1
|
Eberwein M, Hellmold N, Frank R, Deobald D, Adrian L. Reductive dehalogenase of Dehalococcoides mccartyi strain CBDB1 reduces cobalt- containing metal complexes enabling anodic respiration. Front Microbiol 2024; 15:1457014. [PMID: 39507334 PMCID: PMC11537884 DOI: 10.3389/fmicb.2024.1457014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Microorganisms capable of direct or mediated extracellular electron transfer (EET) have garnered significant attention for their various biotechnological applications, such as bioremediation, metal recovery, wastewater treatment, energy generation in microbial fuel cells, and microbial or enzymatic electrosynthesis. One microorganism of particular interest is the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1, known for its ability to reductively dehalogenate toxic and persistent halogenated organic compounds through organohalide respiration (OHR), using halogenated organics as terminal electron acceptors. A membrane-bound OHR protein complex couples electron transfer to proton translocation across the membrane, generating a proton motive force, which enables metabolism and proliferation. In this study we show that the halogenated compounds can be replaced with redox mediators that can putatively shuttle electrons between the OHR complex and the anode, coupling D. mccartyi cells to an electrode via mediated EET. We identified cobalt-containing metal complexes, referred to as cobalt chelates, as promising mediators using a photometric high throughput methyl viologen-based enzyme activity assay. Through various biochemical approaches, we show that cobalt chelates are specifically reduced by CBDB1 cells, putatively by the reductive dehalogenase subunit (RdhA) of the OHR complex. Using cyclic voltammetry, we also demonstrate that cobalt chelates exchange electrons with a gold electrode, making them promising candidates for bioelectrochemical cultivation. Furthermore, using the AlphaFold 2-calculated RdhA structure and molecular docking, we found that one of the identified cobalt chelates exhibits favorable binding to RdhA, with a binding energy of approximately -28 kJ mol-1. Taken together, our results indicate that bioelectrochemical cultivation of D. mccartyi with cobalt chelates as anode mediators, instead of toxic halogenated compounds, is feasible, which opens new perspectives for bioremediation and other biotechnological applications of strain CBDB1.
Collapse
Affiliation(s)
- Marie Eberwein
- Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Nadine Hellmold
- Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Leipzig, Germany
| | - Darja Deobald
- Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Department of Geobiotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Li F, Housseini WE, Zhu Q, Zhang L, Yang W, Etienne M. Functionalized Metal-Organic Framework for NADH Regeneration by Hydrogen in a Redox Flow Bioreactor. Chemistry 2024; 30:e202401893. [PMID: 39115035 DOI: 10.1002/chem.202401893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 10/04/2024]
Abstract
The electrochemical regeneration of reduced nicotinamide adenine dinucleotide (NADH) using [Rh(Cp*)(bpy)Cl]+ holds significant promise for the industrial synthesis of chiral chemicals. However, challenges persist due to the high consumption of NADH and the limited efficiency of its cyclic regeneration, which currently hinder widespread application. To address these obstacles, based on in-situ growth of 3D ordered metal-organic framework (NU-1000) on the surface of graphite felt, [Rh(Cp*)(bpy)Cl]+ were immobilized on the Zr6 nodes of NU-1000 by solvent-assisted ligand incorporation (SALI), and applied in a flow bioreactor. Moreover, we employ a gas diffusion electrode (GDE) to oxidize H2, providing a clean proton source for the electrochemical regeneration of NADH. Consequently, highly efficient enzymatic electrocatalytic synthesis of L-lactate was achieved when coupled with L-lactate dehydrogenases (LDH) as a model reaction, and the total turnover number (TTN) reached 19600 and 1750 for [Rh(Cp*)(bpy)Cl]+ and NAD+ after 48 h, corresponding to a high turnover frequency (TOF) of 2350 h-1 and 210 h-1 for [Rh(Cp*)(bpy)Cl]+ and NAD+, respectively. This work provides new insights for the construction of efficient enzymatic electrosynthesis systems in industrial production.
