1
|
Zhang L, Su X, Zhou L, Li J, Xiao T, Li J, Zhao F, Cheng H. Reversal Effect of Phosphorus on Catalytic Performances of Supported Nickel Catalysts in Reductive Amination of 1,6-Hexanediol. CHEMSUSCHEM 2024; 17:e202400211. [PMID: 38547358 DOI: 10.1002/cssc.202400211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Indexed: 04/23/2024]
Abstract
The reductive amination of 1,6-hexanediol with ammonia is one of the most promising green routes for synthesis of 1,6-hexanediamine. Herein, we developed a phosphorous modified Ni catalyst of Ni-P/Al2O3. It presented satisfactory improved selectivity to 1,6-hexanediamine in the reductive amination of 1,6-hexanediol compared to the Ni/Al2O3 catalyst. The phosphorous tended to interact with Al2O3 to form AlPOx species, induced Ni nanoparticle to be flatter, and the decrease of strong acid sites, the new-formed Ni-AlPOx-Al2O3 interface and the flatter Ni nanoparticle were the key to switch the dominating product from hexamethyleneimine to 1,6-hexanediamine. This work develops an efficient catalyst for production of 1,6-hexanediamine from the reductive amination of 1,6-hexanediol, and provides a point of view about designing selective non-noble metal catalysts for producing primary diamines via reductive amination of diols.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Xinluona Su
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Leilei Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Jingrong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Tingting Xiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Jian Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Fengyu Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Haiyang Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| |
Collapse
|
2
|
Zhang S, Hu Y, Li M, Xie Y. Reductive Amination of Aldehyde and Ketone with Ammonia and H 2 by an In Situ-Generated Cobalt Catalyst under Mild Conditions. Org Lett 2024; 26:7122-7127. [PMID: 39166977 DOI: 10.1021/acs.orglett.4c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Herein, we present the simplest approach for the synthesis of primary amines via reductive amination using H2 as a reductant and aqueous ammonia as a nitrogen source, catalyzed by amorphous Co particles. The highly active Co particles were prepared in situ by simply mixing commercially available CoCl2 and NaBH4/NaHBEt3 without any ligand or support. This reaction system features mild conditions (80 °C, 1-10 bar), high selectivity (99%), a wide substrate scope, simple operation, and easy separation of the catalyst. The successful large-scale application of this reaction in the production of primary amines suggests its potential industrial interest.
Collapse
Affiliation(s)
- Shiyun Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yue Hu
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yinjun Xie
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
3
|
Zhang M, Qi Z, Xie M, Qu Y. Employing Ammonia for the Synthesis of Primary Amines: Recent Achievements over Heterogeneous Catalysts. CHEMSUSCHEM 2024:e202401550. [PMID: 39189946 DOI: 10.1002/cssc.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 08/28/2024]
Abstract
Primary amines represent highly privileged chemicals for synthesis of polymers, pharmaceuticals, agrochemicals, coatings, etc. Consequently, the development of efficient and green methodologies for the production of primary amines are of great importance in chemical industry. Owing to the advantages of low cost and ease in availability, ammonia is considered as a feasible nitrogen source for synthesis of N-containing compounds. Thus, the efficient transformation of ammonia into primary amines has received much attention. In this review, the commonly applied synthetic routes to produce primary amines from ammonia were summarized, including the reductive amination of carbonyl compounds, the hydrogen transfer amination of alcohols, the hydroamination of olefins and the arylation with ammonia, in which the catalytic performance of the recent heterogeneous catalysts is discussed. Additionally, various strategies to modulate the surface properties of catalysts are outlined in conjunction with the analysis of reaction mechanism. Particularly, the amination of the biomass-derived substrates is highlighted, which could provide competitive advantages in chemical industry and stimulate the development of sustainable catalysis in the future. Ultimately, perspectives into the challenges and opportunities for synthesis of primary amines with ammonia as N-resource are discussed.
