1
|
Li Y, Peng R, Ma Z, Wang Z, Zhu C. Mild defluorinative N-acrylation of amines with (trifluoromethyl)alkenes: synthesis of α-arylacrylamides. Org Biomol Chem 2025; 23:679-687. [PMID: 39606947 DOI: 10.1039/d4ob01554a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A practical and efficient method for the N-acrylation of amines with (trifluoromethyl)alkenes is achieved via the cleavage of three C(sp3)-F bonds, affording a diverse range of useful tertiary and secondary α-arylacrylamides in high yields. This protocol features mild conditions, is transition-metal free, operationally simple, gram-scalable, and compatible with valuable functional groups, and has a broad substrate scope. Mechanistic studies indicate that exchange of an oxygen atom happens between H2O and NaOH, and that the oxygen atom is incorporated into the α-arylacrylamides via the ipso-defluorooxylation of the (trifluoromethyl)alkene. This method is also applied in the late-stage N-acrylation of pharmaceuticals.
Collapse
Affiliation(s)
- Yuqi Li
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, College of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P. R. China
| | - Rongbin Peng
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhaolong Ma
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, College of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.
| | - Zhihui Wang
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, College of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.
| | - Chuanle Zhu
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, College of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
2
|
Yuan XY, Lu ZX, Huang X, Lv Q, Sun K, Chen X, Qu L, Yu B. Decatungstate-Photocatalyzed Transformations of 2-Bromo-3,3,3-trifluoropropene for Selective Synthesis of Z/ E-β-CF 3-Enones. Org Lett 2024; 26:10570-10575. [PMID: 39621940 DOI: 10.1021/acs.orglett.4c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Condition-controlled switchable and divergent transformations of cost-effective 2-bromo-3,3,3-trifluoropropene (BTP) and aldehydes were realized using a decatungstate (TBADT)-photocatalyzed strategy. The hydroacylated products, i.e., β,β-Br,CF3-ketones, can be applied as highly functionalized synthetic building blocks for the selective synthesis of (Z/E)-β-CF3-enones. Utilizing this methodology, a broad range of commercially available aromatic and aliphatic aldehydes as well as numerous complex aldehydes, such as lily aldehyde, cyclamen aldehyde, citronellal, vanillin, and aldehydes containing bioactive moieties, including ibuprofen, gemfibrozil, naproxen, flurbiprofen, oleic acid, and aspirin, may be proficiently employed in this transformative process.
Collapse
Affiliation(s)
- Xiao-Ya Yuan
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zi-Xuan Lu
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xianqiang Huang
- School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Qiyan Lv
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kai Sun
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaolan Chen
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lingbo Qu
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bing Yu
- College of Chemistry, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
3
|
Li Y, Peng R, Zhu C. Modular Synthesis of α-Aryl Acrylamido Carboxylic Acids by Triple C-F Bond Cleavage of (Trifluoromethyl)alkenes with Unprotected Amino Acids. Org Lett 2024; 26:8295-8300. [PMID: 39311230 DOI: 10.1021/acs.orglett.4c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A straightforward and efficient strategy for the construction of tertiary and secondary α-aryl acrylamido carboxylic acids is reported. This N-acrylation protocol of unprotected amino acids is achieved by triple C-F bond cleavage of (trifluoromethyl)alkenes. This method features mild conditions, is operationally simple, is free of transition metals and racemization, can be used on a gram scale, and is compatible with various functional moieties. Mechanistic studies indicate that oxygen atom exchange happens among H2O, NaOH, and amino acids, and the oxygen atom of the amide moiety of the product is incorporated by the ipso-defluorooxylation of (trifluoromethyl)alkene.
Collapse
Affiliation(s)
- Yuqi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Rongbin Peng
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Chuanle Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Liu Y, Zhou X, Li R, Sun Z. Photocatalytic Synthesis of γ,γ-Difluoroallylic Ketones and δ,δ-Difluoroallylic Ketones via a Desulfurative/Defluorinative Alkylation Process. Org Lett 2024; 26:6424-6427. [PMID: 39041637 DOI: 10.1021/acs.orglett.4c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The gem-difluoroalkene moiety is frequently found in medicinal chemistry. From α-keton sulfides and thioic acids, we were able to develop a universal approach for the synthesis of γ,γ-difluoroallylic ketones and δ,δ-difluoroallylic ketones via a desulfurative/defluorinative alkylation process. We expect that this mild and efficient method will be complementary to other known strategies.
Collapse
Affiliation(s)
- Yunqi Liu
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Xiyan Zhou
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Ruining Li
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
| | - Zhankui Sun
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Bai D, Zhong K, Chang L, Qiao Y, Wu F, Xu G, Chang J. Nickel-catalyzed regiodivergent hydrosilylation of α-(fluoroalkyl)styrenes without defluorination. Nat Commun 2024; 15:6360. [PMID: 39069515 PMCID: PMC11284216 DOI: 10.1038/s41467-024-50743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
The fluoroalkyl-containing organic molecules are widely used in drug discovery and material science. Herein, we report ligand regulated nickel(0)-catalyzed regiodivergent hydrosilylation of α-(fluoroalkyl)styrenes without defluorination, providing an atom- and step-economical synthesis route of two types of fluoroalkyl substituted silanes with exclusive regioselectivity. The anti-Markovnikov addition products (β-fluoroalkyl substituted silanes) are formed with monodentate phosphine ligand. Noteworthy, the bidentate phosphine ligand promote the generation of the more challenging Markovnikov products (α-fluoroalkyl substituted silanes) with tetrasubstituted saturated carbon centers. This protocol features with easy available starting materials and commercially available nickel catalysis, a wide range of substrates and excellent regioselectivity. The structure divergent products undergo a variety of transformations. Comprehensive mechanistic studies including the inverse kinetic isotope effects demonstrate the regioselectivity controlled by ligand structure through α-CF3 nickel intermediate. DFT calculations reveal a distinctive mechanism involving an open-shell singlet state, which is crucial for generating intricate tetra-substituted Markovnikov products.
