1
|
Zhao H, Zhang C, Tian C, Li L, Wu B, Stuart MAC, Wang M, Zhou X, Wang J. Rational design of diblock copolymer enables efficient cytosolic protein delivery. J Colloid Interface Sci 2024; 673:722-734. [PMID: 38901362 DOI: 10.1016/j.jcis.2024.06.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Polymer-mediated cytosolic protein delivery demonstrates a promising strategy for the development of protein therapeutics. Here, we propose a new designed diblock copolymer which realizes efficient cytosolic protein delivery both in vitro and in vivo. The polymer contains one protein-binding block composed of phenylboronic acid (PBA) and N-(3-dimethylaminopropyl) (DMAP) pendant units for protein binding and endosomal escape, respectively, followed by the response to ATP enriched in the cytosol which triggers the protein release. The other block is PEG designed to improve particle size control and circulation in vivo. By optimizing the block composition, sequence and length of the copolymer, the optimal one (BP20) was identified with the binding block containing 20 units of both PBA and DMAP, randomly distributed along the chain. When mixed with proteins, the BP20 forms stable nanoparticles and mediates efficient cytosolic delivery of a wide range of proteins including enzymes, toxic proteins and CRISPR/Cas9 ribonucleoproteins (RNP), to various cell lines. The PEG block, especially when further modified with folic acid (FA), enables tumor-targeted delivery of Saporin in vivo, which significantly suppresses the tumor growth. Our results shall inspire the design of novel polymeric vehicles with robust capability for cytosolic protein delivery, which holds great potential for both biological research and therapeutic applications.
Collapse
Affiliation(s)
- Hongyang Zhao
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Chenglin Zhang
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, 200003 Shanghai, People's Republic of China
| | - Chang Tian
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Lingshu Li
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Bohang Wu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China.
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, 200003 Shanghai, People's Republic of China.
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Park J, Hassan MA, Nabawy A, Li CH, Jiang M, Parmar K, Reddivari A, Goswami R, Jeon T, Patel R, Rotello VM. Engineered Bacteriophage-Polymer Nanoassemblies for Treatment of Wound Biofilm Infections. ACS NANO 2024; 18:26928-26936. [PMID: 39287559 DOI: 10.1021/acsnano.4c08671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The antibacterial efficacy and specificity of lytic bacteriophages (phages) make them promising therapeutics for treatment of multidrug-resistant bacterial infections. Restricted penetration of phages through the protective matrix of biofilms, however, may limit their efficacy against biofilm infections. Here, engineered polymers were used to generate noncovalent phage-polymer nanoassemblies (PPNs) that penetrate bacterial biofilms and kill resident bacteria. Phage K, active against multiple strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), was assembled with cationic poly(oxanorbornene) polymers into PPNs. The PPNs retained phage infectivity, while demonstrating enhanced biofilm penetration and killing relative to free phages. PPNs achieved 3-log10 bacterial reduction (∼99.9%) against MRSA biofilms in vitro. PPNs were then incorporated into Poloxamer 407 (P407) hydrogels and applied onto in vivo wound biofilms, demonstrating controlled and sustained release. Hydrogel-incorporated PPNs were effective in a murine MRSA wound biofilm model, showing a 1.5-log10 reduction in bacterial load compared to a 0.5 log reduction with phage K in P407 hydrogel. Overall, this work showcases the therapeutic potential of phage K engineered with cationic polymers for treating wound biofilm infections.
Collapse
Affiliation(s)
- Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Cheng Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Krupa Parmar
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Annika Reddivari
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
Chaka KT, Cao K, Tesfaye T, Qin X. Nanomaterial-functionalized electrospun scaffolds for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-43. [PMID: 39259663 DOI: 10.1080/09205063.2024.2399909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Tissue engineering has emerged as a biological alternative aimed at sustaining, rehabilitating, or enhancing the functionality of tissues that have experienced partial or complete loss of their operational capabilities. The distinctive characteristics of electrospun nanofibrous structures, such as their elevated surface-area-to-volume ratio, specific pore sizes, and fine fiber diameters, make them suitable as effective scaffolds in tissue engineering, capable of mimicking the functions of the targeted tissue. However, electrospun nanofibers, whether derived from natural or synthetic polymers or their combinations, often fall short of replicating the multifunctional attributes of the extracellular matrix (ECM). To address this, nanomaterials (NMs) are integrated into the electrospun polymeric matrix through various functionalization techniques to enhance their multifunctional properties. Incorporation of NMs into electrospun nanofibrous scaffolds imparts unique features, including a high surface area, superior mechanical properties, compositional variety, structural adaptability, exceptional porosity, and enhanced capabilities for promoting cell migration and proliferation. This review provides a comprehensive overview of the various types of NMs, the methodologies used for their integration into electrospun nanofibrous scaffolds, and the recent advancements in NM-functionalized electrospun nanofibrous scaffolds aimed at regenerating bone, cardiac, cartilage, nerve, and vascular tissues. Moreover, the main challenges, limitations, and prospects in electrospun nanofibrous scaffolds are elaborated.
Collapse
Affiliation(s)
- Kilole Tesfaye Chaka
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Kai Cao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Tamrat Tesfaye
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| |
Collapse
|
4
|
Hirschbiegel CM, Goswami R, Chakraborty S, Noonan C, Pham E, Nagaraj H, Ndugire W, Fedeli S, Rotello VM. Engineering of bioorthogonal polyzymes through polymer sidechain design. JOURNAL OF POLYMER SCIENCE 2024; 62:3787-3793. [PMID: 39444844 PMCID: PMC11495851 DOI: 10.1002/pol.20230582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/20/2023] [Indexed: 10/25/2024]
Abstract
Synthetic polymer scaffolds can encapsulate transition metal catalysts (TMCs) to provide bioorthogonal nanocatalysts. These 'polyzymes' catalyze the in situ generation of therapeutic agents without disrupting native biological processes. The design and modification of polymer scaffolds in these polyzymes can enhance the catalytic performance of TMCs in biological environments. In this study, we explore the hydrophobic design space of an oxanorborneneimide-based polymer by varying the length of its carbon side chain to engineer bioorthogonal polyzymes. Activity studies indicate that modulating the hydrophobicity of the polymer scaffold can be used to enhance the catalyst loading efficacy, catalytic activity, and serum stability of polyzymes. These findings provide insight into the structural elements contributing to improving polymeric nanocatalysts for a variety of applications.
Collapse
Affiliation(s)
| | | | - Soham Chakraborty
- University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01035, USA
| | - Cedar Noonan
- University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01035, USA
| | - Edward Pham
- University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01035, USA
| | - Harini Nagaraj
- University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01035, USA
| | - William Ndugire
- University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01035, USA
| | - Stefano Fedeli
- University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01035, USA
| | - Vincent M. Rotello
- University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01035, USA
| |
Collapse
|
5
|
Agrohia DK, Goswami R, Jantarat T, Çiçek YA, Thongsukh K, Jeon T, Bell JM, Rotello VM, Vachet RW. Suborgan Level Quantitation of Proteins in Tissues Delivered by Polymeric Nanocarriers. ACS NANO 2024; 18:16808-16818. [PMID: 38870478 PMCID: PMC11497159 DOI: 10.1021/acsnano.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Amidst the rapid growth of protein therapeutics as a drug class, there is an increased focus on designing systems to effectively deliver proteins to target organs. Quantitative monitoring of protein distributions in tissues is essential for optimal development of delivery systems; however, existing strategies can have limited accuracy, making it difficult to assess suborgan dosing. Here, we describe a quantitative imaging approach that utilizes metal-coded mass tags and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to quantify the suborgan distributions of proteins in tissues that have been delivered by polymeric nanocarriers. Using this approach, we measure nanomole per gram levels of proteins as delivered by guanidinium-functionalized poly(oxanorborneneimide) (PONI) polymers to various tissues, including the alveolar region of the lung. Due to the multiplexing capability of the LA-ICP-MS imaging, we are also able to simultaneously quantify protein and polymer distributions, obtaining valuable information about the relative excretion pathways of the protein cargo and carrier. This imaging approach will facilitate quantitative correlations between nanocarrier properties and protein cargo biodistributions.
Collapse
Affiliation(s)
- Dheeraj K. Agrohia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Teerapong Jantarat
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yağız Anil Çiçek
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Korndanai Thongsukh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jonathan M. Bell
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Alamgir A, Ghosal S, DeLisa MP, Alabi CA. Bioreversible Anionic Cloaking Enables Intracellular Protein Delivery with Ionizable Lipid Nanoparticles. ACS CENTRAL SCIENCE 2024; 10:1179-1190. [PMID: 38947210 PMCID: PMC11212127 DOI: 10.1021/acscentsci.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 07/02/2024]
Abstract
Protein-based therapeutics comprise a rapidly growing subset of pharmaceuticals, but enabling their delivery into cells for intracellular applications has been a longstanding challenge. To overcome the delivery barrier, we explored a reversible, bioconjugation-based approach to modify the surface charge of protein cargos with an anionic "cloak" to facilitate electrostatic complexation and delivery with lipid nanoparticle (LNP) formulations. We demonstrate that the conjugation of lysine-reactive sulfonated compounds can allow for the delivery of various protein cargos using FDA-approved LNP formulations of the ionizable cationic lipid DLin-MC3-DMA (MC3). We apply this strategy to functionally deliver RNase A for cancer cell killing as well as a full-length antibody to inhibit oncogenic β-catenin signaling. Further, we show that LNPs encapsulating cloaked fluorescent proteins distribute to major organs in mice following systemic administration. Overall, our results point toward a generalizable platform that can be employed for intracellular delivery of a wide range of protein cargos.