Collapse
Affiliation(s)
- Mingkai Zhang
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| | - Zening Qi
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710072, China
| | - Min Xie
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710072, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
4
|
Endres EJ, Bairan Espano JR, Koziel A, Peng AR, Shults AA, Macdonald JE. Controlling Phase in Colloidal Synthesis. ACS NANOSCIENCE AU 2024; 4:158-175. [PMID: 38912287 PMCID: PMC11191733 DOI: 10.1021/acsnanoscienceau.3c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 06/25/2024]
Abstract
A fundamental precept of chemistry is that properties are manifestations of the elements present and their arrangement in space. Controlling the arrangement of atoms in nanocrystals is not well understood in nanocrystal synthesis, especially in the transition metal chalcogenides and pnictides, which have rich phase spaces. This Perspective will cover some of the recent advances and current challenges. The perspective includes introductions to challenges particular to chalcogenide and pnictide chemistry, the often-convoluted roles of bond dissociation energies and mechanisms by which precursors break down, using very organized methods to map the synthetic phase space, a discussion of polytype control, and challenges in characterization, especially for solving novel structures on the nanoscale and time-resolved studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Janet E. Macdonald
- Department of Chemistry, Vanderbilt
University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Sharma D, Choudhary P, Kumar S, Krishnan V. Interfacial nanoarchitectonics of nickel phosphide supported on activated carbon for transfer hydrogenation of nitroarenes under mild conditions. J Colloid Interface Sci 2024; 657:449-462. [PMID: 38061228 DOI: 10.1016/j.jcis.2023.11.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/04/2023] [Accepted: 11/26/2023] [Indexed: 01/02/2024]
Abstract
Metal phosphides are promising catalysts for hydrogenation reactions due to their unique ability to generate active hydrogen species which are essential for desired reactions. In this work, the hydrogenation potential of nickel phosphide (Ni2P) is explored for the transfer hydrogenation of aromatic nitro compounds using hydrazine hydrate as hydrogen source. The Ni2P was supported on activated carbon (AC) to facilitate highly exposed active reaction sites. The as-synthesized Ni2P-AC catalyst showed excellent catalytic potential for the hydrogenation of nitro compounds to corresponding amines with 100% conversion efficiency and resulted in excellent yields. The reaction conditions were optimized by varying different reaction parameters, such as time, temperature, solvents, catalyst amount and hydrogen sources. The developed reaction protocol is highly selective for nitro compounds having reduction susceptible functional groups like -Cl, -Br, -CHO, etc. The structure-activity relationship of the Ni2P-AC was also examined which suggested that both acidic and basic sites present in Ni2P-AC catalyst plays crucial role in hydrogenation reaction. Besides, an in-depth insight into the reaction mechanism illustrates that the reaction proceeds via N-phenyl hydroxylamine as the reaction intermediate. In addition, decent recyclability and stability of Ni2P-AC catalyst demonstrates its highly versatile nature for potential large-scale applications. The use of highly efficient Ni2P-AC catalyst for hydrogenation reactions can lead the way towards sustainable and effective industrial organic catalysis.
Collapse
Affiliation(s)
- Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| |
Collapse
|
6
|
Tsuda T, Sheng M, Ishikawa H, Yamazoe S, Yamasaki J, Hirayama M, Yamaguchi S, Mizugaki T, Mitsudome T. Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation. Nat Commun 2023; 14:5959. [PMID: 37770434 PMCID: PMC10539298 DOI: 10.1038/s41467-023-41627-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Iron-based heterogeneous catalysts are ideal metal catalysts owing to their abundance and low-toxicity. However, conventional iron nanoparticle catalysts exhibit extremely low activity in liquid-phase reactions and lack air stability. Previous attempts to encapsulate iron nanoparticles in shell materials toward air stability improvement were offset by the low activity of the iron nanoparticles. To overcome the trade-off between activity and stability in conventional iron nanoparticle catalysts, we developed air-stable iron phosphide nanocrystal catalysts. The iron phosphide nanocrystal exhibits high activity for liquid-phase nitrile hydrogenation, whereas the conventional iron nanoparticles demonstrate no activity. Furthermore, the air stability of the iron phosphide nanocrystal allows facile immobilization on appropriate supports, wherein TiO2 enhances the activity. The resulting TiO2-supported iron phosphide nanocrystal successfully converts various nitriles to primary amines and demonstrates high reusability. The development of air-stable and active iron phosphide nanocrystal catalysts significantly expands the application scope of iron catalysts.
Collapse
Affiliation(s)
- Tomohiro Tsuda
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Min Sheng
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroya Ishikawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Jun Yamasaki
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Motoaki Hirayama
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 333-0012, Japan
| | - Sho Yamaguchi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 333-0012, Japan.
| |
Collapse
|
7
|
Sharma D, Choudhary P, Kumar S, Krishnan V. Transition Metal Phosphide Nanoarchitectonics for Versatile Organic Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207053. [PMID: 36650943 DOI: 10.1002/smll.202207053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Transition metal phosphides (TMP) posses unique physiochemical, geometrical, and electronic properties, which can be exploited for different catalytic applications, such as photocatalysis, electrocatalysis, organic catalysis, etc. Among others, the use of TMP for organic catalysis is less explored and still facing many complex challenges, which necessitate the development of sustainable catalytic reaction protocols demonstrating high selectivity and yield of the desired molecules of high significance. In this regard, the controlled synthesis of TMP-based catalysts and thorough investigations of underlying reaction mechanisms can provide deeper insights toward practical achievement of desired applications. This review aims at providing a comprehensive analysis on the recent advancements in the synthetic strategies for the tailored and tunable engineering of structural, geometrical, and electronic properties of TMP. In addition, their unprecedented catalytic potential toward different organic transformation reactions is succinctly summarized and critically analyzed. Finally, a rational perspective on future opportunities and challenges in the emerging field of organic catalysis is provided. On the account of the recent achievements accomplished in organic synthesis using TMP, it is highly anticipated that the use of TMP combined with advanced innovative technologies and methodologies can pave the way toward large scale realization of organic catalysis.