Collapse
Affiliation(s)
- Dachang Bai
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan laboratory, Xinxiang, 453007, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P R China.
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan laboratory, Xinxiang, 453007, China
| | - Lingna Chang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan laboratory, Xinxiang, 453007, China
| | - Yan Qiao
- School of Basic Medicine, Zhengzhou University, Zhengzhou, 450001, P R China
| | - Fen Wu
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan laboratory, Xinxiang, 453007, China
| | - Guiqing Xu
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan laboratory, Xinxiang, 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan laboratory, Xinxiang, 453007, China.
| |
Collapse
|
6
|
Yang P, Yu H, Zhai R, Zhou JS, Tang B. Nickel-catalyzed hydrodefluorination/deuterodefluorination of CF 3-alkenes with formic acid. Chem Commun (Camb) 2024; 60:6548-6551. [PMID: 38842110 DOI: 10.1039/d4cc00918e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The synthesis of deuterated gem-difluoroalkenes via selective deuterodefluorination of β-CF3-cinnamates using a nickel catalyst has been reported for the first time. Commercially available deuterated formic acid is a cheap and convenient deuterium source. The nickel-catalyst showed high selectivity for monodefluorination and avoided competitive reactions such as multiple defluorination or hydrogenation.
Collapse
Affiliation(s)
- Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Haiping Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Runze Zhai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
7
|
Gong Y, Hu J, Qiu C, Gong H. Insights into Recent Nickel-Catalyzed Reductive and Redox C-C Coupling of Electrophiles, C(sp 3)-H Bonds and Alkenes. Acc Chem Res 2024; 57:1149-1162. [PMID: 38547518 DOI: 10.1021/acs.accounts.3c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
ConspectusTransition metal-catalyzed reductive cross-coupling of two carbon electrophiles, also known as cross-electrophile coupling (XEC), has transformed the landscape of C-C coupling chemistry. Nickel catalysts, in particular, have demonstrated exceptional performance in facilitating XEC reactions, allowing for diverse elegant transformations by employing various electrophiles to forge C-C bonds. Nevertheless, several crucial challenges remain to be addressed. First, the intrinsic chemoselectivity between two structurally similar electrophiles in Ni-catalyzed C(sp3)-C(sp3) and C(sp2)-C(sp2) cross-coupling has not been well understood; this necessitates an excess of one of the coupling partners to achieve synthetically useful outcomes. Second, the substitution of economically and environmentally benign nonmetal reductants for Zn/Mn can help scale up XEC reactions and avoid trace metals in pharmaceutical products, but research in this direction has progressed slowly. Finally, it is highly warranted to leverage mechanistic insights from Ni-catalyzed XEC to develop innovative thermoredox coupling protocols, specifically designed to tackle challenges associated with difficult substrates such as C(sp3)-H bonds and unactivated alkenes.In this Account, we address the aforementioned issues by reviewing our recent work on the reductive coupling of C-X and C-O electrophiles, the thermoredox strategy for coupling associated with C(sp3)-H bonds and unactivated alkenes, and the use of diboron esters as nonmetal reductants to achieve reductive coupling. We focus on the mechanistic perspectives of the transformations, particularly how the key C-NiIII-C intermediates are generated, in order to explain the chemoselective and regioselective coupling results. The Account consists of four sections. First, we discuss the Zn/Mn-mediated chemoselective C(sp2)-C(sp2) and C(sp3)-C(sp3) bond formations based on the coupling of selected alkyl/aryl, allyl/benzyl, and other electrophiles. Second, we describe the use of diboron esters as versatile reductants to achieve C(sp3)-C(sp3) and C(sp3)-C(sp2) couplings, with an emphasis on the mechanistic consideration for the construction of C(sp3)-C(sp2) bonds. Third, we discuss leveraging C(sp3)-O bonds for effective C(sp3)-C bond formation via in situ halogenation of alcohols as well as the reductive preparation of α-vinylated and -arylated unusual amino esters. In the final section, we illustrate the thermoredox functionalization of challenging C(sp3)-H bonds with aryl and alkyl halides to afford C(sp3)-C bonds by taking advantage of the compatibility of Zn with the oxidant di-tert-butylperoxide (DTBP). Furthermore, we discuss a Ni-catalyzed and SiH/DTBP-mediated hydrodimerization of terminal alkenes to selectively forge head-to-head and methyl branched C(sp3)-C(sp3) bonds. This process, conducted in the presence or absence of catalytic CuBr2, provides a solution to a long-standing challenge: site-selective hydrocoupling of unactivated alkenes to produce challenging C(sp3)-C(sp3) bonds.
