1
|
Youden B, Yang D, Carrier A, Oakes K, Servos M, Jiang R, Zhang X. Speciation Analysis of Metals and Metalloids by Surface Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39250346 DOI: 10.1021/acs.est.4c06906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The presence of metalloids and heavy metals in the environment is of critical concern due to their toxicological impacts. However, not all metallic species have the same risk level. Specifically, the physical, chemical, and isotopic speciation of the metal(loids) dictate their metabolism, toxicity, and environmental fate. As such, speciation analysis is critical for environmental monitoring and risk assessment. In the past two decades, surface-enhanced Raman spectroscopy (SERS) has seen significant developments regarding trace metal(loid) sensing due to its ultrahigh sensitivity, readiness for in situ real-time applications, and cost-effectiveness. However, the speciation of metal(loid)s has not been accounted for in the design and application of SERS sensors. In this Perspective, we examine the potential of SERS for metal(loid) speciation analysis and highlight the advantages, progress, opportunities, and challenges of this application.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dongchang Yang
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
2
|
Kang LX, Wang BX, Zhang XY, Zhu YC, Li DY, Liu PN. Construction of Two-Dimensional Organometallic Coordination Networks with Both Organic Kagome and Semiregular Metal Lattices on Au(111). J Phys Chem Lett 2024; 15:6108-6114. [PMID: 38829304 DOI: 10.1021/acs.jpclett.4c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Two-dimensional metal-organic networks (2D MONs) having heterogeneous coordination nodes (HCNs) could exhibit excellent performance in catalysis and optoelectronics because of the unbalanced electron distribution of the coordinating metals. Therefore, the design and construction of 2D MONs with HCNs are highly desirable but remain challenging. Here, we report the construction of 2D organometallic coordination networks with an organic Kagome lattice and a semiregular metal lattice on Au(111) via the in situ formation of HCNs. Using a bifunctional precursor 1,4-dibromo-2,5-diisocyanobenzene, the coordination of isocyano with Au adatom on a room-temperature Au(111) yielded metal-organic coordination chains with isocyano-Au-isocyano nodes. In contrast, on a high-temperature Au(111), a selective debromination/coordination cascade reaction occurred, affording 2D organometallic coordination networks with phenyl-Au-isocyano nodes. By combining scanning tunneling microscopy and density functional theory calculations, we determined the structures of coordination products and the nature of coordination nodes, demonstrating a thermodynamically favorable pathway for forming the phenyl-Au-isocyano nodes.
Collapse
Affiliation(s)
- Li-Xia Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Bing-Xin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Xin-Yu Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Ya-Cheng Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
- Key Laboratory of Natural Medicines Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
- Key Laboratory of Natural Medicines Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
3
|
Dery S, Cao W, Yao C, Copéret C. NMR Spectroscopic Signatures of Cationic Surface Sites from Supported Coinage Metals Interacting with N-Heterocyclic Carbenes. J Am Chem Soc 2024; 146:6466-6470. [PMID: 38428040 PMCID: PMC10941179 DOI: 10.1021/jacs.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
N-heterocyclic carbenes (NHCs) have been extensively studied to modulate the reactivity of molecular catalysts, colloids, and their supported analogues, being isolated sites, clusters, or nanoparticles. While the interaction of NHCs on metal surfaces has been discussed in great detail, showing specific coordination chemistry depending on the type of NHC ligands, much less is known when the metal is dispersed on oxide supports, as in heterogeneous catalysts. Herein, we study the interaction of NHC ligands with Au surface sites dispersed on silica, a nonreducible oxide support. We identify the easy formation of bis-NHC ligated Au(I) surface sites parallel to what is found on metallic Au surfaces. These species display a specific 13C NMR spectroscopic signature that clearly distinguishes them from the mono-NHC Au(I) surface sites or supported imidazoliums. We find that bis-ligated surface species are not unique to supported Au(I) species and are found for the corresponding Ag(I) and Cu(I) species, as well as for the isolobal surface silanols. Furthermore, the interaction of NHC ligand with silica-supported Au nanoparticles also yields bis-NHC ligated Au(I) surface sites, indicating that metal atoms can also be easily extracted from nanoparticles, further illustrating the dynamics of these systems and the overall favorable formation of such bis-ligated species across a range of systems, besides what has been found on crystalline metal facets.
