1
|
Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175368. [PMID: 39122022 DOI: 10.1016/j.scitotenv.2024.175368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Considering the widespread and indispensable nature of nuclear energy for future power generation, there is a concurrent increase in the discharge of radioactive Cs into water streams. Recent studies have demonstrated that adsorption is crucial in removing Cs from wastewater for environmental remediation. However, the existing literature lacks comprehensive studies on various adsorption methods, the capacities or efficiencies of adsorbents, influencing factors, isotherm and kinetic models of the Cs adsorption process. A bibliometric and comprehensive analysis was conducted using 1179 publications from the Web of Science Core Collection spanning from 2014 to 2023. It reviews and summarizes current publication trends, active countries, adsorption methods, adsorption capacities or efficiencies of adsorbents, tested water sources, influencing factors, isotherm, and kinetic models of Cs adsorption. The selection of suitable adsorbents and operating parameters is identified as a crucial factor. Over the past decade, due to their notable capacity for Cs adsorption, considerable research has focused on novel adsorbents, such as Prussian blue, graphene oxide, hydrogel, and nanoadsorbents (NA). However, there remains a need for further development of application-oriented laboratory-scale experiments. Future research directions should encompass exploring adsorption mechanisms, developing new adsorbents or their combinations, practical applications of lab-scale studies, and recycling radioactive Cs from wastewater. Drawing upon this literature review, we present the most recent research patterns concerning adsorbents to remove Cs, outline potential avenues for future research, and delineate the obstacles hindering effective adsorption. This comprehensive bibliometric review provides valuable insights into prevalent research focal points and emerging trends, serving as a helpful resource for researchers and policymakers seeking to understand the dynamics of adsorbents for Cs removal from water.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| | - Ladawan Mee-Ngern
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
2
|
Xie C, Chen Y, Wang Y, Liu H, Sun B. Stable, porous, light-emitting post-modification covalent organic frameworks conjugated molecularly imprinted polymers for selective detection of pyrraline in salami products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124520. [PMID: 38796894 DOI: 10.1016/j.saa.2024.124520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Molecular imprinting is one of the most frequently occurring post-modification in the preparation of covalent organic frameworks (COFs) to enhance selectivity and specificity. In this study, we prepared a 2D layer structure of methoxy-conjugated COFs with the modification of azide (4-azido-L-phenylalanine), named [4-ALP]0.17-COFs, which exhibited a large specific surface area of 827.6 m2/g, good stability of water, polar solvents, chemistry, and thermodynamics. Fluorescent COF nanosheets ([4-ALP]0.17-CONs) obtained by liquid-assisted ultrasonic stripping have excellent blue luminescence properties and ultra-high absolute fluorescence quantum yield of 33.34 %. The modifiable functional groups in the surface of [4-ALP]0.17-CONs interacted with the targets and functional monomers of molecularly imprinted polymers (MIPs) through hydrogen bonding interactions, to form the 3D holes with recognition sites. The quantitative detection of pyrraline (PRL) could be achieved in the concentration range of 0.05-4 μg/L with the LOD was 34.81 ng/L. The spiked recovery of PRL in meat products was 88.01-106.00 %. The [4-ALP]0.17-CONs@MIPs sensing system showed excellent stability, reliability, reusability, and practicability, promising its potential for targeted monitoring of trace molecules in real matrices.
Collapse
Affiliation(s)
- Chenchen Xie
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China
| | - Yunhai Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
3
|
Hamsayegan S, Raissi H, Ghahari A. Selective detection of food contaminants using engineered gallium-organic frameworks with MD and metadynamics simulations. Sci Rep 2024; 14:18144. [PMID: 39103470 PMCID: PMC11300645 DOI: 10.1038/s41598-024-69111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
The exclusion mechanism of food contaminants such as bisphenol A (BPA), Flavonoids (FLA), and Goitrin (GOI) onto the novel gallium-metal organic framework (MOF) and functionalized MOF with oxalamide group (MOF-OX) is evaluated by utilizing molecular dynamics (MD) and Metadynamics simulations. The atoms in molecules (AIM) analysis detected different types of atomic interactions between contaminant molecules and substrates. To assess this procedure, a range of descriptors including interaction energies, root mean square displacement, radial distribution function (RDF), density, hydrogen bond count (HB), and contact numbers are examined across the simulation trajectories. The most important elements in the stability of the systems under examination are found to be stacking π-π and HB interactions. It was confirmed by a significant value of total interaction energy for BPA/MOF-OX (- 338.21 kJ mol-1) and BPA/MOF (- 389.95 kJ mol-1) complexes. Evaluation of interaction energies reveals that L-J interaction plays an essential role in the adsorption of food contaminants on the substrates. The free energy values for the stability systems of BPA/MOF and BPA/MOF-OX complexes at their global minima reached about BPA/MOF = - 254.29 kJ mol-1 and BPA/MOF-OX = - 187.62 kJ mol-1, respectively. Nevertheless, this work provides a new strategy for the preparation of a new hierarchical tree-dimensional of the Ga-MOF hybrid material for the adsorption and exclusion of food contaminates and their effect on human health.