Collapse
Affiliation(s)
- Yuxin Gong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Jie Hu
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Canbin Qiu
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Chen F, Zhang Q, Li Y, Yu ZX, Chu L. Selective Hydrofunctionalization of Alkenyl Fluorides Enabled by Nickel-Catalyzed Hydrogen Atoms and Group Transfer: Reaction Development and Mechanistic Study. J Am Chem Soc 2024. [PMID: 38621358 DOI: 10.1021/jacs.4c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Due to the unique effect of fluorine atoms, the efficient construction of high-value alkyl fluorides has attracted significant interest in modern drug development. However, enantioselective catalytic strategies for the efficient assembly of highly functionalized chiral C(sp3)-F scaffolds from simple starting materials have been underutilized. Herein, we demonstrate a nickel-catalyzed radical transfer strategy for the efficient, modular, asymmetric hydrogenation and hydroalkylation of alkenyl fluorides with primary, secondary, and tertiary alkyl halides under mild conditions. The transformation provides facile access to various structurally complex secondary and tertiary α-fluoro amide products from readily available starting materials with excellent substrate compatibility and distinct selectivity. Furthermore, the utility of this method is demonstrated by late-stage modifications and product derivatizations. Detailed mechanistic studies and DFT calculations have been conducted, showing that the rate-determining step for asymmetric hydrogenation reaction is NiH-HAT toward alkenyl fluorides and the stereo-determining step is alcohol coordination to Ni-enolates followed by a barrierless protonation. The mechanism for the asymmetric hydroalkylation reaction is also delivered in this investigation.
Collapse
Affiliation(s)
- Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Qianwei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yingying Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
9
|
Kong L, Gan XC, van der Puyl Lovett VA, Shenvi RA. Alkene Hydrobenzylation by a Single Catalyst That Mediates Iterative Outer-Sphere Steps. J Am Chem Soc 2024; 146:2351-2357. [PMID: 38232310 DOI: 10.1021/jacs.3c13398] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Cross-coupling catalysts typically react and unite functionally distinct partners via sequential inner-sphere elementary steps: coordination, migratory insertion, reductive elimination, etc. Here, we report a single catalyst that cross-couples styrenes and benzyl bromides via iterative outer-sphere steps: metal-ligand-carbon interactions. Each partner forms a stabilized radical intermediate, yet heterocoupled products predominate. The system is redox-neutral and, thus, avoids exogenous oxidants, resulting in simple and scalable conditions. Numerous variations of alkene hydrobenzylation are made possible, including access to the privileged heterodibenzyl (1,2-diarylethane) motif and challenging quaternary carbon variants.
Collapse
Affiliation(s)
- Lingran Kong
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Xu-Cheng Gan
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Vincent A van der Puyl Lovett
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Ryan A Shenvi
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Xu WY, Xu ZY, Zhang ZK, Gong TJ, Fu Y. Tunable Synthesis of Monofluoroalkenes and Gem-Difluoroalkenes via Solvent-Controlled Rhodium-Catalyzed Arylation of 1-Bromo-2,2-difluoroethylene. Angew Chem Int Ed Engl 2023; 62:e202310125. [PMID: 37589202 DOI: 10.1002/anie.202310125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Divergent synthesis of fluorine-containing scaffolds starting from a suite of raw materials is an intriguing topic. Herein, we report the solvent-controlled rhodium-catalyzed tunable arylation of 1-bromo-2,2-difluoroethylene. The selection of the reaction solvents provides switchable defluorinated or debrominated arylation from readily available feedstock resources (both arylboronic acids/esters and 1-bromo-2,2-difluoroethylene are commercially available). This switch is feasible because of the difference in coordination ability between the solvent (CH2 Cl2 or CH3 CN) and the rhodium center, resulting in different olefin insertion. This protocol allows the convenient synthesis of monofluoroalkenes and gem-difluoroalkenes, both of which are important scaffolds in the fields of medicine and materials. Moreover, this newly developed solvent-regulated reaction system can be applied to the site-selective dechlorinated arylation of trichloroethylene. Overall, this study provides a useful strategy for the divergent synthesis of fluorine-containing scaffolds and provides insight into the importance of solvent selection in catalytic reactions.
Collapse
Affiliation(s)
- Wen-Yan Xu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| | - Zhe-Yuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| | - Ze-Kuan Zhang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| | - Tian-Jun Gong
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| | - Yao Fu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
11
|
Tang W, Fan P. Nickel-Catalyzed Cross-Electrophile Ring Opening/ gem-Difluoroallylation of Aziridines. Org Lett 2023; 25:5756-5761. [PMID: 37503939 DOI: 10.1021/acs.orglett.3c01973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Herein we report a nickel-catalyzed regioselective cross-electrophile ring opening reaction of sulfonyl-protected aziridines with trifluoromethyl-substituted alkenes as the gem-difluoroallylating agents, providing a new and efficient entry to prepare gem-difluorobishomoallylic sulfonamides. Moreover, the scaffold of 6-fluoro-1,2,3,4-tetrahydropyridine can be constructed starting from the ring opening products via NaH-mediated intramolecular defluorinative nucleophilic vinylic substitution.