Collapse
Affiliation(s)
- Feifei Li
- National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475000, China
- The Laboratory of Physical Chemistry and Microbiology for Materials and the Environment, Université de Lorraine, CNRS, Nancy, 54000, France
| | - Wassim Ei Housseini
- The Laboratory of Physical Chemistry and Microbiology for Materials and the Environment, Université de Lorraine, CNRS, Nancy, 54000, France
| | - Qunyan Zhu
- National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475000, China
| | - Lin Zhang
- National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475000, China
| | - Wensheng Yang
- National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475000, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Mathieu Etienne
- The Laboratory of Physical Chemistry and Microbiology for Materials and the Environment, Université de Lorraine, CNRS, Nancy, 54000, France
| |
Collapse
|
3
|
Shi X, Liang Y, Wen G, Evlashin SA, Fedorov FS, Ma X, Feng Y, Zheng J, Wang Y, Shi J, Liu Y, Zhu W, Guo P, Kim BH. Review of cathodic electroactive bacteria: Species, properties, applications and electron transfer mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174332. [PMID: 38950630 DOI: 10.1016/j.scitotenv.2024.174332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Cathodic electroactive bacteria (C-EAB) which are capable of accepting electrons from solid electrodes provide fresh avenues for pollutant removal, biosensor design, and electrosynthesis. This review systematically summarized the burgeoning applications of the C-EAB over the past decade, including 1) removal of nitrate, aromatic derivatives, and metal ions; 2) biosensing based on biocathode; 3) electrosynthesis of CH4, H2, organic carbon, NH3, and protein. In addition, the mechanisms of electron transfer by the C-EAB are also classified and summarized. Extracellular electron transfer and interspecies electron transfer have been introduced, and the electron transport mechanism of typical C-EAB, such as Shewanella oneidensis MR-1, has been combed in detail. By bringing to light this cutting-edge area of the C-EAB, this review aims to stimulate more interest and research on not only exploring great potential applications of these electron-accepting bacteria, but also developing steady and scalable processes harnessing biocathodes.
Collapse
Affiliation(s)
- Xinxin Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutong Liang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Stanislav A Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Fedor S Fedorov
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Xinyue Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Junjie Zheng
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yixing Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Julian Shi
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Yang Liu
- Shaanxi Land Engineering Construction Group Co., Ltd, Xi'an 710061, China
| | - Weihuang Zhu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pengfei Guo
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Byung Hong Kim
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China; Korea Institute of Science & Technology, Seongbug-ku, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Zhang L, Zeng L, Wang J, Wang H, Zheng D, Wang X, Li D, Zhan G. Enhanced Microbial Protein Production from CO 2 and Air by a MoS 2 Catalyzed Bioelectrochemical System. Chempluschem 2024; 89:e202400072. [PMID: 38416561 DOI: 10.1002/cplu.202400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Carbon dioxide can be relatively easily reduced to organic matter in a bioelectrochemical system (BES). However, due to insufficient reduction force from in-situ hydrogen evolution, it is difficult for nitrogen reduction. In this study, MoS2 was firstly used as an electrocatalyst for the simultaneous reduction of CO2 and N2 to produce microbial protein (MP) in a BES. Cell dry weight (CDW) could reach 0.81±0.04 g/L after 14 d operation at -0.7 V (vs. RHE), which was 108±3 % higher than that from non-catalyst control group (0.39±0.01 g/L). The produced protein had a better amino acid profile in the BES than that in a direct hydrogen system (DHS), particularly for proline (Pro). Besides, MoS2 promoted the growth of bacterial cell on an electrode and improved the biofilm extracellular electron transfer (EET) by microscopic observation and electrochemical characterization of MoS2 biocathode. The composition of the microbial community and the relative abundance of functional enzymes revealed that MoS2 as an electrocatalyst was beneficial for enriching Xanthobacter and enhancing CO2 and N2 reduction by electrical energy. These results demonstrated that an efficient strategy to improve MP production of BES is to use MoS2 as an electrocatalyst to shift amino acid profile and microbial community.
Collapse
Affiliation(s)
- Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhen Zeng
- Analysis and Testing Center, South China Normal University, Guangzhou, 510006, China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Haoran Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Decong Zheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
5
|
Liao P, Kang J, Xiang R, Wang S, Li G. Electrocatalytic Systems for NO x Valorization in Organonitrogen Synthesis. Angew Chem Int Ed Engl 2024; 63:e202311752. [PMID: 37830922 DOI: 10.1002/anie.202311752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Inorganic nitrogen oxide (NOx ) species, such as NO, NO2 , NO3 - , NO2 - generated from the decomposition of organic matters, volcanic eruptions and lightning activated nitrogen, play important roles in the nitrogen cycle system and exploring the origin of life. Meanwhile, excessive emission of NOx gases and residues from industry and transportation causes troubling problems to the environment and human health. How to efficiently handle these wastes is a global problem. In response to the growing demand for sustainability, scientists are actively pursuing sustainable electrochemical technologies powered by renewable energy sources and efficient utilization of hydrogen energy to convert NOx species into high-value organonitrogen chemicals. In this minireview, recent advances of electrocatalytic systems for NOx species valorization in organonitrogen synthesis are classified and described, such as amino acids, amide, urea, oximes, nitrile etc., that have been widely applied in medicine, life science and agriculture. Additionally, the current challenges including multiple side reactions and complicated paths, viable solutions along with future directions ahead in this field are also proposed. The coupling electrocatalytic systems provide a green mode for fixing nitrogen cycle bacteria and bring enlightenment to human sustainable development.