Collapse
Affiliation(s)
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| | - Afsaneh Ghahari
- Department of Chemistry, University of Birjand, Birjand, Iran
| |
Collapse
|
4
|
Xu B, Yin X, Ning S, Zhong Y, Wang X, Fujita T, Hamza MF, Wei Y. Study of the Adsorption and Separation Behavior of Scandium and Zirconium by Trialkyl Phosphine Oxide-Modified Resins in Sulfuric and Hydrochloric Acid Media. TOXICS 2024; 12:350. [PMID: 38787129 PMCID: PMC11125866 DOI: 10.3390/toxics12050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Zirconium is recognized as one of the main impurities of the rare earth element scandium during purification. It presents significant challenges due to its similar chemical properties, making separating it difficult. This study used trialkyl phosphine oxide (TRPO) as a functional ligand, and the effects of carrier type and acidity on adsorption performance were first investigated. Among these, the novel extraction resin SiO2-P as a carrier for TRPO demonstrated more prominent separation performance in 0.2 M H2SO4 and 5 M HCl solutions. The kinetic and isotherm data were consistent with the pseudo-secondary kinetics and Langmuir model, respectively, and the adsorption process could be regarded as homogeneous monolayer adsorption subject to the dual effects of chemisorption and internal diffusion. In addition, thermodynamic analysis showed that the adsorption process of zirconium under the experimental conditions was a spontaneous endothermic process. Combined with the results of SEM-EDS, FT-IR, and XPS analyses, scandium and zirconium were successfully adsorbed by the resin and uniformly distributed on its surface, and the greater affinity of the P=O groups on the resin for zirconium was the critical factor contributing to the separation of scandium and zirconium. Finally, scandium and zirconium in sulfuric acid and hydrochloric acid media were extracted and separated by column experiments, and the purity of scandium could reach 99.8% and 99.99%, respectively.
Collapse
Affiliation(s)
- Botao Xu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (B.X.); (Y.Z.); (X.W.); (T.F.)
| | - Xiangbiao Yin
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, China; (S.N.); (M.F.H.)
| | - Shunyan Ning
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, China; (S.N.); (M.F.H.)
| | - Yilai Zhong
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (B.X.); (Y.Z.); (X.W.); (T.F.)
| | - Xinpeng Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (B.X.); (Y.Z.); (X.W.); (T.F.)
| | - Toyohisa Fujita
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (B.X.); (Y.Z.); (X.W.); (T.F.)
| | - Mohammed F. Hamza
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, China; (S.N.); (M.F.H.)
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, China; (S.N.); (M.F.H.)
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Liu AG, Meng XY, Chen Y, Chen ZT, Liu PD, Li B. Introducing a Pyrazinoquinoxaline Derivative into a Metal-Organic Framework: Achieving Fluorescence-Enhanced Detection for Cs + and Enhancing Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:669-683. [PMID: 38150676 DOI: 10.1021/acsami.3c14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Conventional photoresponsive materials have low photon utilization due to irregular distribution of photoactive groups, which severely limits the related real applications. Metal-organic frameworks (MOFs) can modulate the regular arrangement of functional groups to improve the electron transport paths and enhance the photon utilization, which provides strong support for the development of photoactive materials with excellent performance. In this work, one effective strategy for constructing a photoactive MOF had been developed via the utilization of Cd2+ and pyrazinoquinoxaline tetracarboxylic acid. The structural advantages of the Cd-MOF, such as a porous structure, abundant subject-object interaction sites, and a stable framework, ensure the prerequisite for various applications, while the better synergistic effect of Cd3 clusters and the pyrazinoquinoxaline derivative ensures efficient electron transfer efficiency. Therefore, by virtue of these structural advantages, the Cd-MOF can achieve fluorescence quenching detection for a variety of substrates, such as Fe3+, Cr2O72-, MnO4-, nitrofuran antibiotics, and TNP explosives, while fluorescence enhancement detection can be achieved for halogen ions, Cs+, Pb2+, and NO2-. In addition, the Cd-MOF can be used as a photocatalyst to successfully achieve the photocatalytic conversion of benzylamine to N-benzylbenzimidate under mild conditions. Thus, the Cd-MOF as a whole shows the possibility of application as a diverse fluorescence detection and photocatalyst and also illustrates the feasibility of preparing high-performance photoactive materials using the pyrazinoquinoxaline derivative.