Collapse
Affiliation(s)
- Wei Tang
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
12
|
He H, Liu J, Wang T, Guo L, Zhang W, Chen X. Chemo- and regioselectivities of the TBAF-catalyzed C F bond allylation of trifluoromethylalkenes: A theoretical view. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Dong H, Lin Z, Wang C. Cobalt‐Catalyzed Allylic Defluorinative Cross‐Electrophile Coupling between 1,1‐Difluoroalkyl Halides and α‐Trifluoromethyl Styrenes. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Haiyan Dong
- Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China Hefei Anhui 230026 People's Republic of China
| | - Zhiyang Lin
- Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China Hefei Anhui 230026 People's Republic of China
| | - Chuan Wang
- Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China Hefei Anhui 230026 People's Republic of China
| |
Collapse
|
14
|
Yuan B, Zhang C, Dong H, Wang C. Iron-Catalyzed Reductive Ring Opening/ gem-Difluoroallylation of Cyclopropyl Ketones. Org Lett 2023; 25:1883-1888. [PMID: 36912491 DOI: 10.1021/acs.orglett.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
By merging C-C and C-F bond cleavage, we developed a regioselective ring opening/gem-difluoroallylation of cyclopropyl ketones with α-trifluoromethylstyrenes, which proceeds under the catalysis of iron with the combination of manganese and TMSCl as the reducing agents, providing a new entry to the synthesis of carbonyl-containing gem-difluoroalkenes. Remarkably, the ketyl radical-induced selective C-C bond cleavage and the following generation of more-stable carbon-centered radicals enable complete regiocontrol of this ring opening reaction for various substitution patterns of the cyclopropane ring.
Collapse
Affiliation(s)
- Bing Yuan
- Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chang Zhang
- Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | | | - Chuan Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
15
|
Xu Y, Wang S, Liu Z, Guo M, Lei A. Photo/Ni dual-catalyzed radical defluorinative sulfonylation to synthesize gem-difluoro allylsulfones. Chem Commun (Camb) 2023; 59:3707-3710. [PMID: 36912357 DOI: 10.1039/d2cc05934g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Radical defluorinative functionalization of α-trifluoromethyl styrenes represents an effective way toward gem-difluoroalkenes. There are general interests in developing novel synthetic protocols for defluorinative functionalization with various types of radicals. However, reports on the preparation of gem-difluoro allylsulfones via an S-centered radical pathway are limited. Herein, we developed a photo/nickel dual-catalyzed defluorinative sulfonylation that rapidly and reliably synthesizes gem-difluoro allylsulfones. The merit of this protocol is exhibited by its mild conditions and wide scope, thus providing a novel strategy for the sulfonyl radical participating in radical defluorinative coupling.
Collapse
Affiliation(s)
- Yiran Xu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Zhao Liu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Mian Guo
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
16
|
Zhang X, Huang X, Chen Y, Chen B, Ma Y. Synthesis of gem-Difluorinated 1,4-Dienes via Nickel-Catalyzed Three-Component Coupling of (Trifluoromethyl)alkenes, Alkynes, and Organoboronic Acids. Org Lett 2023; 25:1748-1753. [PMID: 36866931 DOI: 10.1021/acs.orglett.3c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Herein, a nickel-catalyzed defluorinative three-component coupling of trifluoromethyl alkenes, internal alkynes, and organoboronic acids is presented. The protocol provides a highly efficient and selective route for the synthesis of structurally diverse gem-difluorinated 1,4-dienes under mild conditions. Mechanistic studies suggest that C-F bond activation proceeds probably through the oxidative cyclization of trifluoromethyl alkenes with Ni(0) species, sequential addition to alkynes, and β-fluorine elimination.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Xinmiao Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| |
Collapse
|
17
|
Shigeno M, Shishido Y, Soga A, Nozawa-Kumada K, Kondo Y. Defluorinative Transformation of (2,2,2-Trifluoroethyl)arenes Catalyzed by the Phosphazene Base t-Bu-P2. J Org Chem 2023; 88:1796-1802. [PMID: 36689669 DOI: 10.1021/acs.joc.2c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, we demonstrated that 1-tert-butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi(phosphazene) (t-Bu-P2) catalyzes the defluorinative functionalization reactions of (2,2,2-trifluoroethyl)arenes with alkanenitriles to produce monofluoroalkene products. The reaction proceeds through HF elimination from a (2,2,2-trifluoroethyl)arene to form a gem-difluorostyrene intermediate, which is followed by nucleophilic addition of an alkanenitrile and elimination of a fluoride anion. The catalysis is compatible with a variety of functional groups.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan.,JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshiteru Shishido
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Amane Soga
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
18
|
Zhang G, Wang L, Cui L, Gao P, Chen F. Deaminative defluoroalkylation of α-trifluoromethylalkenes enabled by photoredox catalysis. Org Biomol Chem 2023; 21:294-299. [PMID: 36510767 DOI: 10.1039/d2ob02114e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we disclose a new photoredox-catalysed strategy to access gem-difluoroallylarenes from α-trifluoromethylalkenes with sterically hindered primary amines via C-N and C-F bond activation. This deaminative and defluorinative allylation is generally compatible with diverse functional groups and sterically hindered α-3° and 2° primary amines.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Liping Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| |
Collapse
|
19
|
Advances in Catalytic C–F Bond Activation and Transformation of Aromatic Fluorides. Catalysts 2022. [DOI: 10.3390/catal12121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The activation and transformation of C–F bonds in fluoro-aromatics is a highly desirable process in organic chemistry. It provides synthetic methods/protocols for the generation of organic compounds possessing single or multiple C–F bonds, and effective catalytic systems for further study of the activation mode of inert chemical bonds. Due to the high polarity of the C–F bond and it having the highest bond energy in organics, C–F activation often faces considerable academic challenges. In this mini-review, the important research achievements in the activation and transformation of aromatic C–F bond, catalyzed by transition metal and metal-free systems, are presented.