Collapse
Affiliation(s)
- Azmain Alamgir
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Souvik Ghosal
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Luo T, Zheng Q, Liu J, Yao R, Wang M. Polyphenol-Assisted Biomineralization of Metal-Organic Framework Nanoparticles for Precision Delivery of Therapeutic Proteins to Cancer Cells. Bioconjug Chem 2024; 35:682-692. [PMID: 38648296 DOI: 10.1021/acs.bioconjchem.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The delivery of proteins into the cytosol holds great promise for cell signaling manipulation and the development of precision medicine. However, this potency is challenged by achieving targeted and controlled delivery, specifically within diseased cells. In this study, we introduce a versatile and effective method for the precision delivery of therapeutic proteins to cancer cells by designing polyphenol-assisted biomineralization of zeolite imidazole framework-8 (ZIF-8). We demonstrate that by leveraging the strong noncovalent binding affinity of epigallocatechin gallate (EGCG) with both proteins and ZIF-8, our approach significantly enhances the biomineralization of ZIF-8, which in turn improves the efficiency of protein encapsulation and intracellular delivery. Moreover, the incorporation of EGCG within ZIF-8 enables controlled degradation of the nanoparticles and the selective release of the encapsulated proteins in cancer cells. This selective release is triggered by the oxidation of EGCG in response to the high levels of reactive oxygen species (ROS) found within cancer cells that destabilize the EGCG/ZIF-8 nanoparticles. We have further demonstrated the ability of EGCG/ZIF-8 to deliver a wide range of proteins into cancer cells, including bacterial virulence protein, to rewire cell signaling and prohibit tumor cell growth in a mouse xenograft model. Our strategy and findings underscore the potential of designing the EGCG/ZIF-8 interface for specific and controlled protein delivery for targeted cancer therapy.
Collapse
Affiliation(s)
- Tianli Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Giancola JB, Grimm JB, Jun JV, Petri YD, Lavis LD, Raines RT. Evaluation of the Cytosolic Uptake of HaloTag Using a pH-Sensitive Dye. ACS Chem Biol 2024; 19:908-915. [PMID: 38525961 PMCID: PMC11186736 DOI: 10.1021/acschembio.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The efficient cytosolic delivery of proteins is critical for advancing novel therapeutic strategies. Current delivery methods are severely limited by endosomal entrapment, and detection methods lack sophistication in tracking the fate of delivered protein cargo. HaloTag, a commonly used protein in chemical biology and a challenging delivery target, is an exceptional model system for understanding and exploiting cellular delivery. Here, we employed a combinatorial strategy to direct HaloTag to the cytosol. We established the use of Virginia Orange, a pH-sensitive fluorophore, and Janelia Fluor 585, a similar but pH-agnostic fluorophore, in a fluorogenic assay to ascertain protein localization within human cells. Using this assay, we investigated HaloTag delivery upon modification with cell-penetrating peptides, carboxyl group esterification, and cotreatment with an endosomolytic agent. We found efficacious cytosolic entry with two distinct delivery methods. This study expands the toolkit for detecting the cytosolic access of proteins and highlights that multiple intracellular delivery strategies can be used synergistically to effect cytosolic access. Moreover, HaloTag is poised to serve as a platform for the delivery of varied cargo into human cells.
Collapse
Affiliation(s)
- JoLynn B. Giancola
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn VA 20147, United States
| | - Joomyung V. Jun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yana D. Petri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn VA 20147, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Ray R, Ghosh S, Maity A, Jana NR. Arginine Surface Density of Nanoparticles Controls Nonendocytic Cell Uptake and Autophagy Induction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5451-5461. [PMID: 38265005 DOI: 10.1021/acsami.3c14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nonendocytic cell uptake of nanomaterials is challenging, which requires specific surface chemistry and smaller particle size. Earlier works have shown that an arginine-terminated nanoparticle of <10-20 nm size shows nonendocytic uptake via direct membrane penetration. However, the roles of surface arginine density and the arginine-arginine distance at the nanoparticle surface in controlling such nonendocytic uptake mechanism is not yet explored. Here we show that a higher arginine density at the nanoparticle surface with an arginine-arginine distance of <3 nm is the most critical aspect for such nonendocytic uptake. We have used quantum dot (QD)-based nanoparticles as a model for fluorescent tracking inside cells and for quantitative estimation of cellular uptake. We found that arginine-terminated nanoparticles of 10 nm size can opt for the energy-dependent endocytosis pathway if the arginine-arginine distance is >3 nm. In contrast, nanoparticles with <3 nm arginine-arginine distance rapidly enter into the cell via the nonendocytic approach, are freely available in the cytosol in large amounts to capture the cellular adenosine triphosphate (ATP), generate oxidative stress, and induce ATP-deficient cellular autophagy. This work shows that arginine-arginine distance at the nanoparticle surface is another fundamental parameter, along with the particle size, for the nonendocytic cell uptake of foreign materials and to control intracellular activity. This approach may be utilized in designing nanoprobes and nanocarriers with more efficient biomedical performances.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Anupam Maity
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
11
|
Chan A, Tsourkas A. Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications. BME FRONTIERS 2024; 5:0035. [PMID: 38282957 PMCID: PMC10809898 DOI: 10.34133/bmef.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Protein biologics are powerful therapeutic agents with diverse inhibitory and enzymatic functions. However, their clinical use has been limited to extracellular applications due to their inability to cross plasma membranes. Overcoming this physiological barrier would unlock the potential of protein drugs for the treatment of many intractable diseases. In this review, we highlight progress made toward achieving cytosolic delivery of recombinant proteins. We start by first considering intracellular protein delivery as a drug modality compared to existing Food and Drug Administration-approved drug modalities. Then, we summarize strategies that have been reported to achieve protein internalization. These techniques can be broadly classified into 3 categories: physical methods, direct protein engineering, and nanocarrier-mediated delivery. Finally, we highlight existing challenges for cytosolic protein delivery and offer an outlook for future advances.
Collapse
Affiliation(s)
| | - Andrew Tsourkas
- Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Sun H, Zhan M, Karpus A, Zou Y, Li J, Mignani S, Majoral JP, Shi X, Shen M. Bioactive Phosphorus Dendrimers as a Universal Protein Delivery System for Enhanced Anti-inflammation Therapy. ACS NANO 2024; 18:2195-2209. [PMID: 38194222 DOI: 10.1021/acsnano.3c09589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Nanocarrier-based cytoplasmic protein delivery offers opportunities to develop protein therapeutics; however, many delivery systems are positively charged, causing severe toxic effects. For enhanced therapeutics, it is also of great importance to design nanocarriers with intrinsic bioactivity that can be integrated with protein drugs due to the limited bioactivity of proteins alone for disease treatment. We report here a protein delivery system based on anionic phosphite-terminated phosphorus dendrimers with intrinsic anti-inflammatory activity. A phosphorus dendrimer termed AK-137 with optimized anti-inflammatory activity was selected to complex proteins through various physical interactions. Model proteins such as bovine serum albumin, ribonuclease A, ovalbumin, and fibronectin (FN) can be transfected into cells to exert their respective functions, including cancer cell apoptosis, dendritic cell maturation, or macrophage immunomodulation. Particularly, the constructed AK-137@FN nanocomplexes display powerful therapeutic effects in acute lung injury and acute gout arthritis models by integrating the anti-inflammatory activity of both the carrier and protein. The developed anionic phosphite-terminated phosphorus dendrimers may be employed as a universal carrier for protein delivery and particularly utilized to deliver proteins and fight different inflammatory diseases with enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Yu Zou
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
13
|
Lyu M, Yazdi M, Lin Y, Höhn M, Lächelt U, Wagner E. Receptor-Targeted Dual pH-Triggered Intracellular Protein Transfer. ACS Biomater Sci Eng 2024; 10:99-114. [PMID: 35802884 DOI: 10.1021/acsbiomaterials.2c00476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein therapeutics are of widespread interest due to their successful performance in the current pharmaceutical and medical fields, even though their broad applications have been hindered by the lack of an efficient intracellular delivery approach. Herein, we fabricated an active-targeted dual pH-responsive delivery system with favorable tumor cell entry augmented by extracellular pH-triggered charge reversal and tumor receptor targeting and pH-controlled endosomal release in a traceless fashion. As a traceable model protein, the enhanced green fluorescent protein (eGFP) bearing a nuclear localization signal was covalently coupled with a pH-labile traceless azidomethyl-methylmaleic anhydride (AzMMMan) linker followed by functionalization with different molar equivalents of two dibenzocyclooctyne-octa-arginine-cysteine (DBCO-R8C)-modified moieties: polyethylene glycol (PEG)-GE11 peptide for epidermal growth factor receptor-mediated targeting and melittin for endosomal escape. The cationic melittin domain was masked with tetrahydrophthalic anhydride revertible at mild acidic pH 6.5. At the optimally balanced ratio of functional units, the on-demand charge conversion at tumoral extracellular pH 6.5 in combination with GE11-mediated targeting triggered enhanced electrostatic cellular attraction by the R8C cell-penetrating peptides and melittin, as demonstrated by strongly enhanced cellular uptake. Successful endosomal release followed by nuclear localization of the eGFP cargo was obtained by taking advantage of melittin-mediated endosomal escape and rapid traceless release from the AzMMMan linker. The effectiveness of this multifunctional bioresponsive system suggests a promising strategy for delivery of protein drugs toward intracellular targets. A possible therapeutic relevance was indicated by an example of cytosolic delivery of cytochrome c initiating the apoptosis pathway to kill cancer cells.
