMID: 36715296 DOI: 10.1021/jacs.2c11075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Catalysts for hydroformylation of ethene were prepared by grafting Rh into nests of ≡SiOZn-OH or ≡SiOCo-OH species prepared in dealuminated BEA zeolite. X-ray absorption spectra and infrared spectra of adsorbed CO were used to characterize the dispersion of Rh. The Rh dispersion was found to increase markedly with increasing M/Rh (M = Zn or Co) ratio; further increases in Rh dispersion occurred upon use for ethene hydroformylation catalysis. The turnover frequency for ethene hydroformylation measured for a fixed set of reaction conditions increased with the fraction of atomically dispersed Rh. The ethene hydroformylation activity is 15.5-fold higher for M = Co than for M = Zn, whereas the propanal selectivity is slightly greater for the latter catalyst. The activity of the Co-containing catalyst exceeds that of all previously reported Rh-containing bimetallic catalysts. The rates of ethene hydroformylation and ethene hydrogenation exhibit positive reaction orders in ethene and hydrogen but negative orders in carbon monoxide. In situ IR spectroscopy and the kinetics of the catalytic reactions suggest that ethene hydroformylation is mainly catalyzed by atomically dispersed Rh that is influenced by Rh-M interactions, whereas ethene hydrogenation is mainly catalyzed by Rh nanoclusters. In situ IR spectroscopy also indicates that the ethene hydroformylation is rate limited by formation of propionyl groups and by their hydrogenation, a conclusion supported by the measured H/D kinetic isotope effect. This study presents a novel method for creating highly active Rh-containing bimetallic sites for ethene hydroformylation and provides new insights into the mechanism and kinetics of this process.
Collapse
Affiliation(s)
- Liang Qi
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.,National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Sonali Das
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yanfei Zhang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.,College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Danna Nozik
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Alexis T Bell
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
25
|
Farpón MG, Henao W, Plessow PN, Andrés E, Arenal R, Marini C, Agostini G, Studt F, Prieto G. Rhodium Single-Atom Catalyst Design through Oxide Support Modulation for Selective Gas-Phase Ethylene Hydroformylation. Angew Chem Int Ed Engl 2023; 62:e202214048. [PMID: 36315420 PMCID: PMC10099584 DOI: 10.1002/anie.202214048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 12/05/2022]
Abstract
A frontier challenge in single-atom (SA) catalysis is the design of fully inorganic sites capable of emulating the high reaction selectivity traditionally exclusive of organometallic counterparts in homogeneous catalysis. Modulating the direct coordination environment in SA sites, via the exploitation of the oxide support's surface chemistry, stands as a powerful albeit underexplored strategy. We report that isolated Rh atoms stabilized on oxygen-defective SnO2 uniquely unite excellent TOF with essentially full selectivity in the gas-phase hydroformylation of ethylene, inhibiting the thermodynamically favored olefin hydrogenation. Density Functional Theory calculations and surface characterization suggest that substantial depletion of the catalyst surface in lattice oxygen, energetically facile on SnO2 , is key to unlock a high coordination pliability at the mononuclear Rh centers, leading to an exceptional performance which is on par with that of molecular catalysts in liquid media.