Collapse
|
20
|
Zhao Y, Empel C, Liang W, Koenigs RM, Patureau FW. Gem-Difluoroallylation of Aryl Sulfonium Salts. Org Lett 2022; 24:8753-8758. [PMID: 36440861 DOI: 10.1021/acs.orglett.2c03419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unprecedented photochemical late-stage defluorinative gem-difluoroallylation of aryl sulfonium salts, which are formed site-selectively by direct C(sp2)─H functionalization, is herein disclosed. This method is distinguished by its mild reaction conditions, wide scope, and excellent site-selectivity. As showcase examples, a Flurbiprofen and Pyriproxyfen derivatives could be late stage C(sp2)─H gem-difluoroallylated with high yields. Experimental and computational investigations were conducted.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Wenjing Liang
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| |
Collapse
|
21
|
Du D, Peng H, He L, Bai S, Li Z, Teng H. Synthesis of remote fluoroalkenyl ketones by photo-induced ring-opening addition of cyclic alkoxy radicals to fluorinated alkenes. Org Biomol Chem 2022; 20:9313-9318. [PMID: 36408839 DOI: 10.1039/d2ob01533a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fluoroalkenyl moieties are often used as carbonyl mimics in medicine preparation, and thus the development of facile routes for the synthesis of such compounds is of great importance. In this work, we report a photocatalytic ring-opening addition of cyclic alcohols to α-(trifluoromethyl)styrenes, which underwent a proton-coupled electron transfer and β-scission process, delivering a great variety of remote gem-difluoroalkenyl ketone derivatives. This methodology can also be applied in the reaction of gem-difluorostyrenes and 1,1,2-trifluorostyrenes to access monofluoro- and 1,2-difluoroalkenyl ketones.
Collapse
Affiliation(s)
- Donghua Du
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Han Peng
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Ling He
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Shunpeng Bai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430072, P. R. China
| | - Zhenghua Li
- School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
22
|
Gavin JT, Belli RG, Roberts CC. Radical-Polar Crossover Catalysis with a d 0 Metal Enabled by a Redox-Active Ligand. J Am Chem Soc 2022; 144:21431-21436. [DOI: 10.1021/jacs.2c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Joshua T. Gavin
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Roman G. Belli
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Courtney C. Roberts
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Zhang X, Li Y. Light-Induced Iron-Catalyzed Trifluoromethylative Thiolation of Alkenes. Org Lett 2022; 24:8057-8061. [DOI: 10.1021/acs.orglett.2c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaonan Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bio-engineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
24
|
Wang H, Li J, Peng L, Song J, Guo C. Cu-Catalyzed Switchable Asymmetric Defluoroalkylation and [3 + 2] Cycloaddition of Trifluoropropene. Org Lett 2022; 24:7828-7833. [PMID: 36264023 DOI: 10.1021/acs.orglett.2c03175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral fluorinated amino esters and pyrrolidines are privileged scaffolds in synthetic chemistry and exhibit unique biological properties. We report the facile preparation of these compounds through copper-catalyzed switchable defluoroalkylation and [3 + 2] cycloaddition of trifluoropropene in an asymmetric fashion. The choice of solvent and chiral ligand was crucial for the efficient transformation and exquisite chemoselectivity pattern from identical starting materials that rapidly and reliably incorporate gem-difluoroalkene and trifluoromethyl (CF3) motifs to generate a diverse range of enantioenriched fluorinated building blocks in good to excellent yields with high asymmetric induction.
Collapse
Affiliation(s)
- Hongyi Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Juan Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lingzi Peng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
Xu P, Daniliuc CG, Bergander K, Stein C, Studer A. Synthesis of Five-Membered Ring Systems Bearing gem-Difluoroalkenyl and Monofluoroalkenyl Substituents via Radical β-Bromo Fragmentation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Xu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| | - Colin Stein
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| |
Collapse
|
26
|
Liu W, Liu C, Wang M, Kong W. Modular Synthesis of Multifunctionalized CF 3-Allenes through Selective Activation of Saturated Hydrocarbons. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenfeng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Chuhan Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
27
|
Zhu C, Zhang H, Liu Q, Chen K, Liu ZY, Feng C. Nickel-Catalyzed anti-Markovnikov Hydroalkylation of Trifluoromethylalkenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chuan Zhu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Heng Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Qian Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Kai Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Ze-Yao Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
28
|
Wu MC, Chen YX, Li MZ, Xiao JA, Ye ZP, Guan JP, Xiang HY, Chen K, Yang H. Photocatalyzed Defluorinative Dichloromethylation of α-CF 3 Alkenes Using CHCl 3 as the Radical Source. J Org Chem 2022; 88:6354-6363. [PMID: 35723452 DOI: 10.1021/acs.joc.2c01106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A visible-light-induced defluorinative dichloromethylation of α-CF3 alkenes was developed with cheap and readily accessible chloroform simultaneously as a dichloromethylation reagent and reaction medium, leading to the facile preparation of new polyhalogenated scaffolds. Notably, the change from CHCl3 to CDCl3 offers a straightforward pathway for accessing the deuterated analogues with excellent degrees of D incorporation. Mechanistic studies suggested the reaction underwent a radical addition of the dichloromethyl radical with alkenes, followed by sequential single-electron transfer and defluorination. This protocol features mild conditions, easy operation, facile scalability, and high efficiency, allowing convenient access to dichloronated gem-difluoroalkenes.