Collapse
Affiliation(s)
- Peisen Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
- School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China
| | - Jiawei Kang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Runan Xiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shihan Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guangqin Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Honda Y, Yuki R, Hamakawa R, Fujii H. Photo-Electro-Biochemical H 2 Production Using the Carbon Material-Based Cathode Combined with Genetically Engineered Escherichia coli Whole-Cell Biocatalysis. CHEMSUSCHEM 2024; 17:e202300958. [PMID: 37707171 DOI: 10.1002/cssc.202300958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Abio/bio hybrids, which incorporate biocatalysts that promote efficient and selective material conversions under mild conditions into existing catalytic reactions, have attracted considerable attention for developing new catalytic systems. This study constructed a H2 -forming biocathode based on a carbon material combined with whole-cell biocatalysis of genetically-engineered-hydrogenase-overproducing Escherichia coli for the photoelectrochemical water splitting for clean H2 production. Low-cost and abundant carbon materials are generally not suitable for H2 -forming cathode due to their high overpotential for proton reduction; however, the combination of the reduction of an organic electron mediator on the carbon electrode and the H2 formation with the reduced mediator by the redox enzyme hydrogenase provides a H2 -forming cathodic reaction comparable to that of the noble metal electrode. The present study demonstrates that the recombinant E. coli whole cell can be employed as a part of the H2 -forming biocathode system, and the biocathode system wired with TiO2 photoanode can be a photoelectrochemical water-splitting system without external voltage assistance under natural pH. The findings of this study expand the feasibility of applications of whole-cell biocatalysis and contribute to obtaining solar-to-chemical conversions by abio/bio hybrid systems, especially for low-cost, noble-metal-free, and clean H2 production.
Collapse
Affiliation(s)
- Yuki Honda
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Risa Yuki
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Reina Hamakawa
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University Kitauoyanishi-machi, Nara, 630-8506, Japan
| |
Collapse
|
7
|
Sawektreeratana N, Krachangchaeng C, Pittayanurak P, Betterley NM, Chairoungdua A, Wongpan A, Panvongsa W, Janthakit P, Nalaoh P, Promarak V, Nuntasaen N, Reutrakul V, Kuhakarn C, Hongthong S. Mallotumides A-C: Potent Cytotoxic Cycloheptapeptides from the Roots of Mallotus spodocarpus. Org Lett 2023; 25:8183-8187. [PMID: 37902783 DOI: 10.1021/acs.orglett.3c02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The structures of potent cytotoxic cycloheptapeptides, mallotumides A-C (1-3, respectively) isolated from the roots of Mallotus spodocarpus Airy Shaw, were elucidated by extensive spectroscopic analysis. The absolute configuration of 1 was determined by single-crystal X-ray crystallographic data. All three cycloheptapeptides exhibited potent cytotoxicity against various cancer cell lines with IC50 values ranging from 0.60 to 4.02 nM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wittaya Panvongsa
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok 10400, Thailand
| | - Pattarapapa Janthakit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Phattananawee Nalaoh
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | | | | | | | - Sakchai Hongthong
- Division of Chemistry, Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao 24000, Thailand
| |
Collapse
|
8
|
Boucher DG, Carroll E, Nguyen ZA, Jadhav RG, Simoska O, Beaver K, Minteer SD. Bioelectrocatalytic Synthesis: Concepts and Applications. Angew Chem Int Ed Engl 2023; 62:e202307780. [PMID: 37428529 DOI: 10.1002/anie.202307780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.