Collapse
Affiliation(s)
- Meng Lyu
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
14
|
Koch KC, Bizmark TM, Tew GN. Alcohol-containing protein transduction domain mimics. J Control Release 2024; 365:950-956. [PMID: 38065415 DOI: 10.1016/j.jconrel.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/22/2023]
Abstract
The application and design of protein transduction domains (PTDs) and protein transduction domain mimics (PTDMs) have revolutionized the field of biomacromolecule delivery. Our group has previously synthesized block copolymer PTDMs with well-defined hydrophobic and cationic blocks via ring-opening metathesis polymerization (ROMP). We have optimized the balance of hydrophobicity and cationic density to intracellularly deliver model proteins, active proteins, and antibodies. Despite the presence of serine, threonine, and tyrosine in naturally occurring PTDs, synthetic analogs have yet to be studied in PTDMs. In our present work, we introduce different alcohol groups to our PTDM structures as a new design parameter. A library of nine novel PTDMs were synthesized to incorporate alcohol groups of varying structures and evaluated based on their ability to intracellularly deliver fluorescently labeled antibodies. One PTDM in this novel library, named PTDM4, incorporates alcohol groups in both the hydrophobic and cationic blocks and was found to be the best performing PTDM with almost twice the median fluorescence intensity of the delivered antibody and half the cationic density compared to our positive control, a PTDM thoroughly studied by our group. PTDM4 was further studied by intracellularly delivering the active enzyme, TAT-Cre Recombinase. The activity of TAT-Cre Recombinase delivered by PTDM4 was comparable to that of the positive control, again with half the cationic density. This study is one of the first to examine the effects of alcohol groups on intracellular antibody and active enzyme delivery.
Collapse
Affiliation(s)
- Kayla C Koch
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Tamara M Bizmark
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States; Molecular & Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
15
|
Ting JM, Tamayo-Mendoza T, Petersen SR, Van Reet J, Ahmed UA, Snell NJ, Fisher JD, Stern M, Oviedo F. Frontiers in nonviral delivery of small molecule and genetic drugs, driven by polymer chemistry and machine learning for materials informatics. Chem Commun (Camb) 2023; 59:14197-14209. [PMID: 37955165 DOI: 10.1039/d3cc04705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Materials informatics (MI) has immense potential to accelerate the pace of innovation and new product development in biotechnology. Close collaborations between skilled physical and life scientists with data scientists are being established in pursuit of leveraging MI tools in automation and artificial intelligence (AI) to predict material properties in vitro and in vivo. However, the scarcity of large, standardized, and labeled materials data for connecting structure-function relationships represents one of the largest hurdles to overcome. In this Highlight, focus is brought to emerging developments in polymer-based therapeutic delivery platforms, where teams generate large experimental datasets around specific therapeutics and successfully establish a design-to-deployment cycle of specialized nanocarriers. Three select collaborations demonstrate how custom-built polymers protect and deliver small molecules, nucleic acids, and proteins, representing ideal use-cases for machine learning to understand how molecular-level interactions impact drug stabilization and release. We conclude with our perspectives on how MI innovations in automation efficiencies and digitalization of data-coupled with fundamental insight and creativity from the polymer science community-can accelerate translation of more gene therapies into lifesaving medicines.
Collapse
|
16
|
Chen X, Zheng Q, Cai W, Sheng J, Wang M. Biodegradable Hydrogen-Bonded Organic Framework for Cytosolic Protein Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54346-54352. [PMID: 37967322 DOI: 10.1021/acsami.3c14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a novel class of porous nanomaterials that show great potential for intracellular delivery of protein therapeutics. However, the inherent challenges in interfacing protein with HOFs, and the need for spatiotemporally controlling the release of protein within cells, have constrained their therapeutic potential. In this study, we report novel biodegradable hydrogen-bonded organic frameworks, termed DS-HOFs, specially designed for the cytosolic delivery of protein therapeutics in cancer cells. The synthesis of DS-HOFs involves the self-assembly of 4-[tris(4-carbamimidoylphenyl) methyl] benzenecarboximidamide (TAM) and 4,4'-dithiobisbenzoic acid (DTBA), governed by intermolecular hydrogen-bonding interactions. DS-HOFs exhibit high efficiency in encapsulating a diverse range of protein cargos, underpinned by the hydrogen-bonding interactions between the protein residue and DS-HOF subcomponents. Notably, DS-HOFs are selectively degraded in cancer cells triggered by the distinct intracellular reductive microenvironments, enabling an enhanced and selective release of protein inside cancer cells. Additionally, we demonstrate that the efficient delivery of bacterial effector protein DUF5 using DS-HOFs depletes the mutant RAS in cancer cells to prohibit tumor cell growth both in vitro and in vivo. The design of biodegradable HOFs for cytosolic protein delivery provides a powerful and promising strategy to expand the therapeutic potential of proteins for cancer therapy.
Collapse
Affiliation(s)
- Xianghan Chen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Cai
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhan Sheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Jeon T, Makabenta JMV, Park J, Nabawy A, Cicek YA, Mirza SS, Welton J, Hassan MA, Huang R, Mager J, Rotello VM. Antimicrobial polymer-siRNA polyplexes as a dual-mode platform for the treatment of wound biofilm infections. MATERIALS HORIZONS 2023; 10:5500-5507. [PMID: 37815454 PMCID: PMC10841859 DOI: 10.1039/d3mh01108a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Treatment of wound biofilm infections faces challenges from both pathogens and uncontrolled host immune response. Treating both issues through a single vector would provide enhanced wound healing. Here, we report the use of a potent cationic antimicrobial polymer to generate siRNA polyplexes for dual-mode treatment of wound biofilms in vivo. These polyplexes act both as an antibiofilm agent and a delivery vehicle for siRNA for the knockdown of biofilm-associated pro-inflammatory MMP9 in host macrophages. The resulting polyplexes were effective in vitro, eradicating MRSA biofilms and efficiently delivering siRNA to macrophages in vitro with concomitant knockdown of MMP9. These polyplexes were likewise effective in an in vivo murine wound biofilm model, significantly reducing bacterial load in the wound (∼99% bacterial clearance) and reducing MMP9 expression by 80% (qRT-PCR). This combination therapeutic strategy dramatically reduced wound purulence and significantly expedited wound healing. Taken together, these polyplexes provide an effective and translatable strategy for managing biofilm-infected wounds.
Collapse
Affiliation(s)
- Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA.
| | - Jessa Marie V Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Sarah S Mirza
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Janelle Welton
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M Rotello
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA.
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
18
|
Liu X, Zhao Z, Li W, Li Y, Yang Q, Liu N, Chen Y, Yin L. Engineering Nucleotidoproteins for Base-Pairing-Assisted Cytosolic Delivery and Genome Editing. Angew Chem Int Ed Engl 2023; 62:e202307664. [PMID: 37718311 DOI: 10.1002/anie.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Protein therapeutics targeting intracellular machineries hold profound potential for disease treatment, and hence robust cytosolic protein delivery technologies are imperatively demanded. Inspired by the super-negatively charged, nucleotide-enriched structure of nucleic acids, adenylated pro-proteins (A-proteins) with dramatically enhanced negative surface charges have been engineered for the first time via facile green synthesis. Then, thymidine-modified polyethyleneimine is developed, which exhibits strong electrostatic attraction, complementary base pairing, and hydrophobic interaction with A-proteins to form salt-resistant nanocomplexes with robust cytosolic delivery efficiencies. The acidic endolysosomal environment enables traceless restoration of the A-proteins and consequently promotes the intracellular release of the native proteins. This strategy shows high efficiency and universality for a variety of proteins with different molecular weights and isoelectric points in mammalian cells. Moreover, it enables highly efficient delivery of CRISPR-Cas9 ribonucleoproteins targeting fusion oncogene EWSR1-FLI1, leading to pronounced anti-tumor efficacy against Ewing sarcoma. This study provides a potent and versatile platform for cytosolic protein delivery and gene editing, and may benefit the development of protein pharmaceuticals.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
- Department of Thoracic Cancer, The Second Affiliated Hospital of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Wei Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yajie Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Qiang Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ningyu Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yongbing Chen
- Department of Thoracic Cancer, The Second Affiliated Hospital of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Makabenta JMV, Nabawy A, Chattopadhyay AN, Park J, Li CH, Goswami R, Luther DC, Huang R, Hassan MA, Rotello VM. Antimicrobial-loaded biodegradable nanoemulsions for efficient clearance of intracellular pathogens in bacterial peritonitis. Biomaterials 2023; 302:122344. [PMID: 37857021 PMCID: PMC10872928 DOI: 10.1016/j.biomaterials.2023.122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Intracellular pathogenic bacteria use immune cells as hosts for bacterial replication and reinfection, leading to challenging systemic infections including peritonitis. The spread of multidrug-resistant (MDR) bacteria and the added barrier presented by host cell internalization limit the efficacy of standard antibiotic therapies for treating intracellular infections. We present a non-antibiotic strategy to treat intracellular infections. Antimicrobial phytochemicals were stabilized and delivered by polymer-stabilized biodegradable nanoemulsions (BNEs). BNEs were fabricated using different phytochemicals, with eugenol-loaded BNEs (E-BNEs) affording the best combination of antimicrobial efficacy, macrophage accumulation, and biocompatibility. The positively-charged polymer groups of the E-BNEs bind to the cell surface of macrophages, facilitating the entry of eugenol that then kills the intracellular bacteria without harming the host cells. Confocal imaging and flow cytometry confirmed that this entry occurred mainly via cholesterol-dependent membrane fusion. As eugenol co-localized and interacted with intracellular bacteria, antibacterial efficacy was maintained. E-BNEs reversed the immunosuppressive effects of MRSA on macrophages. Notably, E-BNEs did not elicit resistance selection after multiple exposures of MRSA to sub-therapeutic doses. The E-BNEs were highly effective against a murine model of MRSA-induced peritonitis with better bacterial clearance (99 % bacteria reduction) compared to clinically-employed treatment with vancomycin. Overall, these findings demonstrate the potential of E-BNEs in treating peritonitis and other refractory intracellular infections.