Collapse
Affiliation(s)
- Mei-Chun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,College of Chemistry and Chemical Engineering, Huaihua University, Huaihua 418008, P. R. China
| | - Yi-Xuan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ming-Zhi Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
29
|
Ma T, Li X, Ping Y, Kong W. Synthesis of
gem
‐Difluoroalkenes
via
Ni‐Catalyzed Three‐Component
Defluorinative Reductive
Cross‐Coupling
of Organohalides, Alkenes and Trifluoromethyl Alkenes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Teng Ma
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| | - Xiao Li
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| | - Yuanyuan Ping
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| |
Collapse
|
30
|
Fu Y, Shi H, Lei S, Shi L, Li H. Cu catalyzed [4 + 2] cycloaddition for the synthesis of highly substituted 3-fluoropyridines. Org Biomol Chem 2022; 20:3731-3736. [PMID: 35467681 DOI: 10.1039/d2ob00133k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper catalyzed annulation-aromatization of benzyl trifluoromethyl ketimines with 3-acryloyloxazolidin-2-ones for the synthesis of 3-fluoropyridines through double C-F bond cleavages has been developed. In this approach, the annulation occurred between the in situ formed dienes from trifluoromethyl ketimines via the first C-F bond cleavage and 3-acryloyloxazolidin-2-ones. Then the aromatization afforded 3-fluoropyridines in moderate yields through the second C-F bond cleavage. The 3-fluoropyridine products could be further hydrolyzed to multi-substituted 3-pyridinecarboxylic acids.
Collapse
Affiliation(s)
- Yiwei Fu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Haoyu Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Shengshu Lei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Shi
- Huabao Flavours & Fragrances Co., Ltd., 1299 Yecheng Road, Shanghai 201822, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
31
|
Zhang C, Wang L, Shi H, Lin Z, Wang C. Iron-Catalyzed Allylic Defluorinative Ketone Olefin Coupling. Org Lett 2022; 24:3211-3216. [PMID: 35481351 DOI: 10.1021/acs.orglett.2c00979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this protocol, we demonstrate our discovery that iron is able to efficiently catalyze the reductive allylic defluorinative ketyl olefin coupling reaction between α-trifluoromethyl alkenes and unactivated ketones. This operationally simple cross-electrophile reaction circumvents the use of pre-generated organometallics and allows for the synthesis of diverse functional-group-rich tertiary gem-difluorohomoallylic alcohols through a polarity-reversed strategy. Preliminary mechanistic studies support a mechanism that proceeds through a ketyl formation/olefin insertion/β-fluoro elimination sequence.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lin Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongzhang Shi
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhiyang Lin
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
32
|
Kim H, Jung Y, Cho SH. Defluorinative C-C Bond-Forming Reaction of Trifluoromethyl Alkenes with gem-(Diborylalkyl)lithiums. Org Lett 2022; 24:2705-2710. [PMID: 35380841 DOI: 10.1021/acs.orglett.2c00809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the transition-metal-free defluorinative C-C bond-forming reaction of trifluoromethyl alkenes with gem-(diborylalkyl)lithiums. This synthetic strategy provides access to a variety of 4,4-difluoro homoallylic diboronate esters, which serve as versatile intermediates in the efficient preparation of valuable gem-difluoroalkene derivatives. Further synthetic modifications are conducted to demonstrate the synthetic utility of the obtained 4,4-difluoro homoallylic diboronate esters.
Collapse
Affiliation(s)
- Haeun Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
33
|
|
34
|
TBAF-initiated vinylation of aldehydes with trimethyl[(Z)-2-(phenylsulfanyl)-1-(trifluoromethyl)vinyl]silane. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Xiao J, Montgomery J. Nickel-Catalyzed Defluorinative Coupling of Aliphatic Aldehydes with Trifluoromethyl Alkenes. ACS Catal 2022; 12:2463-2471. [PMID: 35992737 PMCID: PMC9390876 DOI: 10.1021/acscatal.1c05801] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A simple procedure is reported for the nickel-catalyzed defluorinative alkylation of unactivated aliphatic aldehydes. The process involves the catalytic reductive union of trifluoromethyl alkenes with aldehydes using a nickel complex of a 6,6'-disubstituted bipyridine ligand with zinc metal as the terminal reductant. The protocol is distinguished by its broad substrate scope, mild conditions, and simple catalytic setup. Reaction outcomes are consistent with the intermediacy of an α-silyloxy(alkyl)nickel intermediate generated by a low-valent nickel catalyst, silyl electrophile, and the aldehyde substrate. Mechanistic findings with cyclopropanecarboxaldehyde provide insights into nature of the reactive intermediates and illustrate fundamental reactivity differences that are governed by subtle changes in ligand and substrate structure.
Collapse
Affiliation(s)
| | - John Montgomery
- Corresponding authors: John Montgomery - Department of Chemistry, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109-1055, USA,
| |
Collapse
|
36
|
Wang JX, Ge W, Fu MC, Fu Y. Photoredox-Catalyzed Allylic Defluorinative Alkoxycarbonylation of Trifluoromethyl Alkenes through Intermolecular Alkoxycarbonyl Radical Addition. Org Lett 2022; 24:1471-1475. [PMID: 35167309 DOI: 10.1021/acs.orglett.1c04359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The gem-difluoroalkene moiety is an ideal carbonyl bioisostere in medicinal chemistry, but efficient synthesis of β-gem-difluoroalkene esters remains challenging so far. Herein, we disclose a photoredox-catalyzed allylic defluorinative alkoxycarbonylation of trifluoromethyl alkenes enabled by intermolecular alkoxycarbonyl radical addition. A wide variety of alcohol oxalate derivatives were amenable, affording various β-gem-difluoroalkene esters with excellent functional group tolerance. Notably, the potential synthetic value of this method is highlighted by successful late-stage modification for bioactive molecules.