Collapse
Affiliation(s)
- Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
8
|
Wang H, Zhang Y, Luo D, Wang H, He Y, Wang F, Wen X. Active metal dependent side reactions for the reductive amination of furfural. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Truong CC, Mishra DK, Suh YW. Recent Catalytic Advances on the Sustainable Production of Primary Furanic Amines from the One-Pot Reductive Amination of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2023; 16:e202201846. [PMID: 36354122 DOI: 10.1002/cssc.202201846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Indexed: 06/16/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF) represents a well-known class of lignocellulosic biomass-derived platform molecules. With the presence of many reactive functional groups in the structure, this versatile building block could be valorized into many value-added products. Among well-established catalytic transformations in biorefinery, the reductive amination is of particular interest to provide valuable N-containing compounds. Specifically, the reductive amination of 5-HMF with ammonia (NH3 ) and molecular hydrogen (H2 ) offers a straightforward and sustainable access to primary furanic amines [i. e., 5-hydroxymethyl-2-furfuryl amine (HMFA) and 2,5-bis(aminomethyl)furan (BAMF)], which display far-reaching utilities in pharmaceutical, chemical, and polymer industries. In the presence of heterogeneous catalysts contanining monometals (Ni, Co, Ru, Pd, Pt, and Rh) or bimetals (Ni-Cu and Ni-Mn), this elegant pathway enables a high-yielding and chemoselective production of HMFA/BAMF compared to other synthetic routes. This Review aims to present an up-to-date highlight on the supported metal-catalyzed reductive amination of 5-HMF with elaborate studies on the role of metal, solid support, and reaction parameters. Besides, the recyclability/adaptability of catalysts as well as the reaction mechanism are also provided to give valuable insights into this potential 5-HMF valorization strategy.
Collapse
Affiliation(s)
- Cong Chien Truong
- Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-8555, Japan
| | - Dinesh Kumar Mishra
- Center for Creative Convergence Education, Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute of Industrial Science (RIIS), Hanyang University, Seoul, 04763, Republic of Korea
| | - Young-Woong Suh
- Research Institute of Industrial Science (RIIS), Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
10
|
Kuo DY, Nishiwaki E, Rivera-Maldonado RA, Cossairt BM. The Role of Hydrogen Adsorption Site Diversity in Catalysis on Transition-Metal Phosphide Surfaces. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ding-Yuan Kuo
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Emily Nishiwaki
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Brandi M. Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
11
|
Ma Y, Ge H, Yi S, Yang M, Feng D, Ren Y, Gao J, Qin Y. Understanding the intrinsic synergistic mechanism between Pt—O—Ti interface sites and TiO2 surface sites of Pt/TiO2 catalysts in Fenton-like reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Della Pergola R, Garlaschelli L, Macchi P, Facchinetti I, Ruffo R, Racioppi S, Sironi A. From Small Metal Clusters to Molecular Nanoarchitectures with a Core-Shell Structure: The Synthesis, Redox Fingerprint, Theoretical Analysis, and Solid-State Structure of [Co 38As 12(CO) 50] 4. Inorg Chem 2022; 61:9888-9896. [PMID: 35731613 PMCID: PMC9937531 DOI: 10.1021/acs.inorgchem.2c00506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cluster [Co38As12(CO)50]4- was obtained by pyrolysis of [Co6As(CO)16]-. The metal cage features a closed-packed core inside a Co/As shell that progressively deforms from a cubic face-centered symmetry. The redox and acid-base reactivities were determined by cyclic voltammetry and spectrophotometric titrations. The calculated electron density revealed the shell-constrained distribution of the atomic charges, induced by the presence of arsenic.