Collapse
Affiliation(s)
- Jessa Marie V Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States.
| |
Collapse
|
20
|
Kaltbeitzel J, Wich PR. Protein-based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angew Chem Int Ed Engl 2023; 62:e202216097. [PMID: 36917017 DOI: 10.1002/anie.202216097] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
Proteins and enzymes are versatile biomaterials for a wide range of medical applications due to their high specificity for receptors and substrates, high degradability, low toxicity, and overall good biocompatibility. Protein nanoparticles are formed by the arrangement of several native or modified proteins into nanometer-sized assemblies. In this review, we will focus on artificial nanoparticle systems, where proteins are the main structural element and not just an encapsulated payload. While under natural conditions, only certain proteins form defined aggregates and nanoparticles, chemical modifications or a change in the physical environment can further extend the pool of available building blocks. This allows the assembly of many globular proteins and even enzymes. These advances in preparation methods led to the emergence of new generations of nanosystems that extend beyond transport vehicles to diverse applications, from multifunctional drug delivery to imaging, nanocatalysis and protein therapy.
Collapse
Affiliation(s)
- Jonas Kaltbeitzel
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
21
|
Shaw S, Sarkar AK, Jana NR. Protein Delivery to the Cytosol and Cell Nucleus via Micellar Nanocarrier-Based Nonendocytic Uptake. ACS APPLIED BIO MATERIALS 2023; 6:4200-4207. [PMID: 37712910 DOI: 10.1021/acsabm.3c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Although efficient cell nucleus delivery of exogenous materials can greatly improve their biochemical activity, this is strictly restricted by cellular uptake and intracellular trafficking processes. In the current approach, synthetic carriers are designed for cell delivery of exogenous materials via endocytosis, and nucleus delivery can be achieved via endosomal escape. Here, we demonstrate that a nonendocytic cell uptake approach can be adapted for protein delivery to the cell nucleus. We have designed a phenylboronic acid-terminated micellar carrier that can bind with protein in the presence of green tea polyphenol and deliver protein into the cytosol via the nonendocytic approach. Using this approach, four different proteins are delivered to the cytosol within 15 min, and low-molecular weight proteins are delivered to the nucleus. The designed approach can be extended for delivering macromolecular drugs to subcellular targets for a more efficient therapy.
Collapse
Affiliation(s)
- Santanu Shaw
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata700032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata700032, India
| |
Collapse
|
22
|
Wang X, Li Y, Wang X, Sandoval DM, He Z, A S, Sáez IL, Wang W. Guanidyl-Rich Poly(β Amino Ester)s for Universal Functional Cytosolic Protein Delivery and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas9 Ribonucleoprotein Based Gene Editing. ACS NANO 2023; 17:17799-17810. [PMID: 37669145 PMCID: PMC10540258 DOI: 10.1021/acsnano.3c03269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Protein therapeutics are highly promising for complex disease treatment. However, the lack of ideal delivery vectors impedes their clinical use, especially the carriers for in vivo delivery of functional cytosolic protein. In this study, we modified poly(β amino ester)s (PAEs) with a phenyl guanidine (PG) group to enhance their suitability for cytosolic protein delivery. The effects of the PG group on protein binding, cell internalization, protein function protection, and endo/lysosomal escape were systematically evaluated. Compared to the unmodified PAEs (L3), guanidyl rich PAEs (L3PG) presented superior efficiency of protein binding and protein internalization, mainly via clathrin-mediated endocytosis. In addition, both PAEs showed robust capabilities to deliver cytosolic proteins with different molecular weight (ranging from 30 to 464 kDa) and isoelectric points (ranging from 4.3 to 9), which were significantly improved in comparison with the commercial reagents of PULsin and Pierce Protein Transection Reagent. Moreover, L3PG successfully delivered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas9 ribonucleoprotein (RNP) into HeLa cells expressing green fluorescent protein (GFP) and achieved more than 80% GFP expression knockout. These results demonstrated that guanidyl modification on PAEs can enhance its capabilities for intracellular delivery of cytosolic functional proteins and CRISPR/Cas9 ribonucleoprotein. The guanidyl-rich PAEs are promising nonviral vectors for functional protein delivery and potential use in protein and nuclease-based gene editing therapies.
Collapse
Affiliation(s)
- Xianqing Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| | - Yinghao Li
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Xi Wang
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| | - Dario M. Sandoval
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Zhonglei He
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| | - Sigen A
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| | - Irene Lara Sáez
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Wenxin Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| |
Collapse
|
23
|
Jantarat T, Lauterbach JD, Doungchawee J, Agrohia DK, Vachet RW. Quantitative imaging of the sub-organ distributions of nanomaterials in biological tissues via laser ablation inductively coupled plasma mass spectrometry. Analyst 2023; 148:4479-4488. [PMID: 37575048 DOI: 10.1039/d3an00839h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nanomaterials have been employed in many biomedical applications, and their distributions in biological systems can provide an understanding of their behavior in vivo. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) can be used to determine the distributions of metal-based NMs in biological systems. However, LA-ICP-MS has not commonly been used to quantitatively measure the cell-specific or sub-organ distributions of nanomaterials in tissues. Here, we describe a new platform that uses spiked gelatin standards with control tissues on top to obtain an almost perfect tissue mimic for quantitative imaging purposes. In our approach, gelatin is spiked with both nanomaterial standards and an internal standard to improve quantitation and image quality. The value of the developed approach is illustrated by determining the sub-organ distributions of different metal-based and metal-tagged polymeric nanomaterials in mice organs. The LA-ICP-MS images reveal that the chemical and physical properties of the nanomaterials cause them to distribute in quantitatively different extents in spleens, kidneys, and tumors, providing new insight into the fate of nanomaterials in vivo. Furthermore, we demonstrate that this approach enables quantitative co-localization of nanomaterials and their cargo. We envision this method being a valuable tool in the development of nanomaterial drug delivery systems.
Collapse
Affiliation(s)
- Teerapong Jantarat
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | - Joshua D Lauterbach
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | - Jeerapat Doungchawee
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | - Dheeraj K Agrohia
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| |
Collapse
|
24
|
An J, Liu M, Din ZU, Xie F, Cai J. Toward function starch nanogels by self-assembly of polysaccharide and protein: From synthesis to potential for polyphenol delivery. Int J Biol Macromol 2023; 247:125697. [PMID: 37423442 DOI: 10.1016/j.ijbiomac.2023.125697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Nanogels formed by self-assembly of natural proteins and polysaccharides have attracted great interest as potential carriers of bioactive molecules. Herein, we reported that carboxymethyl starch-lysozyme nanogels (CMS-Ly NGs) were prepared using carboxymethyl starch and lysozyme by green and facile electrostatic self-assembly, and the nanogels served as epigallocatechin gallate (EGCG) delivery systems. The dimensions and structure of the prepared starch-based nanogels (i.e., CMS-Ly NGs) were characterized by dynamic light scattering (DLS), ζ-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA). FT-IR and 1H NMR spectra together confirmed the formation of CMS; FT-IR spectra confirmed the formation of CMS-Ly NGs; XRD spectra confirmed the disruption of the crystal structure of lysozyme after electrostatic self-assembly with CMS, and further confirmed the formation of nanogels. TGA demonstrated the thermal stability of nanogels. More importantly, the nanogels showed a high EGCG encapsulation rate of 80.0 ± 1.4 %. The CMS-Ly NGs encapsulated with EGCG exhibited regular spherical structure and stable particle size. Under the simulated gastrointestinal environmental conditions, CMS-Ly NGs encapsulated with EGCG showed the controlled release potential, which increased its utilization. Additionally, anthocyanins can also be encapsulated in CMS-Ly NGs and showed slow-release properties during gastrointestinal digestion in the same way. Cytotoxicity assay also demonstrated good biocompatibility between CMS-Ly NGs and CMS-Ly NGs encapsulated with EGCG. The findings of this research suggested the potential application of protein and polysaccharides-based nanogels in the delivery system of bioactive compounds.
Collapse
Affiliation(s)
- Jiejie An
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Mingzhu Liu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-Ud Din
- Department of Food Science and Nutrition, Women University Swabi, Swabi 23430, Khyber Pakhtunkhawa, Pakistan
| | - Fang Xie
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
25
|
Sarkar AK, Shaw S, Arora H, Seth P, Jana NR. Nuclear Transport of the Molecular Drug via Nanocarrier-Based Nonendocytic Cellular Uptake. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39176-39185. [PMID: 37552859 DOI: 10.1021/acsami.3c09241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Although subcellular targeting can enhance the therapeutic performance of most drugs, such targeting requires appropriate carrier-based delivery that can bypass endosomal/lysosomal trafficking. Recent works show that nanocarriers can be designed for direct cell membrane translocation and nonendocytic uptake, bypassing the usual endocytosis processes. Here we show that this approach can be adapted for the rapid cell nucleus delivery of molecular drugs. In particular, a guanidinium-terminated nanocarrier is used to create a weak interaction-based carrier-drug nanoassembly for direct membrane translocation into the cytosol. The rapid and extensive entry of a drug-loaded nanocarrier into the cell without any vesicular coating and affinity of the drug to the nucleus allows their nucleus labeling. Compared to endocytotic uptake that requires more than hours for cell uptake followed by predominant lysosomal entrapment, this nonendocytic uptake labels the nucleus within a few minutes without any lysosomal trafficking. This approach may be utilized for nanocarrier-based subcellular targeting of drugs for more effective therapy.