Collapse
Affiliation(s)
- Jia-Xin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Wei Ge
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Chen Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
37
|
Zhang X, Zhang X, Song Q, Sivaguru P, Wang Z, Zanoni G, Bi X. A Carbene Strategy for Progressive (Deutero)Hydrodefluorination of Fluoroalkyl Ketones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Xinyu Zhang
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qingmin Song
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | | | - Zikun Wang
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Giuseppe Zanoni
- Department of Chemistry University of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Xihe Bi
- Department of Chemistry Northeast Normal University Changchun 130024 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
38
|
Talavera M, Braun T. Competing C-H and C-F bond activation reactions of a fluorinated olefin at Rh: a fluorido vinylidene complex as an intermediate in an unprecedented dehydrofluorination step. Chem Sci 2022; 13:1130-1135. [PMID: 35211279 PMCID: PMC8790890 DOI: 10.1039/d1sc06713c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022] Open
Abstract
The hydrofluoroolefin Z-1,3,3,3-tetrafluoropropene has been activated via an initial C-F bond activation and subsequent C-H bond activation using [Rh(H)(PEt3)3] (1) or via C-H bond activation at [Rh(CH3)(PEt3)3] (8). In both cases the formation of [Rh{(E)-CF[double bond, length as m-dash]CHCF3}(PEt3)3] (3) was observed. Importantly, the C-F activation product [Rh{(E)-CH[double bond, length as m-dash]CHCF3}(PEt3)3] (2) reacts in the presence of Z-1,3,3,3-tetrafluoropropene into 3. The latter converted into [Rh(C[triple bond, length as m-dash]CCF3)(PEt3)3] (6) by an unprecedented dehydrofluorination reaction, presumably via a vinylidene complex as intermediate. When the carbonyl complex [Rh(C[triple bond, length as m-dash]CCF3)(CO)(PEt3)3] (12) was treated with an excess of NEt3·3HF or HBF4 at low temperature, the formation of the phosphonioalkenyl compounds [Rh{(Z)-C(PEt3)[double bond, length as m-dash]CHCF3}(CO)(PEt3)2]X (X = F(HF) x , BF4) (13) was observed. The formation of 13 can be explained by an attack of PEt3 at the electrophilic α-carbon atom of an intermediate vinylidene complex. The employment of PiPr3 derivatives as model compounds allowed for the isolation of the unique fluorido vinylidene complex trans-[Rh(F)([double bond, length as m-dash]C[double bond, length as m-dash]CHCF3)(PiPr3)2] (16), which in the presence of PEt3 transforms into [Rh(C[triple bond, length as m-dash]CCF3)(PEt3)3] (6).
Collapse
Affiliation(s)
- Maria Talavera
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
39
|
Yan S, Yu W, Zhang J, Fan H, Lu Z, Zhang Z, Wang T. Access to gem-Difluoroalkenes via Organic Photoredox-Catalyzed gem-Difluoroallylation of Alkyl Iodides. J Org Chem 2022; 87:1574-1584. [PMID: 34964644 DOI: 10.1021/acs.joc.1c02659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An organic photoredox-catalyzed gem-difluoroallylation of α-trifluoromethyl alkenes with alkyl iodides via C-F bond cleavage for the synthesis of gem-difluoroalkene derivatives is reported. This transition-metal-free transformation utilized a readily available organic dye 4CzIPN as the sole photocatalyst and employed a common chemical N,N,N',N'-tetramethylethylenediamine as the radical activator of alkyl iodides via halogen-atom transfer. In addition, a variety of iodides, including primary, secondary, and tertiary alkyl iodides, were tolerated and provided good to high yields.
Collapse
Affiliation(s)
- Songlin Yan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Weijie Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Jianye Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Hongmei Fan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Zhifeng Lu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Zhenming Zhang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| |
Collapse
|
40
|
Xiong B, Li Y, Zhang J, Liu J, Zhang X, Lian Z. Cross‐Electrophile Coupling between Aryl/Vinyl Triflates and Vinyl Tosylates for the Synthesis of gem‐Difluoroalkenes via Ni/Pd Cooperative Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Yue Li
- Sichuan University West China Hospital CHINA
| | - Jinyu Zhang
- Sichuan University West China Hospital CHINA
| | | | | | - Zhong Lian
- Sichuan University West China Hospital CHINA
| |
Collapse
|
41
|
Chang Z, Wang J, Lu X, Fu Y. Synthesis of gem-Difluoroalkenes through Nickel-Promoted Electrochemical Reductive Cross-Coupling. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Zhang H, Liang M, Zhang X, He MK, Yang C, Guo L, Xia W. Electrochemical synthesis of functionalized gem-difluoroalkenes with diverse alkyl sources via a defluorinative alkylation process. Org Chem Front 2022. [DOI: 10.1039/d1qo01460a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An electrochemical defluorinative alkylation of α-trifluoromethyl alkenes is described. This reaction enables the preparation of functionalized gem-difluoroalkenes with diverse alkyl sources including organohalides, NHP esters, and Katritzky salts.