Collapse
Affiliation(s)
- Shahar Dery
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Weicheng Cao
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Chengbo Yao
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
4
|
Jensen IM, Chowdhury S, Hu G, Jensen L, Camden JP, Jenkins DM. Seeking a Au-C stretch on gold nanoparticles with 13C-labeled N-heterocyclic carbenes. Chem Commun (Camb) 2023; 59:14524-14527. [PMID: 37966800 DOI: 10.1039/d3cc04973f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Gold nanoparticles were functionalized with natural abundance and 13C-labeled N-heterocyclic carbenes (NHCs) to investigate the Au-C stretch. A combinatorial approach of surface enhanced Raman spectroscopy (SERS) and density-functional theory (DFT) calculations highlighted vibrational modes significantly impacted by isotopic labeling at the carbene carbon. Critically, no isotopically-impacted stretching mode showed majority Au-C character.
Collapse
Affiliation(s)
- Isabel M Jensen
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Shayanta Chowdhury
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gaohe Hu
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, USA
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - David M Jenkins
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
5
|
Song K, Lin J, Song X, Yang B, Zhu J, Zang Y, Zhu D. Formation of covalent metal-carbon contacts assisted by Ag + for single molecule junctions. Chem Commun (Camb) 2023; 59:6207-6210. [PMID: 37129042 DOI: 10.1039/d3cc01113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Covalent metal-carbon (M-C) contacts have long been pursued for constructing robust and high-performance molecular devices. Existing methods for creating such contacts usually rely on direct chemical reactions between metal electrodes and designed molecular ligands. An inherent limitation of this approach is that the commonly used metal electrodes (e.g., Au) are chemically inert, making it generally difficult to form covalent M-C bonds with molecules. Intriguingly, employing the scanning tunneling microscope-break junction technique, we find that simply adding Ag+ ions to molecular solution enables direct covalent bonding of terminal alkynes to Au electrodes. The bonding process is driven by Ag+ ion coupled in situ reactions and efficiently creates covalent Au/Ag-C interfaces in single molecule junctions. This metal ion assisted method avoids the need for complex synthesis of molecular ligands and works robustly for a wide range of alkyne-terminated molecules, offering a facile and versatile approach for precisely tuning the metal-molecule interface.
Collapse
Affiliation(s)
- Kai Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Junfeng Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuwei Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jia Zhu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yaping Zang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Retout M, Cornelio B, Bruylants G, Jabin I. Bifunctional Calix[4]arene-Coated Gold Nanoparticles for Orthogonal Conjugation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9301-9309. [PMID: 35866876 DOI: 10.1021/acs.langmuir.2c01122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gold nanoparticles (AuNPs) are currently intensively exploited in the biomedical field as they possess interesting chemical and optical properties. Although their synthesis is well-known, their controlled surface modification with defined densities of ligands such as peptides, DNA, or antibodies remains challenging and has generally to be optimized case by case. This is particularly true for applications like in vivo drug delivery that require AuNPs with multiple ligands, for example a targeting ligand and a drug in well-defined proportions. In this context, we aimed to develop a calixarene-modification strategy that would allow the controlled orthogonal conjugation of AuNPs, respectively, via amide bond formation and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). To do this, we synthesized a calix[4]arene-tetradiazonium salt bearing four PEG chains ended by an alkyne group (C1) and, after optimization of its grafting on 20 nm AuNPs, we demonstrated that CuAAC can be used to conjugate an azide containing dye (N3-cya7.5). It was observed that AuNPs coated with C1 (AuNPs-C1) can be conjugated to approximately 600 N3-cya7.5 that is much higher than the value obtained for AuNPs decorated with traditional thiolated PEG ligands terminated by an alkyne group. The control over the number of molecules conjugated via CuAAC was even possible by incorporating a non-functional calixarene (C2) into the coating layer. We then combined C1 with a calix[4]arene-tetradiazonium salt bearing four carboxyl groups (C3) that allows conjugation of an amine (NH2-cya7.5) containing dye. The conjugation potential of these bifunctional AuNPs-C1/C3 was quantified by UV-vis spectroscopy: AuNPs decorated with equal amount of C1 and C3 could be conjugated to approximately 350 NH2-dyes and 300 N3-dyes using successively amide bond formation and CuAAC, demonstrating the control over the orthogonal conjugation. Such nanoconstructs could benefit to anyone in the need of a controlled modification of AuNPs with two different molecules via two different chemistries.