Collapse
Affiliation(s)
- Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Santanu Shaw
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Himali Arora
- Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, Haryana 122052, India
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, Haryana 122052, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
26
|
Le Z, Pan Q, He Z, Liu H, Shi Y, Liu L, Liu Z, Ping Y, Chen Y. Direct Cytosolic Delivery of Proteins and CRISPR-Cas9 Genome Editing by Gemini Amphiphiles via Non-Endocytic Translocation Pathways. ACS CENTRAL SCIENCE 2023; 9:1313-1326. [PMID: 37521791 PMCID: PMC10375873 DOI: 10.1021/acscentsci.3c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 08/01/2023]
Abstract
Intracellular delivery of therapeutic biomacromolecules is often challenged by the poor transmembrane and limited endosomal escape. Here, we establish a combinatorial library composed of 150 molecular weight-defined gemini amphiphiles (GAs) to identify the vehicles that facilitate robust cytosolic delivery of proteins in vitro and in vivo. These GAs display similar skeletal structures but differential amphiphilicity by adjusting the length of alkyl tails, type of ionizable cationic heads, and hydrophobicity or hydrophilicity of a spacer. The top candidate is highly efficient in translocating a broad spectrum of proteins with various molecular weights and isoelectric points into the cytosol. Particularly, we notice that the entry mechanism is predominantly mediated via the lipid raft-dependent membrane fusion, bypassing the classical endocytic pathway that limits the cytosolic delivery efficiency of many presently available carriers. Remarkably, the top GA candidate is capable of delivering hard-to-deliver Cas9 ribonucleoprotein in vivo, disrupting KRAS mutation in the tumor-bearing mice to inhibit tumor growth and extend their survival. Our study reveals a GA-based small-molecule carrier platform for the direct cytosolic delivery of various types of proteins for therapeutic purposes.
Collapse
Affiliation(s)
- Zhicheng Le
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Qi Pan
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zepeng He
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong Liu
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi Shi
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Lixin Liu
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhijia Liu
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuan Ping
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongming Chen
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
27
|
Yoshizaki Y, Konno T. Cellular Internalization and Exiting Behavior of Zwitterionic 4-Armed Star-Shaped Polymers. Molecules 2023; 28:molecules28114479. [PMID: 37298956 DOI: 10.3390/molecules28114479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The zwitterionic phospholipid polymer poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) is amphiphilic copolymer, and it has been reported to directly penetrate cell membranes and have good cytocompatibility. Conventional PMBs are linear-type random copolymers that are polymerized by a free radical polymerization technique. In contrast, star-shaped polymers, or simple branched-type polymers, have unique properties compared to the linear types, for example, a viscosity based on the effect of the excluded volume. In this study, a branched architecture was introduced into a PMB molecular structure, and a 4-armed star-shaped PMB (4armPMB) was synthesized by an atom transfer radical polymerization (ATRP) technique known as living radical polymerization. Linear-type PMB was also synthesized using ATRP. The effects of the polymer architecture on cytotoxicity and cellular uptake were investigated. Both 4armPMB and LinearPMB were successfully synthesized, and these polymers were verified to be water soluble. Pyrene fluorescence in the polymer solution indicated that the architecture had no effect on the behavior of the polymer aggregates. In addition, these polymers caused no cytotoxicity or cell membrane damage. The 4armPMB and LinearPMB penetrated into the cells after a short incubation period, with similar rates. In contrast, the 4armPMB showed a quicker back-diffusion from the cells than that of LinearPMB. The 4armPMB showed fast cellular internalization and exiting behaviors.
Collapse
Affiliation(s)
- Yuta Yoshizaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tomohiro Konno
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
28
|
He X, Qu Y, Xiong S, Jiang Z, Tang Y, Yan F, Deng Y, Sun Y. Functional L-Arginine Derivative as an Efficient Vector for Intracellular Protein Delivery for Potential Cancer Therapy. J Funct Biomater 2023; 14:301. [PMID: 37367265 DOI: 10.3390/jfb14060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The utilization of cytosolic protein delivery is a promising approach for treating various diseases by replacing dysfunctional proteins. Despite the development of various nanoparticle-based intracellular protein delivery methods, the complicated chemical synthesis of the vector, loading efficiency and endosomal escape efficiency of proteins remain a great challenge. Recently, 9-fluorenylmethyloxycarbonyl (Fmoc)-modified amino acid derivatives have been used to self-assemble into supramolecular nanomaterials for drug delivery. However, the instability of the Fmoc group in aqueous medium restricts its application. To address this issue, the Fmoc ligand neighboring arginine was substituted for dibenzocyclooctyne (DBCO) with a similar structure to Fmoc to obtain stable DBCO-functionalized L-arginine derivative (DR). Azide-modified triethylamine (crosslinker C) was combined with DR to construct self-assembled DRC via a click chemical reaction for delivering various proteins, such as BSA and saporin (SA), into the cytosol of cells. The hyaluronic-acid-coated DRC/SA was able to not only shield the cationic toxicity, but also enhance the intracellular delivery efficiency of proteins by targeting CD44 overexpression on the cell membrane. The DRC/SA/HA exhibited higher growth inhibition efficiency and lower IC50 compared to DRC/SA toward various cancer cell lines. In conclusion, DBCO-functionalized L-arginine derivative represents an excellent potential vector for protein-based cancer therapy.
Collapse
Affiliation(s)
- Xiao He
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yannv Qu
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Zhiru Jiang
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanfei Deng
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yansun Sun
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
29
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
30
|
Zhang Y, Shi J, Ma B, Yong H, Li Z, Zhou YN, Li J, Liang L, Zhou D. Phosphocholine-Functionalized Zwitterionic Highly Branched Poly(β-amino ester)s for Cytoplasmic Protein Delivery. ACS Macro Lett 2023; 12:626-631. [PMID: 37094219 DOI: 10.1021/acsmacrolett.3c00155] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Proteins have tremendous potential for vaccine development and disease treatment, but multiple extracellular and intracellular biological barriers must be overcome before they can exert specific biological functions in the target tissue. The use of polymers as carriers would greatly improve their bioavailability and therapeutic efficiency. Nevertheless, effective protein packaging and cell membrane penetration without causing cytotoxicity is particularly challenging, due largely to the simultaneous distribution of positive and negative charges on protein surface. Here, phosphocholine-functionalized zwitterionic poly(β-amino ester)s, HPAE-D-(±), are developed for cytoplasmic protein delivery. The zwitterionic phosphocholine is capable of binding to both proteins and the cell membrane to facilitate protein packaging and nanoparticle cellular uptake. Compared to amine-functionalized HPAE-E-(+) and carboxylic acid-functionalized HPAE-C-(-), HPAE-D-(±) exhibits much higher cytoplasmic protein delivery efficiency and lower cytotoxicity. In addition, HPAE-D-(±) are readily degraded in aqueous solution. This strategy may be extended to other zwitterions and polymers, thus having profound implications for the development of safe and efficient protein delivery systems.
Collapse
Affiliation(s)
- Yuhe Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiahao Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ya-Nan Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lirong Liang
- Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
31
|
Ding W, Yang X, Lin H, Xu Z, Wang J, Dai J, Xu C, Chen F, Wen X, Chai W, Ruan G. Mechanism-Driven Technology Development for Solving the Intracellular Delivery Problem of Hard-To-Transfect Cells. NANO LETTERS 2023. [PMID: 36971675 DOI: 10.1021/acs.nanolett.2c04834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The so-called "hard-to-transfect cells" are well-known to present great challenges to intracellular delivery, but detailed understandings of the delivery behaviors are lacking. Recently, we discovered that vesicle trapping is a likely bottleneck of delivery into a type of hard-to-transfect cells, namely, bone-marrow-derived mesenchymal stem cells (BMSCs). Driven by this insight, herein, we screened various vesicle trapping-reducing methods on BMSCs. Most of these methods failed in BMSCs, although they worked well in HeLa cells. In stark contrast, coating nanoparticles with a specific form of poly(disulfide) (called PDS1) nearly completely circumvented vesicle trapping in BMSCs, by direct cell membrane penetration mediated by thiol-disulfide exchange. Further, in BMSCs, PDS1-coated nanoparticles dramatically enhanced the transfection efficiency of plasmids of fluorescent proteins and substantially improved osteoblastic differentiation. In addition, mechanistic studies suggested that higher cholesterol content in plasma membranes of BMSCs might be a molecular-level reason for the greater difficulty of vesicle escape in BMSCs.