Collapse
Affiliation(s)
- Marcos G Farpón
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. Los Naranjos s/n, 46022, Valencia, Spain
| | - Wilson Henao
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. Los Naranjos s/n, 46022, Valencia, Spain
| | - Philipp N Plessow
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Eva Andrés
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. Los Naranjos s/n, 46022, Valencia, Spain
| | - Raúl Arenal
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain.,Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.,ARAID Foundation, 50018, Zaragoza, Spain
| | - Carlo Marini
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, Spain
| | - Giovanni Agostini
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, Spain
| | - Felix Studt
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gonzalo Prieto
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. Los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
26
|
Hu H, Xi J. Single-atom catalysis for organic reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Liang X, Fu N, Yao S, Li Z, Li Y. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J Am Chem Soc 2022; 144:18155-18174. [PMID: 36175359 DOI: 10.1021/jacs.1c12642] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-atom-site catalysts (SASCs) featuring maximized atom utilization and isolated active sites have progressed tremendously in recent years as a highly prosperous branch of catalysis research. Varieties of SASCs have been developed that show excellent performance in many catalytic applications. The major goal of SASC research is to establish feasible synthetic strategies for the preparation of high-performance catalysts, to achieve an in-depth understanding of the active-site structures and catalytic mechanisms, and to develop practical catalysts with industrial value. This Perspective describes the up-to-date development of SASCs and related catalysts, such as dual-atom-site catalysts (DASCs) and nano-single-atom-site catalysts (NSASCs), analyzes the current challenges encountered by these catalysts for industrial applications, and proposes their possible future development path.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ninghua Fu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shuangchao Yao
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.,Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
28
|
Wei X, Jiang Y, Ma Y, Fang J, Peng Q, Xu W, Liao H, Zhang F, Dai S, Hou Z. Ultralow‐Loading and High‐Performing Ionic Liquid‐Immobilizing Rhodium Single‐Atom Catalysts for Hydroformylation. Chemistry 2022; 28:e202200374. [DOI: 10.1002/chem.202200374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Xinjia Wei
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
- Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Yuan Ma
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Jian Fang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Wen Xu
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Huiying Liao
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Fengxue Zhang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
- Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Xuhui District 130 200237 Shanghai P. R. China
| |
Collapse
|
29
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
30
|
Heterogeneous hydroformylation of alkenes by Rh-based catalysts. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Chen Z, Liu J, Koh MJ, Loh KP. Single-Atom Catalysis: From Simple Reactions to the Synthesis of Complex Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103882. [PMID: 34510576 DOI: 10.1002/adma.202103882] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/19/2021] [Indexed: 06/13/2023]
Abstract
To date, the scope of single-atom catalysts (SAC) in liquid-phase transformations is rather limited owing to stability issues and the inability to activate complex substances. This calls for a better design of the catalyst support that can provide a dynamic coordination environment needed for catalytic action, and yet retain robustness against leaching or aggregation. In addition, the chemical orthogonality of SAC is useful for designing tandem or multicomponent reactions, in which side reactions common to metal nanoparticles are suppressed. In this review, the intrinsic mechanism will be highlighted that controls reaction efficiency and selectivity in SAC-catalyzed pathways, as well as the structural dynamism of SAC under complex liquid-phase conditions. These mechanistic insights are helpful for the development of next-generation SAC systems for the synthesis of high-value pharmaceuticals through late-stage functionalization, sequential and multicomponent strategies.
Collapse
Affiliation(s)
- Zhongxin Chen
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jia Liu
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ming Joo Koh
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Kian Ping Loh
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
32
|
Chen Y, Rana R, Huang Z, Vila FD, Sours T, Perez-Aguilar JE, Zhao X, Hong J, Hoffman AS, Li X, Shang C, Blum T, Zeng J, Chi M, Salmeron M, Kronawitter CX, Bare SR, Kulkarni AR, Gates BC. Atomically Dispersed Platinum in Surface and Subsurface Sites on MgO Have Contrasting Catalytic Properties for CO Oxidation. J Phys Chem Lett 2022; 13:3896-3903. [PMID: 35471032 DOI: 10.1021/acs.jpclett.2c00667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atomically dispersed metals on metal oxide supports are a rapidly growing class of catalysts. Developing an understanding of where and how the metals are bonded to the supports is challenging because support surfaces are heterogeneous, and most reports lack a detailed consideration of these points. Herein, we report two atomically dispersed CO oxidation catalysts having markedly different metal-support interactions: platinum in the first layer of crystalline MgO powder and platinum in the second layer of this support. Structural models have been determined on the basis of data and computations, including those determined by extended X-ray absorption fine structure and X-ray absorption near edge structure spectroscopies, infrared spectroscopy of adsorbed CO, and scanning transmission electron microscopy. The data demonstrate the transformation of surface to subsurface platinum as the temperature of sample calcination increased. Catalyst performance data demonstrate the lower activity but greater stability of the subsurface platinum than of the surface platinum.