Collapse
Affiliation(s)
- Maurice Retout
- Engineering of Molecular Nanosystems, Université Libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium
| | - Benedetta Cornelio
- Laboratoire de Chimie Organique, Université Libre de Bruxelles (ULB), CP 160/06, 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium
| | - Gilles Bruylants
- Engineering of Molecular Nanosystems, Université Libre de Bruxelles (ULB), 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université Libre de Bruxelles (ULB), CP 160/06, 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium
| |
Collapse
|
7
|
Aghajani A, Santoni M, Mirzaei P, Mohamed AA, Chehimi MM, Jouini M. Tuning arylation of gold nanoparticles for the electrocatalyzed oxidation of ethanol. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Peyman Mirzaei
- Université Paris Est, CNRS, ICMPE (UMR 7182) Thiais France
| | - Ahmed A. Mohamed
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering University of Sharjah Sharjah UAE
| | - Mohamed M. Chehimi
- Université Paris Cité, CNRS, ITODYS Paris France
- Université Paris Est, CNRS, ICMPE (UMR 7182) Thiais France
| | | |
Collapse
|
8
|
Zantioti-Chatzouda EM, Kotzabasaki V, Stratakis M. Synthesis of γ-Pyrones and N-Methyl-4-pyridones via the Au Nanoparticle-Catalyzed Cyclization of Skipped Diynones in the Presence of Water or Aqueous Methylamine. J Org Chem 2022; 87:8525-8533. [PMID: 35679874 DOI: 10.1021/acs.joc.2c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supported Au nanoparticles on TiO2 catalyze the hydration/6-endo cyclization of skipped diynones to γ-pyrones in aqueous dioxane, via triple bond activation. The isomeric 3(2H)-furanones which could be formed through a competing and often prevailing 5-exo cyclization pathway using homogeneous ionic Au(I) catalysts were not seen. The reaction does not proceed via the initial 1,3-transposition of the skipped diynones to their corresponding conjugated 1,3-diynone isomers. If aqueous methylamine is added, N-methyl-4-pyridones are exclusively formed in 69-79% yields via an analogous hydroamination/Au-catalyzed 6-endo cyclization pathway.
Collapse
Affiliation(s)
| | | | - Manolis Stratakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| |
Collapse
|
9
|
Zhong Q, Niu K, Chen L, Zhang H, Ebeling D, Björk J, Müllen K, Schirmeisen A, Chi L. Substrate-Modulated Synthesis of Metal-Organic Hybrids by Tunable Multiple Aryl-Metal Bonds. J Am Chem Soc 2022; 144:8214-8222. [PMID: 35442656 DOI: 10.1021/jacs.2c01338] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Assembly of semiconducting organic molecules with multiple aryl-metal covalent bonds into stable one- and two-dimensional (1D and 2D) metal-organic frameworks represents a promising route to the integration of single-molecule electronics in terms of structural robustness and charge transport efficiency. Although various metastable organometallic frameworks have been constructed by the extensive use of single aryl-metal bonds, it remains a great challenge to embed multiple aryl-metal bonds into these structures due to inadequate knowledge of harnessing such complex bonding motifs. Here, we demonstrate the substrate-modulated synthesis of 1D and 2D metal-organic hybrids (MOHs) with the organic building blocks (perylene) interlinked solely with multiple aryl-metal bonds via the stepwise thermal dehalogenation of 3,4,9,10-tetrabromo-1,6,7,12-tetrachloroperylene and subsequent metal-organic connection on metal surfaces. More importantly, the conversion from 1D to 2D MOHs is completely impeded on Au(111) but dominant on Ag(111). We comprehensively study the distinct reaction pathways on the two surfaces by visually tracking the structural evolution of the MOHs with high-resolution scanning tunneling and noncontact atomic force microscopy, supported by first-principles density functional theory calculations. The substrate-dependent structural control of the MOHs is attributed to the variation of the M-X (M = Au, Ag; X = C, Cl) bond strength regulated by the nature of the metal species.
Collapse
Affiliation(s)
- Qigang Zhong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, 215123 Suzhou, China.,Institute of Applied Physics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Kaifeng Niu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, 215123 Suzhou, China.,Department of Physics, Chemistry and Biology, IFM, Linköping University, 58183 Linköping, Sweden
| | - Long Chen
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Haiming Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, 215123 Suzhou, China
| | - Daniel Ebeling
- Institute of Applied Physics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, 58183 Linköping, Sweden
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - André Schirmeisen
- Institute of Applied Physics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, 215123 Suzhou, China
| |
Collapse
|