Collapse
Affiliation(s)
- Wanchuan Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xuan Yang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Nanobiotechnology & Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Cell & Gene Therapy Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Huoyue Lin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Zixing Xu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Nanobiotechnology & Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Cell & Gene Therapy Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Jun Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Jie Dai
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Can Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaowei Wen
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Nanobiotechnology & Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Cell & Gene Therapy Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weiran Chai
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Gang Ruan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Nanobiotechnology & Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Cell & Gene Therapy Center, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Materials Engineering of Nanjing University, Nantong 210033, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518063, China
| |
Collapse
|
32
|
Jeon T, Luther DC, Goswami R, Bell C, Nagaraj H, Anil Cicek Y, Huang R, Mas-Rosario JA, Elia JL, Im J, Lee YW, Liu Y, Scaletti F, Farkas ME, Mager J, Rotello VM. Engineered Polymer-siRNA Polyplexes Provide Effective Treatment of Lung Inflammation. ACS NANO 2023; 17:4315-4326. [PMID: 36802503 PMCID: PMC10627429 DOI: 10.1021/acsnano.2c08690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Uncontrolled inflammation is responsible for acute and chronic diseases in the lung. Regulating expression of pro-inflammatory genes in pulmonary tissue using small interfering RNA (siRNA) is a promising approach to combatting respiratory diseases. However, siRNA therapeutics are generally hindered at the cellular level by endosomal entrapment of delivered cargo and at the organismal level by inefficient localization in pulmonary tissue. Here we report efficient anti-inflammatory activity in vitro and in vivo using polyplexes of siRNA and an engineered cationic polymer (PONI-Guan). PONI-Guan/siRNA polyplexes efficiently deliver siRNA cargo to the cytosol for highly efficient gene knockdown. Significantly, these polyplexes exhibit inherent targeting to inflamed lung tissue following intravenous administration in vivo. This strategy achieved effective (>70%) knockdown of gene expression in vitro and efficient (>80%) silencing of TNF-α expression in lipopolysaccharide (LPS)-challenged mice using a low (0.28 mg/kg) siRNA dosage.
Collapse
Affiliation(s)
- Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - David C. Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Charlotte Bell
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Javier A. Mas-Rosario
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
| | - James L. Elia
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jungkyun Im
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
- Department of Chemical Engineering, and Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyangro, Asan, 31538, Republic of Korea
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Federica Scaletti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Michelle E. Farkas
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M. Rotello
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
33
|
Gao X, Yuan C, Tan E, Li Z, Cheng Y, Xiao J, Rong G. Dual-responsive bioconjugates bearing a bifunctional adaptor for robust cytosolic peptide delivery. J Control Release 2023; 355:675-684. [PMID: 36791993 DOI: 10.1016/j.jconrel.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Peptide drugs have been successfully used for the treatment of various diseases. However, it is still challenging to develop therapeutic peptides working on intracellular targets due to their poor membrane permeability. Here, we proposed a type of dual-responsive bioconjugates bearing a heterobifunctional adaptor containing both aldehyde and catechol moieties for efficient cytosolic peptide delivery. Hydrazine-terminated cargo peptides were tagged to a boronated dendrimer with the help of the adaptor via dynamic acylhydrazone and catechol‑boronate linkages. The bioconjugates efficiently delivered peptides with distinct physicochemical properties into various cells, and could release the cargo peptides triggered by intracellular reactive oxygen species and endolysosomal acidity, restoring the biofunctions of delivered peptides. In addition, the designed complexes efficiently delivered a pro-apoptotic peptide into osteosarcoma cancer cells and successfully inhibited the tumor growth both in vitro and in vivo. This study provides a universal and efficient platform for cytosolic therapeutic peptide delivery to intracellular targets for treating various diseases.
Collapse
Affiliation(s)
- Xin Gao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Chunyang Yuan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Echuan Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, PR China
| | - Zhan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China; South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
34
|
Zhu M, Wang X, Xie R, Wang Y, Xu X, Burger J, Gong S. Guanidinium-Rich Lipopeptide-Based Nanoparticle Enables Efficient Gene Editing in Skeletal Muscles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10464-10476. [PMID: 36800641 DOI: 10.1021/acsami.2c21683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Genome editing mediated by the CRISPR-Cas system holds great promise for the treatment of genetic diseases. However, safe and efficient in vivo delivery of CRISPR genome editing machinery remains a challenge. Here, we report a lipopeptide-based nanoparticle (LNP) that can efficiently deliver the CRISPR Cas9/sgRNA ribonucleoprotein (RNP) and enable efficient genome editing both in vitro and in vivo. An artificial lipopeptide, GD-LP, was constructed by linking a hydrophilic guanidinium-rich head to an oleic acid-based hydrophobic tail via a disulfide bond. LNP formed by the self-assembly of GD-LP can easily form a complex with RNP with a loading content of up to 20 wt %. The resulting RNP-LNP nanocomplex led to 72.6% gene editing efficiency in GFP-HEK cells with negligible cytotoxicity. The LNP also showed significantly higher transfection efficiencies than Lipofectamine 2000 for the delivery of mRNA in NIH 3T3 and RAW 264.7 and the delivery of plasmid DNA in B78 cells. In vivo studies showed that intramuscular injection of the RNP-LNP nanocomplex in Ai14 mice induced efficient gene editing in muscular tissues. Moreover, the delivery of Cas9 RNP and donor DNA by LNP (i.e., RNP/ssODN-LNP nanocomplex) restored dystrophin expression, reduced skeletal muscle fibrosis, and significantly improved muscle strength in a Duchenne muscular dystrophy (DMD) mouse model.
Collapse
Affiliation(s)
- Min Zhu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xiuxiu Wang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yuyuan Wang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xianghui Xu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jacobus Burger
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
35
|
Chen C, Gao P, Wang H, Cheng Y, Lv J. Histidine-based coordinative polymers for efficient intracellular protein delivery via enhanced protein binding, cellular uptake, and endosomal escape. Biomater Sci 2023; 11:1765-1775. [PMID: 36648450 DOI: 10.1039/d2bm01541b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymers are one of the most promising protein delivery carriers; however, their applications are hindered by low delivery efficacy owing to their undesirable performance in protein binding, cellular uptake and endosomal escape. Here, we designed a series of histidine-based coordinative polymers for efficient intracellular protein delivery. Coordination of metal ions such as Ni2+, Zn2+, and Cu2+ with histidine residues on a polymer greatly improved its performance in protein binding, complex stability, cellular uptake and endosomal escape, therefore achieving highly improved protein delivery efficacy. Among the coordinative polymers, the Zn2+-coordinated one exhibited the highest cellular uptake, while the Cu2+-coordinated one exhibited the highest endosomal escape. The Ni2+-coordinated polymer formed large-sized aggregates with cargo proteins and showed insufficient protein release after endocytosis. The results obtained in this study provided new insight into the development of coordinative polymer-based protein delivery systems.
Collapse
Affiliation(s)
- Changyuan Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Peng Gao
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
36
|
Ren L, Jiang L, Ren Q, Lv J, Zhu L, Cheng Y. A light-activated polymer with excellent serum tolerance for intracellular protein delivery. Chem Sci 2023; 14:2046-2053. [PMID: 36845943 PMCID: PMC9945510 DOI: 10.1039/d2sc05848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
The design of efficient materials for intracellular protein delivery has attracted great interest in recent years; however, most current materials for this purpose are limited by poor serum stability due to the early release of cargoes triggered by abundant serum proteins. Here, we propose a light-activated crosslinking (LAC) strategy to prepare efficient polymers with excellent serum tolerance for intracellular protein delivery. A cationic dendrimer engineered with photoactivatable O-nitrobenzene moieties co-assembles with cargo proteins via ionic interactions, followed by light activation to yield aldehyde groups on the dendrimer and the formation of imine bonds with cargo proteins. The light-activated complexes show high stability in buffer and serum solutions, but dis-assemble under low pH conditions. As a result, the polymer successfully delivers cargo proteins green fluorescent protein and β-galactosidase into cells with maintained bioactivity even in the presence of 50% serum. The LAC strategy proposed in this study provides a new insight to improve the serum stability of polymers for intracellular protein delivery.
Collapse
Affiliation(s)
- Lanfang Ren
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University Shanghai 200241 China
| | - Li Jiang
- School of Biomedical Engineering, Shanghai Jiaotong University Shanghai 200240 China
| | - Qianyi Ren
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University Shanghai 200241 China
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University Shanghai 200241 China
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiaotong University Shanghai 200240 China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University Shanghai 200241 China
| |
Collapse
|
37
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
38
|
Liang M, Cheng Y, Wang H. A Cu + /Thiourea Dendrimer Achieves Excellent Cytosolic Protein Delivery via Enhanced Cell Uptake and Endosome Escape. Chemistry 2023; 29:e202300131. [PMID: 36662543 DOI: 10.1002/chem.202300131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/21/2023]
Abstract
Intracellular protein delivery has attracted considerable attention in the development of protein-based therapeutics, however, the design of highly efficient materials for robust delivery of native proteins remains challenging. This study proposes a Cu+ -based coordination polymer for cytosolic protein delivery with high efficacy and robustness. The phenylthiourea grafted dendrimer is coordinated with cuprous ions to prepare the polymeric carrier, which efficiently bind cargo proteins via a combination of coordination, ionic and hydrophobic interactions. The incorporation of Cu+ ions in the polymer greatly improves its cellular uptake and endosomal escape. The cuprous-based coordination polymer successfully delivered a variety of structurally diverse proteins into various cell lines with reserved bioactivities. This study provides a new type of coordination polymers for cytosolic delivery of biomacromolecules.
Collapse
Affiliation(s)
- Mengxiao Liang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, P. R. China.,Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, P. R. China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
39
|
Goswami R, Lehot V, Çiçek YA, Nagaraj H, Jeon T, Nguyen T, Fedeli S, Rotello VM. Direct Cytosolic Delivery of Citraconylated Proteins. Pharmaceutics 2023; 15:pharmaceutics15010218. [PMID: 36678847 PMCID: PMC9861219 DOI: 10.3390/pharmaceutics15010218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
Current intracellular protein delivery strategies face the challenge of endosomal entrapment and consequent degradation of protein cargo. Methods to efficiently deliver proteins directly to the cytosol have the potential to overcome this hurdle. Here, we report the use of a straightforward approach of protein modification using citraconic anhydride to impart an overall negative charge on the proteins, enabling them to assemble with positively charged nano vectors. This strategy uses anhydride-modified proteins to electrostatically form polymer-protein nanocomposites with a cationic guanidinium-functionalized polymer. These supramolecular self-assemblies demonstrated the efficient cytosolic delivery of modified proteins through a membrane fusion-like mechanism. This approach was validated on five cell lines and seven proteins as cargo. Retention of protein function was confirmed through efficient cell killing via the intracellular enzymatic activity of RNase A. This platform provides a versatile, straightforward, and single-step method of protein modification and efficient direct cytosolic protein delivery.