Collapse
Affiliation(s)
- Dylan G Boucher
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Emily Carroll
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Zachary A Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Rohit G Jadhav
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kevin Beaver
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Huang W, Zulkifli MYB, Chai M, Lin R, Wang J, Chen Y, Chen V, Hou J. Recent advances in enzymatic biofuel cells enabled by innovative materials and techniques. EXPLORATION (BEIJING, CHINA) 2023; 3:20220145. [PMID: 37933234 PMCID: PMC10624391 DOI: 10.1002/exp.20220145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/21/2023] [Indexed: 11/08/2023]
Abstract
The past few decades have seen increasingly rapid advances in the field of sustainable energy technologies. As a new bio- and eco-friendly energy source, enzymatic biofuel cells (EBFCs) have garnered significant research interest due to their capacity to power implantable bioelectronics, portable devices, and biosensors by utilizing biomass as fuel under mild circumstances. Nonetheless, numerous obstacles impeded the commercialization of EBFCs, including their relatively modest power output and poor long-term stability of enzymes. To depict the current progress of EBFC and address the challenges it faces, this review traces back the evolution of EBFC and focuses on contemporary advances such as newly emerged multi or single enzyme systems, various porous framework-enzyme composites techniques, and innovative applications. Besides emphasizing current achievements in this field, from our perspective part we also introduced novel electrode and cell design for highly effective EBFC fabrication. We believe this review will assist readers in comprehending the basic research and applications of EBFCs as well as potentially spark interdisciplinary collaboration for addressing the pressing issues in this field.
Collapse
Affiliation(s)
- Wengang Huang
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Muhammad Yazid Bin Zulkifli
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
- School of Chemical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| | - Milton Chai
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Rijia Lin
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Jingjing Wang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Yuelei Chen
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Vicki Chen
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Jingwei Hou
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| |
Collapse
|
10
|
Malakar CC, Dell'Amico L, Zhang W. Dual Catalysis in Organic Synthesis: Current Challenges and New Trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
11
|
Fuel Cell Reactors for the Clean Cogeneration of Electrical Energy and Value-Added Chemicals. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractFuel cell reactors can be tailored to simultaneously cogenerate value-added chemicals and electrical energy while releasing negligible CO2 emissions or other pollution; moreover, some of these reactors can even “breathe in” poisonous gas as feedstock. Such clean cogeneration favorably offsets the fast depletion of fossil fuel resources and eases growing environmental concerns. These unique reactors inherit advantages from fuel cells: a high energy conversion efficiency and high selectivity. Compared with similar energy conversion devices with sandwich structures, fuel cell reactors have successfully “hit three birds with one stone” by generating power, producing chemicals, and maintaining eco-friendliness. In this review, we provide a systematic summary on the state of the art regarding fuel cell reactors and key components, as well as the typical cogeneration reactions accomplished in these reactors. Most strategies fall short in reaching a win–win situation that meets production demand while concurrently addressing environmental issues. The use of fuel cells (FCs) as reactors to simultaneously produce value-added chemicals and electrical power without environmental pollution has emerged as a promising direction. The FC reactor has been well recognized due to its “one stone hitting three birds” merit, namely, efficient chemical production, electrical power generation, and environmental friendliness. Fuel cell reactors for cogeneration provide multidisciplinary perspectives on clean chemical production, effective energy utilization, and even pollutant treatment, with far-reaching implications for the wider scientific community and society. The scope of this review focuses on unique reactors that can convert low-value reactants and/or industrial wastes to value-added chemicals while simultaneously cogenerating electrical power in an environmentally friendly manner.
Graphical Abstract
A schematic diagram for the concept of fuel cell reactors for cogeneration of electrical energy and value-added chemicals
Collapse
|
12
|
Analysis of the Ammonia Production Rates by Nitrogenase. Catalysts 2022. [DOI: 10.3390/catal12080844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ammonia (NH3) is produced industrially by the Haber–Bosch process from dinitrogen (N2) and dihydrogen (H2) using high temperature and pressure with an iron catalyst. In contrast to the extreme conditions used in the Haber–Bosch process, biology has evolved nitrogenase enzymes, which operate at ambient temperature and pressure. In biological settings, nitrogenase requires large amounts of energy in the form of ATP, using at least 13 GJ ton−1 of ammonia. In 2016, Brown et al. reported ATP-free ammonia production by nitrogenase. This result led to optimism that the energy demands of nitrogenase could be reduced. More recent reports confirmed the ATP-free production of ammonia; however, the rates of reaction are at least an order of magnitude lower. A more detailed understanding of the role of ATP in nitrogenase catalysis is required to develop ATP-free catalytic systems with higher ammonia production rates. Finally, we calculated the theoretical maximal ammonia production rate by nitrogenase and compared it to currently used Haber–Bosch catalysts. Somewhat surprisingly, nitrogenase has a similar theoretical maximum rate to the Haber–Bosch catalysts; however, strategies need to be developed to allow the enzyme to maintain operation at its optimal rate.