Collapse
Affiliation(s)
- Haoxiang Zhang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Mengze Liang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiao Zhang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Meng-Ke He
- Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
43
|
Yuan WQ, Liu YT, Ni YQ, Liu YZ, Pan F. Metal-free photocatalytic intermolecular trifluoromethylation- gem-difluoroallylation of unactivated alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00764a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient, transition-metal-free, photocatalytic three-component intermolecular trifluoromethylation-gem-difluoroallylation of unactivated alkenes has been achieved.
Collapse
Affiliation(s)
- Wan-Qiang Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yu-Qing Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yong-Ze Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| |
Collapse
|
44
|
Dong H, Lin Z, Wang C. Nickel-Catalyzed Allylic Defluorinative Cross-Electrophile Coupling with Cycloalkyl Silyl Peroxides as the Alkyl Source. J Org Chem 2021; 87:892-903. [PMID: 34958214 DOI: 10.1021/acs.joc.1c02674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we demonstrate the first successful application of cycloalkyl silyl peroxides (CSP) as an electrophilic coupling partner in the cross-electrophile coupling reaction. Diverse CSP are efficiently cross-coupled with an array of α-trifluoromethyl alkenes under the catalysis of nickel with the assistance of zinc as the reducing agent. This method allows the use of unstrained CSP as the carbonyl-containing alkyl source in the allylic defluorinative reaction, to access a variety of gem-difluoroalkenes bearing a pendent ketone moiety with high functionality tolerance.
Collapse
Affiliation(s)
- Haiyan Dong
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Zhiyang Lin
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, PR China
| |
Collapse
|
45
|
Xing W, Wang J, Fu M, Fu Y. Efficient Decarboxylative/Defluorinative Alkylation for the Synthesis of
gem
‐Difluoroalkenes
through an
S
N
2
’‐Type Route. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wei‐Long Xing
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| | - Jia‐Xin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| | - Ming‐Chen Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
46
|
Zhang X, Zhang X, Song Q, Sivaguru P, Wang Z, Zanoni G, Bi X. A Carbene Strategy for Progressive (Deutero)Hydrodefluorination of Fluoroalkyl Ketones. Angew Chem Int Ed Engl 2021; 61:e202116190. [PMID: 34889004 DOI: 10.1002/anie.202116190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/29/2022]
Abstract
Hydrodefluorination is one of the most promising chemical strategies to degrade perfluorochemicals into partially fluorinated compounds. However, controlled progressive hydrodefluorination remains a significant challenge, owing to the decrease in the strength of C-F bonds along with the defluorination. Here we describe a carbene strategy for the sequential (deutero)hydrodefluorination of perfluoroalkyl ketones under rhodium catalysis, allowing for the controllable preparation of difluoroalkyl- and monofluoroalkyl ketones from aryl- and even alkyl-substituted perfluoro-alkyl ketones in high yield with excellent functional group tolerance. The reaction mechanism and the origin of the intriguing chemoselectivity of the reaction were rationalized by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Zikun Wang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
47
|
Zhao F, Zhou W, Zuo Z. Recent Advances in the Synthesis of Difluorinated Architectures from Trifluoromethyl Groups. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101234] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Zhao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| | - Wenlong Zhou
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| | - Zuo Zuo
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| |
Collapse
|
48
|
Selective Ni-catalyzed cross-electrophile coupling of alkynes, fluoroalkyl halides, and vinyl halides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Shi J, Guo LY, Hu QP, Liu YT, Li Q, Pan F. Photoredox-Catalyzed Difunctionalization of Unactivated Olefins for Synthesizing Lactam-Substituted gem-Difluoroalkenes. Org Lett 2021; 23:8822-8827. [PMID: 34723553 DOI: 10.1021/acs.orglett.1c03329] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, the synthesis of lactam-substituted gem-difluoroalkenes has been developed through a photoredox-catalyzed radical cascade reaction. This developed photoredox-catalyzed, Brønsted base-assisted intramolecular 5-exo-trig cyclization/intermolecular radical addition/β-fluoride elimination reaction offers a simple method for producing lactam, carbamate, or urea-substituted gem-difluoroalkenes with good functional group tolerance and high yields.
Collapse
Affiliation(s)
- Jie Shi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Li-Yun Guo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qu-Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
50
|
Claraz A, Allain C, Masson G. Electroreductive Cross-Coupling of Trifluoromethyl Alkenes and Redox Active Esters for the Synthesis of Gem-Difluoroalkenes. Chemistry 2021; 28:e202103337. [PMID: 34761845 DOI: 10.1002/chem.202103337] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/23/2022]
Abstract
An electroreductive access to gem-difluoroalkenes has been developed through the decarboxylative/defluorinative coupling of N-hydroxyphtalimides esters and α-trifluoromethyl alkenes. The electrolysis is performed under very simple reaction conditions in an undivided cell using cheap carbon graphite electrodes. This metal-free transformation features broad scope with good to excellent yields. Tertiary, secondary as well as primary alkyl radicals could be easily introduced. α-aminoacids L-aspartic and L-glutamic acid-derived redox active esters were good reactive partners furnishing potentially relevant gem-difluoroalkenes. In addition, it has been demonstrated that our electrosynthetic approach toward the synthesis of gem-difluoroalkenes could use an easily prepared Kratitsky salt as alkyl radical precursor via a deaminative/defluorinative carbofunctionalization of trifluoromethylstyrene.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France
| | - Clémence Allain
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|