Collapse
Affiliation(s)
- Yizhen Chen
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Zhennan Huang
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Tyler Sours
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Jorge E Perez-Aguilar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chunyan Shang
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Thomas Blum
- University of California Irvine, Irvine, California 92697, United States
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Miaofang Chi
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ambarish R Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
33
|
Wang QY, Nan G, Chen YY, Tong YC, Xu XJ, Bai QL. Theoretical Study on the Structures of Single-Atom M (M = Fe, Co, and Ni) Adsorption Outside and Inside the Defect Carbon Nanotubes. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422140254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
|
35
|
Giannakakis G, Mitchell S, Pérez-Ramírez J. Single-atom heterogeneous catalysts for sustainable organic synthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Xu W, Ma Y, Wei X, Gong H, Zhao X, Qin Y, Peng Q, Hou Z. Core–shell Co@CoO catalysts for the hydroformylation of olefins. NEW J CHEM 2022. [DOI: 10.1039/d2nj02797f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co@CoO core–shell nanoparticles featured as metal Co(0) cores wrapped by CoO shells were constructed via a solvent-thermal process in deep eutectic solvents and showed superior activity and stability for the hydroformylation of olefins.
Collapse
Affiliation(s)
- Wen Xu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Yuan Ma
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Xinjia Wei
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Honghui Gong
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Xiuge Zhao
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Yuxi Qin
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| |
Collapse
|
37
|
Mao Z, Guo H, Xie Z, Liu P, Chen JG. Trends and descriptors of heterogeneous hydroformylation activity and selectivity of RhM 3 (M = Fe, Co, Ni, Cu and Zn) catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00821a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origin of superior C3 oxygenate selectivity of RhCo3 catalysts during hydroformylation was studied, which provided the design principles for catalyst improvements.
Collapse
Affiliation(s)
- Zhongtian Mao
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Haoyue Guo
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jingguang G. Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
38
|
Liu B, Wang Y, Liu S, Kang Z, Lan X, Wang T. Understanding the facet effects of heterogeneous Rh 2P catalysts for styrene hydroformylation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00974a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh2P (111) facets are much more active than the other facets for heterogeneous hydroformylation.
Collapse
Affiliation(s)
- Boyang Liu
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shaoxiong Liu
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenyu Kang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaocheng Lan
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Zhao K, Wang X, He D, Wang H, Qian B, Shi F. Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00845a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This mini-review provides the recent progress towards catalysts for the hydroformylation of catalysts that bridge traditional homo- and heterogeneous catalysis, highlighting the future development of heterogeneous catalysts in hydroformylation.
Collapse
Affiliation(s)
- Kang Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, People's Republic of China
| | - Xinzhi Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, People's Republic of China
| | - Dongcheng He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, People's Republic of China
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People's Republic of China
| | - Bo Qian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
40
|
Li WH, Yang J, Wang D, Li Y. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Qi P, Wang J, Djitcheu X, He D, Liu H, Zhang Q. Techniques for the characterization of single atom catalysts. RSC Adv 2021; 12:1216-1227. [PMID: 35425093 PMCID: PMC8978979 DOI: 10.1039/d1ra07799f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Single atom catalysts (SACs) are a hot research area recently. Over most of the SACs, the singly dispersed atoms are the active sites, which contribute to the catalytic activities significantly compared with a catalyst with continuously packed active sites. It is essential to determine whether SACs have been successfully synthesized. Several techniques have been applied for the characterization of the dispersion states of the active sites over SACs, such as Energy Dispersive X-ray spectroscopy (EDX), Electron Energy Loss Spectroscopy (EELS), etc. In this review, the techniques for the identification of the singly dispersed sites over SACs are introduced, the advantages and limitations of each technique are pointed out, and the future research directions have been discussed. It is hoped that this review will be helpful for a more comprehensive understanding of the characterization and detection methods involved in SACs, and stimulate and promote the further development of this emerging research field.