Collapse
|
13
|
Chen X, Zheng X, Qi L, Xue Y, Li Y. Conversion of Interfacial Chemical Bonds for Inducing Efficient Photoelectrocatalytic Water Splitting. ACS MATERIALS AU 2022; 2:321-329. [PMID: 36855385 PMCID: PMC9928194 DOI: 10.1021/acsmaterialsau.1c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sp-C-hybridized alkyne bonds present the natural advantages of interacting with metal atoms and have the ability to generate a large number of new catalytic active sites on the surface and the interfaces, thus greatly promoting the efficient progress of various light/electrochemical reactions. In this work, we have successfully fabricated a novel type of interfacial structure containing sp-C-Mo/O bonds and mixed Mo valence states with outstanding catalytic activity and stability for photoelectrocatalytic (PEC) overall water splitting in a wide pH range (0-14), due to the presence of sp-carbon-rich graphdiyne. For example, in alkaline conditions (pH = 14), the overpotentials of oxygen and hydrogen evolution reactions at 10 mA cm-2 are 165 and 8 mV. When being used as an electrolyzer, the cell voltage of this catalyst is only 1.40 V to achieve 10 mA cm-2. The high PEC activity of graphdiyne@molybdenum oxide originates from the conversion of chemical bonds at the sp-C hybrid interface and the coexistence of multivalent states of molybdenum, triggering a large number of catalytic active sites, greatly promoting charge transfer and lowering water dissociation energy.
Collapse
Affiliation(s)
- Xi Chen
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xuchen Zheng
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lu Qi
- Science
Center for Material Creation and Energy Conversion, Institute of Frontier
and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Yurui Xue
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Science
Center for Material Creation and Energy Conversion, Institute of Frontier
and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Yuliang Li
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
14
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
15
|
Zhang L, Tian C, Wang H, Gu W, Zheng D, Cui M, Wang X, He X, Zhan G, Li D. Improving electroautotrophic ammonium production from nitrogen gas by simultaneous carbon dioxide fixation in a dual-chamber microbial electrolysis cell. Bioelectrochemistry 2022; 144:108044. [PMID: 34974371 DOI: 10.1016/j.bioelechem.2021.108044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Microbial electrosynthesis is a promising technology for high-value added products generation from organic and inorganic waste. In this work, autotrophic dual-chamber microbial electrolysis cells (MECs) were set up for N2 fixation at -0.9 V vs Ag/AgCl (sat. KCl) cathodic potential under ambient conditions. Higher NH4+ production yield (average value of 0.35 µmol h-1 cm-2, normalized to cathode surface area) and higher faradaic efficiency (FE, 20.25%) were obtained with intermittent addition of N2 and CO2, while the yield and FE were only 0.018 µmol h-1 cm-2 and 4.21% in the absence of CO2. Furthermore, cyclic voltammograms (CV) explained the bioelectrochemical behavior of N2 reduction was coupled with CO2 reduction in the autotrophic MECs. Microbial community analysis and functional prediction in the cathodic chamber revealed that Xanthobacter and Hydrogenophaga played as producers for N2 and CO2 fixation and Pannonibacter acting as a decomposer for converting organic nitrogen to ammonium. This work not only provided an optional bioelectrocatalytic method for N2 fixation with negative CO2-emissions but also revealed the mechanism of simultaneous fixation of N2 and CO2 via Calvin cycle in autotrophic MECs.
Collapse
Affiliation(s)
- Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Haoran Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenzhi Gu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Decong Zheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaohong He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
16
|
Feng E, Jing Q, Moeller KD. Lessons from an Array: Using an Electrode Surface to Control the Selectivity of a Solution-Phase Chemical Reaction. Angew Chem Int Ed Engl 2022; 61:e202116351. [PMID: 34982848 PMCID: PMC8863644 DOI: 10.1002/anie.202116351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/10/2022]
Abstract
Electrochemistry offers a variety of novel means by which selectivity can be introduced into synthetic organic transformations. In the work reported, it is shown how methods used to confine chemical reactions to specific sites on a microelectrode array can also be used to confine a preparative reaction to the surface of an electrode inserted into a bulk reaction solution. In so doing, the surface of a modified electrode can be used to introduce new selectivity into a preparative reaction that is not observed in the absence of either the modified electrode surface or the effort to confine the reaction to that surface. The observed selectivity can be optimized in the same way that confinement is optimized on an array and is dependent on the nature of the functionalized surface.