Collapse
Affiliation(s)
- Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Victor Lehot
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Yağız Anıl Çiçek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Terry Nguyen
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
- Correspondence:
| |
Collapse
|
40
|
Hamelmann NM, Uijttewaal S, Hujaya SD, Paulusse JMJ. Enhancing Cellular Internalization of Single-Chain Polymer Nanoparticles via Polyplex Formation. Biomacromolecules 2022; 23:5036-5042. [PMID: 36383472 DOI: 10.1021/acs.biomac.2c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intracellular delivery of nanoparticles is crucial in nanomedicine to reach optimal delivery of therapeutics and imaging agents. Single-chain polymer nanoparticles (SCNPs) are an interesting class of nanoparticles due to their unique site range of 5-20 nm. The intracellular delivery of SCNPs can be enhanced by using delivery agents. Here, a positive polymer is used to form polyplexes with SCNPs, similar to the strategy of protein and gene delivery. The size and surface charge of the polyplexes were evaluated. The cellular uptake showed rapid uptake of SCNPs via polyplex formation, and the cytosolic delivery of the SCNPs was presented by confocal microscopy. The ability of SCNPs to act as nanocarriers was further explored by conjugation of doxorubicin.
Collapse
Affiliation(s)
- Naomi M Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sjoerd Uijttewaal
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sry D Hujaya
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jos M J Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
41
|
Zhang S, Tan E, Wang R, Gao P, Wang H, Cheng Y. Robust Reversible Cross-Linking Strategy for Intracellular Protein Delivery with Excellent Serum Tolerance. NANO LETTERS 2022; 22:8233-8240. [PMID: 36173109 DOI: 10.1021/acs.nanolett.2c02948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intracellular protein delivery has attracted increasing attentions in biomedical applications. However, current delivery systems usually have poor serum stability due to the competitive binding of serum proteins to the polymers during delivery. Here, we report a reversible cross-linking strategy to improve the serum stability of polymers for robust intracellular protein delivery. In the proposed delivery system, nanoparticles are assembled by cargo proteins and cationic polymers and further stabilized by a glutathione-cleavable and traceless cross-linker. The cross-linked nanoparticles show high stability and efficient cell internalization in serum containing medium and can release the cargo proteins in response to intracellular glutathione and acidic pH in a traceless manner. The generality and versatility of the proposed strategy were demonstrated on different types of cationic polymers, cargo proteins, as well as cell lines. The study provides a facile and efficient method for improving the serum tolerance of cationic polymers in intracellular protein delivery.
Collapse
Affiliation(s)
- Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Echuan Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ruijue Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Peng Gao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| |
Collapse
|
42
|
Rodik RV, Cherenok SO, Postupalenko VY, Oncul S, Brusianska V, Borysko P, Kalchenko VI, Mely Y, Klymchenko AS. Anionic amphiphilic calixarenes for peptide assembly and delivery. J Colloid Interface Sci 2022; 624:270-278. [PMID: 35660896 DOI: 10.1016/j.jcis.2022.05.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Shape-persistent macrocycles enable superior control on molecular self-assembly, allowing the preparation of well-defined nanostructures with new functions. Here, we report on anionic amphiphilic calixarenes of conic shape and their self-assembly behavior in aqueous media for application in intracellular delivery of peptides. Newly synthesized calixarenes bearing four phosphonate groups and two or four long alkyl chains were found to form micelles of ∼ 10 nm diameter, in contrast to an analogue with short alkyl chains. These amphiphilic calixarenes are able to complex model (oligo-lysine) and biologically relevant (HIV-1 nucleocapsid peptide) cationic peptides into small nanoparticles (20-40 nm). By contrast, a control anionic calixarene with short alkyl chains fails to form small nanoparticles with peptides, highlighting the importance of micellar assembly of amphiphilic calixarenes for peptide complexation. Cellular studies reveal that anionic amphiphilic calixarenes exhibit low cytotoxicity and enable internalization of fluorescently labelled peptides into live cells. These findings suggest anionic amphiphilic macrocycles as promising building blocks for the preparation of peptide delivery vehicles.
Collapse
Affiliation(s)
- Roman V Rodik
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv, Ukraine.
| | - Sergiy O Cherenok
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv, Ukraine
| | - Viktoriia Y Postupalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Sule Oncul
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France; İstanbul Medeniyet Üniversitesi, Istanbul, Turkey
| | | | - Petro Borysko
- Enamine Ltd, Chervonotkatska 78, 02094 Kyiv, Ukraine
| | - Vitaly I Kalchenko
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv, Ukraine
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France.
| |
Collapse
|
43
|
Li Y, Champion JA. Self-assembling nanocarriers from engineered proteins: Design, functionalization, and application for drug delivery. Adv Drug Deliv Rev 2022; 189:114462. [PMID: 35934126 DOI: 10.1016/j.addr.2022.114462] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
Self-assembling proteins are valuable building blocks for constructing drug nanocarriers due to their self-assembly behavior, monodispersity, biocompatibility, and biodegradability. Genetic and chemical modifications allow for modular design of protein nanocarriers with effective drug encapsulation, targetability, stimuli responsiveness, and in vivo half-life. Protein nanocarriers have been developed to deliver various therapeutic molecules including small molecules, proteins, and nucleic acids with proven in vitro and in vivo efficacy. This article reviews recent advances in protein nanocarriers that are not derived from natural protein nanostructures, such as protein cages or virus like particles. The protein nanocarriers described here are self-assembled from rationally or de novo designed recombinant proteins, as well as recombinant proteins complexed with other biomolecules, presenting properties that are unique from those of natural protein carriers. Design, functionalization, and therapeutic application of protein nanocarriers will be discussed.
Collapse
Affiliation(s)
- Yirui Li
- BioEngineering Program, Georgia Institute of Technology, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA 30332, United States; BioEngineering Program, Georgia Institute of Technology, United States.
| |
Collapse
|
44
|
Jiang W, Wu Y, Zhou M, Song G, Liu R. Advance and Designing Strategies in Polymeric Antifungal Agents Inspired by Membrane‐Active Peptides. Chemistry 2022; 28:e202202226. [DOI: 10.1002/chem.202202226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Weinan Jiang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yueming Wu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism Research Center for Biomedical Materials of Ministry of Education Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Min Zhou
- Shanghai Key Laboratory of Chemical Biology East China University of Science and Technology Shanghai 200237 P. R. China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemical Biology East China University of Science and Technology Shanghai 200237 P. R. China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism Research Center for Biomedical Materials of Ministry of Education Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
45
|
Reactive oxygen species-responsive branched poly (β-amino ester) with robust efficiency for cytosolic protein delivery. Acta Biomater 2022; 152:355-366. [PMID: 36084925 DOI: 10.1016/j.actbio.2022.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022]
Abstract
Protein therapy targeting the intracellular machinery holds great potentials for disease treatment, and therefore, effective cytosolic protein delivery technologies are highly demanded. Herein, we developed reactive oxygen species (ROS)-degradable, branched poly(β-amino ester) (PBAE) with built-in phenylboronic acid (PBA) in the backbone and terminal-pendent arginine for the efficient cytosolic protein delivery. The PBAE could form stable and cell-ingestible nanocomplexes (NCs) with proteins via electrostatic interaction, nitrogen-boronate (N-B) coordination, and hydrogen bonding, while it can be degraded into small segments by the over-produced H2O2 in tumor cells to enable cytoplasmic protein release. As thus, PBAE exhibited high efficiency in delivering varieties of proteins with distinct molecular weights (12.4-430 kDa) and isoelectric points (4.7-10.5) into tumor cells, including enzymes, toxins, and antibodies. Moreover, PBAE mediated efficient delivery of saporin into tumor cells in vivo, provoking pronounced anti-tumor outcomes. This study provides a robust and versatile platform for cytosolic protein delivery, and the elaborately tailored PBAE may find promising applications for protein-based biological research and disease management. STATEMENT OF SIGNIFICANCE: Cytosolic delivery of native proteins holds great therapeutic potentials, which however, is limited by the lack of robust delivery carriers that can simultaneously feature strong protein encapsulation yet effective intracellular protein release. Herein, ROS-degradable, branched poly(β-amino ester) (PBAE) with backbone-embedded phenylboronic acid (PBA) and terminal-pendent arginine was developed to synchronize these two processes. PBA and arginine moieties allowed PBAE to encapsulate proteins via N-B coordination, electrostatic interaction, hydrogen bonding, and salt bridging, while PBA could be oxidized by over-produced H2O2 inside cancer cells to trigger PBAE degradation and intracellular protein release. As thus, the top-performing PBAE mediated efficient cytosolic delivery of various proteins including enzymes, toxins, and antibodies. This study provides a powerful platform for cytosolic protein delivery, and may find promising utilities toward intracellular protein therapy against cancer and other diseases such as inflammation.