Collapse
Affiliation(s)
- Roberto Della Pergola
- Dipartimento
di Scienze dell’Ambiente e della Terra, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy,
| | - Luigi Garlaschelli
- Dipartimento
di Chimica, University of Milano, via Venezian 21, 20133 Milano, Italy
| | - Piero Macchi
- Department
of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Irene Facchinetti
- Dipartimento
di Scienze dei Materiali, University of
Milano-Bicocca, via Cozzi
5, 20126 Milano, Italy
| | - Riccardo Ruffo
- Dipartimento
di Scienze dei Materiali, University of
Milano-Bicocca, via Cozzi
5, 20126 Milano, Italy
| | - Stefano Racioppi
- Dipartimento
di Chimica, University of Milano, via Venezian 21, 20133 Milano, Italy,Department
of Chemistry, State University of New York
at Buffalo, Buffalo, New York 14260-3000, United states
| | - Angelo Sironi
- Dipartimento
di Chimica, University of Milano, via Venezian 21, 20133 Milano, Italy,
| |
Collapse
|
13
|
Zhang Y, Ma C, Cai Z, Struwe J, Chen S, Xu J, Li S, Zeng W, Ackermann L. Electrooxidative tricyclic 6-7-6 fused-system domino assembly to allocolchicines by a removable radical strategy. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:3697-3703. [PMID: 35694222 PMCID: PMC9086860 DOI: 10.1039/d2gc00684g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
Natural allocolchicine and analogues derived thereof a tricyclic 6-7-6-system have been found as key scaffold of various biologically relevant molecules. However, the direct preparation of the allocolchicine motif remains difficult to date. Herein, we report on an electrooxidative radical cyclization of biarylynones with various carbon- and heteroatom-centered radical precursors via a sequential radical addition/7-endo-trig/radical cyclization domino reaction. This approach provides a step-economical and strategically novel disconnection for the facile assembly of a wide range of carbocyclic 6-7-6 fused ring systems. Remarkably, the sulfonyl group on the products could be easily removed by photocatalysis at room temperature with high yields.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, and Drug discovery & innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Chanchan Ma
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, and Drug discovery & innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Zhenzhi Cai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, and Drug discovery & innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Germany
| | - Shengjie Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, and Drug discovery & innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Jinming Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, and Drug discovery & innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Shiyin Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, and Drug discovery & innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Wangyu Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, and Drug discovery & innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Germany
| |
Collapse
|
14
|
Ishikawa H, Yamaguchi S, Nakata A, Nakajima K, Yamazoe S, Yamasaki J, Mizugaki T, Mitsudome T. Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus. JACS AU 2022; 2:419-427. [PMID: 35252991 PMCID: PMC8889554 DOI: 10.1021/jacsau.1c00461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 06/14/2023]
Abstract
The modification of metal nanoparticles (NPs) by incorporating additional metals is a key technique for developing novel catalysts. However, the effects of incorporating nonmetals into metal NPs have not been widely explored, particularly in the field of organic synthesis. In this study, we demonstrate that phosphorus (P)-alloying significantly increases the activity of precious metal NPs for the deoxygenation of sulfoxides into sulfides. In particular, ruthenium phosphide NPs exhibit an excellent catalytic activity and high durability against sulfur-poisoning, outperforming conventional catalysts. Various sulfoxides, including drug intermediates, were deoxygenated to sulfides with excellent yields. Detailed investigations into the structure-activity relationship revealed that P-alloying plays a dual role: it establishes a ligand effect on the electron transfer from Ru to P, facilitating the production of active hydrogen species, and has an ensemble effect on the formation of the Ru-P bond, preventing strong coordination with sulfide products. These effects combine to increase the catalytic performance of ruthenium phosphide NPs. These results demonstrate that P-alloying is an efficient method to improve the metal NP catalysis for diverse organic synthesis.
Collapse
Affiliation(s)
- Hiroya Ishikawa
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Sho Yamaguchi
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ayako Nakata
- First-Principles
Simulation Group, Nano-Theory Field, International Center for Materials
Nanoarchitectonics (WPI-MANA), National
Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- PRESTO, Japan
Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan
| | - Kiyotaka Nakajima
- Institute
for Catalysis, Hokkaido University, Kita 21 Nishi 10, Sapporo, Hokkaido 001-0021, Japan
| | - Seiji Yamazoe
- Department
of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Jun Yamasaki
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomoo Mizugaki
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takato Mitsudome
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- PRESTO, Japan
Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan
| |
Collapse
|
15
|
Xu H, Yamaguchi S, Mitsudome T, Mizugaki T. A copper nitride catalyst for the efficient hydroxylation of aryl halides under ligand-free conditions. Org Biomol Chem 2021; 19:6593-6597. [PMID: 34019611 DOI: 10.1039/d1ob00768h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper nitride (Cu3N) was used as a heterogeneous catalyst for the hydroxylation of aryl halides under ligand-free conditions. The cubic Cu3N nanoparticles showed high catalytic activity, comparable to those of conventional Cu catalysts with nitrogen ligands, demonstrating that the nitrogen atoms in Cu3N act as functional ligands that promote hydroxylation.
Collapse
Affiliation(s)
- Hang Xu
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Sho Yamaguchi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Yamaguchi S, Mizugaki T, Mitsudome T. Efficient D‐Xylose Hydrogenation to D‐Xylitol over a Hydrotalcite‐Supported Nickel Phosphide Nanoparticle Catalyst. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sho Yamaguchi
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka, Osaka 560-8531 Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka, Osaka 560-8531 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University Suita, Osaka 565-0871 Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka, Osaka 560-8531 Japan
| |
Collapse
|