Collapse
Affiliation(s)
- Enqi Feng
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Qiwei Jing
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Kevin D. Moeller
- Department of Chemistry, Washington University, St. Louis, MO 63130,
| |
Collapse
|
17
|
Chen H, Tang T, Malapit CA, Lee YS, Prater MB, Weliwatte NS, Minteer SD. One-Pot Bioelectrocatalytic Conversion of Chemically Inert Hydrocarbons to Imines. J Am Chem Soc 2022; 144:4047-4056. [DOI: 10.1021/jacs.1c13063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Tianhua Tang
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Christian A. Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matthew B. Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - N. Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
18
|
Feng E, Jing Q, Moeller KD. Lessons from an Array: Using an Electrode Surface to Control the Selectivity of a Solution‐Phase Chemical Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Enqi Feng
- Department of Chemistry Washington University St. Louis MO 63130 USA
| | - Qiwei Jing
- Department of Chemistry Washington University St. Louis MO 63130 USA
| | - Kevin D. Moeller
- Department of Chemistry Washington University St. Louis MO 63130 USA
| |
Collapse
|
19
|
Toda R, Tatara R, Horiba T, Komaba S. Multi‐Enzyme‐Modified Bioanode Utilising Starch as a Fuel. ChemElectroChem 2021. [DOI: 10.1002/celc.202100843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rurika Toda
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku Tokyo 162-8601 Japan
| | - Ryoichi Tatara
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku Tokyo 162-8601 Japan
| | - Tatsuo Horiba
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku Tokyo 162-8601 Japan
| | - Shinichi Komaba
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku Tokyo 162-8601 Japan
| |
Collapse
|
20
|
Ye J, Ren G, Wang C, Hu A, Li F, Zhou S, He Z. A facile and fast strategy for cathodic electroactive-biofilm assembly via magnetic nanoparticle bioconjugation. Biosens Bioelectron 2021; 190:113464. [PMID: 34197998 DOI: 10.1016/j.bios.2021.113464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023]
Abstract
Microbial electrosynthesis is a promising electricity-driven technology for converting carbon dioxide into value-added compounds, but the formation of cathodic electroactive-biofilms (CEBs) is challenging. Herein, we have demonstrated an innovative strategy for CEBs assembly via magnetic nanoparticle bioconjugation, which lies in the synergistic interactions among a bonder (Streptavidin, SA), conductive nanomaterials (Fe3O4), and a methanogen (M. barkeri). The results showed that the bioconjugated M. barkeri-SA-Fe3O4 biohybrids significantly enhanced both methane yield (33.2-fold) and faradaic efficiency (5.6-fold), compared with that of bare M. barkeri. Such an enhancement was attributed to the improved viability of CEBs with a higher biomass density. Particularly, more live cells were presented in the inner biofilms and promoted the long-distance electron exchange between the live outer-layer biofilm and the cathode electrode. Meanwhile, the higher redox activity of CEBs with the M. barkeri-SA-Fe3O4 biohybrids resulted in an improved transient charge storage capability, which was beneficial for the biological CO2-to-CH4 conversion via acting as an additional electron donor. This work has provided a new approach to accelerate the formation of CEBs and subsequent electron transfer, which holds a great potential for accomplishing electrosynthesis and CO2 fixation.
Collapse
Affiliation(s)
- Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fengqi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
21
|
Lee YS, Lim K, Minteer SD. Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances. Annu Rev Phys Chem 2021; 72:467-488. [DOI: 10.1146/annurev-physchem-090519-050109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enzyme cascades are plentiful in nature, but they also have potential in artificial applications due to the possibility of using the target substrate in biofuel cells, electrosynthesis, and biosensors. Cascade reactions from enzymes or hybrid bioorganic catalyst systems exhibit extended substrate range, reaction depth, and increased overall performance. This review addresses the strategies of cascade biocatalysis and bioelectrocatalysis for ( a) CO2 fixation, ( b) high value-added product formation, ( c) sustainable energy sources via deep oxidation, and ( d) cascaded electrochemical enzymatic biosensors. These recent updates in the field provide fundamental concepts, designs of artificial electrocatalytic oxidation-reduction pathways (using a flexible setup involving organic catalysts and engineered enzymes), and advances in hybrid cascaded sensors for sensitive analyte detection.