Collapse
|
46
|
Zhao Z, Liu X, Hou M, Zhou R, Wu F, Yan J, Li W, Zheng Y, Zhong Q, Chen Y, Yin L. Endocytosis-Independent and Cancer-Selective Cytosolic Protein Delivery via Reversible Tagging with LAT1 substrate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110560. [PMID: 35789055 DOI: 10.1002/adma.202110560] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Protein drugs targeting intracellular machineries have shown profound therapeutic potentials, but their clinical utilities are greatly hampered by the lack of efficient cytosolic delivery techniques. Existing strategies mainly rely on nanocarriers or conjugated cell-penetrating peptides (CPPs), which often have drawbacks such as materials complexity/toxicity, lack of cell specificity, and endolysosomal entrapment. Herein, a unique carrier-free approach is reported for mediating cancer-selective and endocytosis-free cytosolic protein delivery. Proteins are sequentially modified with 4-nitrophenyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzyl carbonate as the H2 O2 -responsive domain and 3,4-dihydroxy-l-phenylalanine as the substrate of l-type amino acid transporter 1 (LAT1). Thus, the pro-protein can be directly transported into tumor cells by overexpressed LAT1 on cell membranes, bypassing endocytosis and endolysosomal entrapment. In the cytosol, overproduced H2 O2 restores the protein structure and activity. Using this technique, versatile proteins are delivered into tumor cells with robust efficiency, including toxins, enzymes, CRISPR-Cas9 ribonucleoprotein, and antibodies. Furthermore, intravenously injected pro-protein of saporin shows potent anticancer efficacy in 4T1-tumor-bearing mice, without provoking systemic toxicity. Such a facile and versatile pro-protein platform may benefit the development of protein pharmaceuticals.
Collapse
Affiliation(s)
- Ziyin Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xun Liu
- Department of Thoracic Surgery, Suzhou Key Laboratory of Thoracic Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Mengying Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Renxiang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Fan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jing Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Wei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yujia Zheng
- Department of Thoracic Surgery, Suzhou Key Laboratory of Thoracic Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qinmeng Zhong
- College of Chemistry, Chemical Engineering and Materials Science, Suzhou, 215123, China
| | - Yongbing Chen
- Department of Thoracic Surgery, Suzhou Key Laboratory of Thoracic Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
47
|
Tian Y, Tirrell MV, LaBelle JL. Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Adv Healthc Mater 2022; 11:e2102600. [PMID: 35285167 PMCID: PMC9232950 DOI: 10.1002/adhm.202102600] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/09/2022] [Indexed: 12/19/2022]
Abstract
Biomacromolecules have long been at the leading edge of academic and pharmaceutical drug development and clinical translation. With the clinical advances of new therapeutics, such as monoclonal antibodies and nucleic acids, the array of medical applications of biomacromolecules has broadened considerably. A major on-going effort is to expand therapeutic targets within intracellular locations. Owing to their large sizes, abundant charges, and hydrogen-bond donors and acceptors, advanced delivery technologies are required to deliver biomacromolecules effectively inside cells. In this review, strategies used for the intracellular delivery of three major forms of biomacromolecules: nucleic acids, proteins, and peptides, are highlighted. An emphasis is placed on synthetic delivery approaches and the major hurdles needed to be overcome for their ultimate clinical translation.
Collapse
Affiliation(s)
- Yu Tian
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - James L. LaBelle
- Department of Pediatrics, Section of Hematology/OncologyThe University of Chicago900 E 57th StChicagoIL60637USA
| |
Collapse
|
48
|
Luther DC, Nagaraj H, Goswami R, Çiçek YA, Jeon T, Gopalakrishnan S, Rotello VM. Direct Cytosolic Delivery of Proteins Using Lyophilized and Reconstituted Polymer-Protein Assemblies. Pharm Res 2022; 39:1197-1204. [PMID: 35297498 PMCID: PMC10587898 DOI: 10.1007/s11095-022-03226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Cytosolic delivery of proteins accesses intracellular targets for chemotherapy and immunomodulation. Current delivery systems utilize inefficient endosomal pathways of uptake and escape that lead to degradation of delivered cargo. Cationic poly(oxanorbornene)imide (PONI) polymers enable highly efficient cytosolic delivery of co-engineered proteins, but aggregation and denaturation in solution limits shelf life. In the present study we evaluate polymer-protein nanocomposite vehicles as candidates for lyophilization and point-of-care resuspension to provide a transferrable technology for cytosolic protein delivery. METHODS Self-assembled nanocomposites of engineered poly(glutamate)-tagged (E-tagged) proteins and guanidinium-functionalized PONI homopolymers were generated, lyophilized, and stored for 2 weeks. After reconstitution and delivery, cytosolic access of E-tagged GFP cargo (GFPE15) was assessed through diffuse cytosolic and nuclear fluorescence, and cell killing with chemotherapeutic enzyme Granzyme A (GrAE10). Efficiency was quantified between freshly prepared and lyophilized samples. RESULTS Reconstituted nanocomposites retained key structural features of freshly prepared assemblies, with minimal loss of material. Cytosolic delivery (> 80% efficiency of freshly prepared nanocomposites) of GFPE15 was validated in several cell lines, with intracellular access validated and quantified through diffusion into the nucleus. Delivery of GrAE10 elicited significant tumorigenic cell death. Intracellular access of cytotoxic protein was validated through cell viability. CONCLUSION Reconstituted nanocomposites achieved efficient cytosolic delivery of protein cargo and demonstrated therapeutic applicability with delivery of GrAE10. Overall, this strategy represents a versatile and highly translatable method for cytosolic delivery of proteins.
Collapse
Affiliation(s)
- David C Luther
- Department of Chemistry, University of Massachusetts, 379A LGRT Tower A, 710 North Pleasant St., Massachusetts, 01003, Amherst, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts, 379A LGRT Tower A, 710 North Pleasant St., Massachusetts, 01003, Amherst, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, 379A LGRT Tower A, 710 North Pleasant St., Massachusetts, 01003, Amherst, USA
| | - Yağız Anıl Çiçek
- Department of Chemistry, University of Massachusetts, 379A LGRT Tower A, 710 North Pleasant St., Massachusetts, 01003, Amherst, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts, 379A LGRT Tower A, 710 North Pleasant St., Massachusetts, 01003, Amherst, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, 710 North Pleasant St., Massachusetts, 01003, Amherst, USA
| | - Sanjana Gopalakrishnan
- Department of Chemistry, University of Massachusetts, 379A LGRT Tower A, 710 North Pleasant St., Massachusetts, 01003, Amherst, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, 379A LGRT Tower A, 710 North Pleasant St., Massachusetts, 01003, Amherst, USA.
| |
Collapse
|
49
|
Luther DC, Lee YW, Nagaraj H, Clark V, Jeon T, Goswami R, Gopalakrishnan S, Fedeli S, Jerome W, Elia JL, Rotello VM. Cytosolic Protein Delivery Using Modular Biotin-Streptavidin Assembly of Nanocomposites. ACS NANO 2022; 16:7323-7330. [PMID: 35435664 PMCID: PMC10586328 DOI: 10.1021/acsnano.1c06768] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current strategies for the delivery of proteins into cells face general challenges of endosomal entrapment and concomitant degradation of protein cargo. Efficient delivery directly to the cytosol overcomes this obstacle: we report here the use of biotin-streptavidin tethering to provide a modular approach to the generation of nanovectors capable of a cytosolic delivery of biotinylated proteins. This strategy uses streptavidin to organize biotinylated protein and biotinylated oligo(glutamate) peptide into modular complexes that are then electrostatically self-assembled with a cationic guanidinium-functionalized polymer. The resulting polymer-protein nanocomposites demonstrate efficient cytosolic delivery of six biotinylated protein cargos of varying size, charge, and quaternary structure. Retention of protein function was established through efficient cell killing via delivery of the chemotherapeutic enzyme granzyme A. This platform represents a versatile and modular approach to intracellular delivery through the noncovalent tethering of multiple components into a single delivery vector.
Collapse
Affiliation(s)
- David C. Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent Clark
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Sanjana Gopalakrishnan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - William Jerome
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - James L. Elia
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
50
|
Yang J, Hu JJ, Wei J, Dai J, Fang H, Xia F, Lou X. Endocytosis Pathway Self-Regulation for Precise Image-Guided Therapy through an Enzyme-Responsive Modular Peptide Probe. Anal Chem 2022; 94:7960-7969. [PMID: 35594188 DOI: 10.1021/acs.analchem.2c00776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Before arriving at the intracellular destinations, probes might be trapped in the lysosomes, reducing the amount of cargos, which compromises the therapeutic outcomes. The current methods are based on the fact that probes enter the lysosomes and then escape from them, which do not fundamentally solve the degradation by lysosomal hydrolases. Here, an enzyme-responsive modular peptide probe named PKP that can be divided into two parts, Pal-part and KP-part, by matrix metalloproteinase-2 (MMP-2) overexpressed in tumor microenvironments is designed. Pal-part quickly enters the cells and forms nanofibers in the lysosomes, decreasing protein phosphatase 2A (PP2A), which transforms the endocytic pathway of KP-part from clathrin-mediated endocytosis (CME) into caveolae-mediated endocytosis (CvME) and allows KP-part to directly reach the mitochondria sites without passing through the lysosomes. Finally, through self-regulating intracellular delivery pathways, the mitochondrial delivery efficiency of KP-part is greatly improved, leading to an optimized image-guided therapeutic efficiency. Furthermore, this system also shows great potential for the delivery of siRNA and doxorubicin to achieve precise cancer image-guided therapy, which is expected to significantly expand its application and facilitate the development of personalized therapy.
Collapse
Affiliation(s)
- Juliang Yang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jiaming Wei
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Fang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|