Collapse
Affiliation(s)
- Ping Qi
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Jian Wang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Xavier Djitcheu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Dehua He
- Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Qijian Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| |
Collapse
|
42
|
Liu B, Huang N, Wang Y, Lan X, Wang T. Insights into the Activity Screening and Hydroformylation Kinetics of Rh-Based Bimetallic Phosphides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Boyang Liu
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ning Huang
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaocheng Lan
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Mao Z, Xie Z, Chen JG. Comparison of Heterogeneous Hydroformylation of Ethylene and Propylene over RhCo 3/MCM-41 Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongtian Mao
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jingguang G. Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
44
|
Wei B, Liu X, Deng Y, Hua K, Chen J, Wang H, Sun Y. Efficient and Stable Co/β-Mo 2C Catalyst for Hydroformylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Baiyin Wei
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201203, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiaofang Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Yuchao Deng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201203, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Kaimin Hua
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Junjun Chen
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Hui Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201203, People’s Republic of China
- Shanghai Institute of Clean Technology, Shanghai 201620, People’s Republic of China
| |
Collapse
|
45
|
Ai HJ, Lu W, Wu XF. Ligand-Controlled Regiodivergent Thiocarbonylation of Alkynes toward Linear and Branched α,β-Unsaturated Thioesters. Angew Chem Int Ed Engl 2021; 60:17178-17184. [PMID: 34058046 DOI: 10.1002/anie.202106079] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 11/05/2022]
Abstract
Thiocarbonylation of alkynes offers an ideal procedure for the synthesis of unsaturated thioesters. A robust ligand-controlled regioselective thiocarbonylation of alkynes is developed. Utilizing boronic acid and 5-chlorosalicylic acid as the acid additive to in situ form 5-chloroborosalicylic acid (5-Cl-BSA), and bis(2-diphenylphosphinophenyl)ether (DPEphos) as the ligand, linear α,β-unsaturated thioesters were produced in a straightforward manner. Switching the ligand to tri(2-furyl)phosphine can turn the reaction selectivity to give branched products. Remarkably, this approach also represents the first example on thiocarbonylation of internal alkynes.
Collapse
Affiliation(s)
- Han-Jun Ai
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
| |
Collapse
|
46
|
Ai H, Lu W, Wu X. Ligand‐Controlled Regiodivergent Thiocarbonylation of Alkynes toward Linear and Branched α,β‐Unsaturated Thioesters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Han‐Jun Ai
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang) Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
47
|
Liu B, Wang Y, Huang N, Lan X, Wang T. Activity Promotion of Rh 8–xCo xP 4 Bimetallic Phosphides in Styrene Hydroformylation: Dual Influence of Adsorption and Surface Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boyang Liu
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ning Huang
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaocheng Lan
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Lee S, Patra A, Christopher P, Vlachos DG, Caratzoulas S. Theoretical Study of Ethylene Hydroformylation on Atomically Dispersed Rh/Al 2O 3 Catalysts: Reaction Mechanism and Influence of the ReO x Promoter. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00705] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seungyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Abhirup Patra
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Phillip Christopher
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Stavros Caratzoulas
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
49
|
Li X, Li L, Qin T, Gun G, Lin T, Zhong L. Atomically dispersed Rh on hydroxyapatite as an effective catalyst for tandem hydroaminomethylation of olefins. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Rodrigues FMS, Carrilho RMB, Pereira MM. Reusable Catalysts for Hydroformylation‐Based Reactions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fábio M. S. Rodrigues
- Coimbra Chemistry Centre Department of Chemistry University of Coimbra Rua Larga 3004-535 Coimbra Portugal
| | - Rui M. B. Carrilho
- Coimbra Chemistry Centre Department of Chemistry University of Coimbra Rua Larga 3004-535 Coimbra Portugal
| | - Mariette M. Pereira
- Coimbra Chemistry Centre Department of Chemistry University of Coimbra Rua Larga 3004-535 Coimbra Portugal
| |
Collapse
|