Collapse
Affiliation(s)
- Yoo Seok Lee
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Koun Lim
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
22
|
Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS CENTRAL SCIENCE 2021; 7:415-431. [PMID: 33791425 PMCID: PMC8006177 DOI: 10.1021/acscentsci.0c01532] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Collapse
Affiliation(s)
- Cuiju Zhu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nate W. J. Ang
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
24
|
Wang N, Xu J, Mei H, Moriwaki H, Izawa K, Soloshonok VA, Han J. Electrochemical Approaches for Preparation of Tailor-Made Amino Acids. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Xiao X, Ryan MP, Leech D, Zhang J, Magner E. Antimicrobial enzymatic biofuel cells. Chem Commun (Camb) 2020; 56:15589-15592. [PMID: 33245301 DOI: 10.1039/d0cc07472a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A compact antibiotic delivery system based on enzymatic biofuel cells was prepared, in which ampicillin was released when discharged in the presence of glucose and O2. The release of ampicillin was effective in inhibiting the growth of bacterium Escherichia coli as confirmed by ex situ and in situ release studies in culture media.
Collapse
Affiliation(s)
- Xinxin Xiao
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Bioelectrocatalysis has become one of the most important research fields in electrochemistry and provided a firm base for the application of important technology in various bioelectrochemical devices, such as biosensors, biofuel cells, and biosupercapacitors. The understanding and technology of bioelectrocatalysis have greatly improved with the introduction of nanostructured electrode materials and protein-engineering methods over the last few decades. Recently, the electroenzymatic production of renewable energy resources and useful organic compounds (bioelectrosynthesis) has attracted worldwide attention. In this review, we summarize recent progress in the applications of enzymatic bioelectrocatalysis.
Collapse
|
27
|
Xiao X, Shao B, Lu Y, Cao Q, Xia C, Chen F. Recent Advances in Asymmetric Organomulticatalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiao Xiao
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Bing‐Xuan Shao
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Yin‐Jie Lu
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Qian‐Qian Cao
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Chun‐Nian Xia
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Fen‐Er Chen
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University Shanghai 200433 People's Republic China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic China
| |
Collapse
|
28
|
|
29
|
Abstract
Biocatalysts provide a number of advantages such as high selectivity, the ability to operate under mild reaction conditions and availability from renewable resources that are of interest in the development of bioreactors for applications in the pharmaceutical and other sectors. The use of oxidoreductases in biocatalytic reactors is primarily focused on the use of NAD(P)-dependent enzymes, with the recycling of the cofactor occurring via an additional enzymatic system. The use of electrochemically based systems has been limited. This review focuses on the development of electrochemically based biocatalytic reactors. The mechanisms of mediated and direct electron transfer together with methods of immobilising enzymes are briefly reviewed. The use of electrochemically based batch and flow reactors is reviewed in detail with a focus on recent developments in the use of high surface area electrodes, enzyme engineering and enzyme cascades. A future perspective on electrochemically based bioreactors is presented.
Collapse
|
30
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
31
|
Amongre R, Gassner G. Regenerable copper anode for the Cu(I)-mediated reduction of FAD in the electroenzymatic styrene epoxidation reaction. Bioelectrochemistry 2020; 137:107679. [PMID: 33120296 DOI: 10.1016/j.bioelechem.2020.107679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Styrene monooxygenase (SMO) is a two-component flavoenzyme composed of NADH-dependent flavin reductase (SMOB) and FAD-specific styrene epoxidase (NSMOA) components. The enantioselective styrene epoxidation reaction catalyzed by this enzyme can be streamlined for chemosynthetic applications by substituting NADH and the reductase with an electrode to supply the epoxidase with reducing equivalents required for catalysis. Slow kinetics of adsorption and desorption of FAD from the electrode surface and unproductive side reactions of the reduced flavin with oxygen limit the efficiency of direct electroenzymatic catalysis. In the present work we develop a miniature spectroelectrochemical cell equipped with a copper electrode for the anodic synthesis of Cu(I) chelates of EDTA, glutamate, and citrate as FAD-reducing agents, and a platinum electrode for the electrolytic generation of oxygen. Copper oxidized in the flavin reduction reaction can be reclaimed subsequently as copper metal at the electrode surface. About 80% transformation of styrene is achieved in a single cell cycle of reduction and oxygenation at pH 7 and 25 °C in good agreement with that predicted by numerical simulation. When the cell is operated in two successive cycles, styrene oxide can be synthesized with an electroenzymatic epoxidation activity of 663U/g in 94% yield. This approach to electroenzymatic catalysis shows promise for the quantitative transformation of styrene to styrene oxide and may be applied more generally to other flavoprotein monooxygenases.
Collapse
Affiliation(s)
- Robert Amongre
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States.
| |
Collapse
|
32
|
Liu J, Lu L, Wood D, Lin S. New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS CENTRAL SCIENCE 2020; 6:1317-1340. [PMID: 32875074 PMCID: PMC7453421 DOI: 10.1021/acscentsci.0c00549] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 05/04/2023]
Abstract
As the breadth of radical chemistry grows, new means to promote and regulate single-electron redox activities play increasingly important roles in driving modern synthetic innovation. In this regard, photochemistry and electrochemistry-both considered as niche fields for decades-have seen an explosive renewal of interest in recent years and gradually have become a cornerstone of organic chemistry. In this Outlook article, we examine the current state-of-the-art in the areas of electrochemistry and photochemistry, as well as the nascent area of electrophotochemistry. These techniques employ external stimuli to activate organic molecules and imbue privileged control of reaction progress and selectivity that is challenging to traditional chemical methods. Thus, they provide alternative entries to known and new reactive intermediates and enable distinct synthetic strategies that were previously unimaginable. Of the many hallmarks, electro- and photochemistry are often classified as "green" technologies, promoting organic reactions under mild conditions without the necessity for potent and wasteful oxidants and reductants. This Outlook reviews the most recent growth of these fields with special emphasis on conceptual advances that have given rise to enhanced accessibility to the tools of the modern chemical trade.
Collapse
Affiliation(s)
| | | | | | - Song Lin
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New
York 14853, United States
| |
Collapse
|
33
|
Xiao X, McGourty KD, Magner E. Enzymatic Biofuel Cells for Self-Powered, Controlled Drug Release. J Am Chem Soc 2020; 142:11602-11609. [PMID: 32510936 DOI: 10.1021/jacs.0c05749] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Self-powered drug-delivery systems based on conductive polymers (CPs) that eliminate the need for external power sources are of significant interest for use in clinical applications. Osmium redox polymer-mediated glucose/O2 enzymatic biofuel cells (EBFCs) were prepared with an additional CP-drug layer on the cathode. On discharging the EBFCs in the presence of glucose and dioxygen, model drug compounds incorporated in the CP layer were rapidly released with negligible amounts released when the EBFCs were held at open circuit. Controlled and ex situ release of three model compounds, ibuprofen (IBU), fluorescein (FLU), and 4',6-diamidino-2-phenylindole (DAPI), was achieved with this self-powered drug-release system. DAPI released in situ in cell culture media was incorporated into retinal pigment epithelium (RPE) cells. This work demonstrates a proof-of-concept responsive drug-release system that may be used in implantable devices.
Collapse
Affiliation(s)
- Xinxin Xiao
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.,Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Kieran Denis McGourty
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.,Department of Chemical Sciences and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
34
|
Abstract
As the only enzyme currently known to reduce dinitrogen (N2) to ammonia (NH3), nitrogenase is of significant interest for bio-inspired catalyst design and for new biotechnologies aiming to produce NH3 from N2. In order to reduce N2, nitrogenase must also hydrolyze at least 16 equivalents of adenosine triphosphate (MgATP), representing the consumption of a significant quantity of energy available to biological systems. Here, we review natural and engineered electron transfer pathways to nitrogenase, including strategies to redirect or redistribute electron flow in vivo towards NH3 production. Further, we also review strategies to artificially reduce nitrogenase in vitro, where MgATP hydrolysis is necessary for turnover, in addition to strategies that are capable of bypassing the requirement of MgATP hydrolysis to achieve MgATP-independent N2 reduction.
Collapse
|
35
|
Dong F, Chen H, Malapit CA, Prater MB, Li M, Yuan M, Lim K, Minteer SD. Biphasic Bioelectrocatalytic Synthesis of Chiral β-Hydroxy Nitriles. J Am Chem Soc 2020; 142:8374-8382. [DOI: 10.1021/jacs.0c01890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Christian A. Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matthew B. Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|