Collapse
Affiliation(s)
- Ao-Gang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xiao-Yu Meng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Yuan Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zi-Tong Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Peng-da Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
6
|
Nagasaka CA, Ogiwara N, Kobayashi S, Uchida S. Reduction-Induced Uptake of Cs + in Metal-Organic Frameworks Loaded with Polyoxometalates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307004. [PMID: 38145347 DOI: 10.1002/smll.202307004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/19/2023] [Indexed: 12/26/2023]
Abstract
Materials for Cs+ adsorption continue to be important for the treatment of various solutions. Metal-organic frameworks (MOFs) with large specific surface areas promise adsorption properties for various gases, vapors, and ions. However, the utilization of MOFs for alkali ion capture, specifically, Cs+ capture is still in its infancy. Herein, MOFs are hybridized with polyoxometalates (POMs) to study the effect of i) MOF type, ii) POM type, and iii) POM loading amounts on Cs+ capture. In particular, the composite of ZIF-8 and [α-PMo12 O40 ]3- (PMo12 /ZIF-8) adsorbed Cs+ ions effectively when compared to pristine ZIF-8. In addition, the reduction of Mo within the POM from MoVI to MoV by ascorbic acid during the Cs+ uptake process doubled the Cs+ uptake capacity of PMo12 /ZIF-8. This observation can be attributed to the increased overall negative charge of the POM facilitating Cs+ uptake to compensate for the charge imbalance. Hybridization with other MOFs (MIL-101 and UiO-66) largely suppresses the Cs+ uptake, highlighting the importance of hydrophobicity in Cs+ capture. Furthermore, PMo12 /ZIF-8 led to an outstanding Cs+ uptake (291.5 mg g-1 ) with high selectivity (79.6%) from quinary mixtures of alkali metal cations even among other representative porous materials (Prussian blue and zeolites).
Collapse
Affiliation(s)
- Cocoro A Nagasaka
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Shunsuke Kobayashi
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya, 456-8587, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
7
|
Xia C, Joo SW, Hojjati-Najafabadi A, Xie H, Wu Y, Mashifana T, Vasseghian Y. Latest advances in layered covalent organic frameworks for water and wastewater treatment. CHEMOSPHERE 2023; 329:138580. [PMID: 37019401 DOI: 10.1016/j.chemosphere.2023.138580] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
This review provides an overview of recent progress in the development of layered covalent organic frameworks (LCOFs) for the adsorption and degradation of pollutants in water and wastewater treatment. LCOFs have unique properties such as high surface area, porosity, and tunability, which make them attractive adsorbents and catalysts for water and wastewater treatment. The review covers the different synthesis methods for LCOFs, including self-assembly, co-crystallization, template-directed synthesis, covalent organic polymerization (COP), and solvothermal synthesis. It also covers the structural and chemical characteristics of LCOFs, their adsorption and degradation capacity for different pollutants, and their comparison with other adsorbents and catalysts. Additionally, it discussed the mechanism of adsorption and degradation by LCOFs, the potential applications of LCOFs in water and wastewater treatment, case studies and pilot-scale experiments, challenges, and limitations of using LCOFs, and future research directions. The current state of research on LCOFs for water and wastewater treatment is promising, however, more research is needed to improve their performance and practicality. The review highlights that LCOFs have the potential to significantly improve the efficiency and effectiveness of current water and wastewater treatment methods and can also have implications for policy and practice.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Akbar Hojjati-Najafabadi
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Huan Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tebogo Mashifana
- The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein 2088, South Africa
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
8
|
Hao M, Liu Y, Wu W, Wang S, Yang X, Chen Z, Tang Z, Huang Q, Wang S, Yang H, Wang X. Advanced porous adsorbents for radionuclides elimination. ENERGYCHEM 2023:100101. [DOI: doi.org/10.1016/j.enchem.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
9
|
Wu Z, Weigend F, Fenske D, Naumann T, Gottfried JM, Dehnen S. Ion-Selective Assembly of Supertetrahedral Selenido Germanate Clusters for Alkali Metal Ion Capture and Separation. J Am Chem Soc 2023; 145:3802-3811. [PMID: 36720465 PMCID: PMC9936546 DOI: 10.1021/jacs.2c13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Supertetrahedral chalcogenido (semi)metalate cluster-based frameworks possess high selectivity for alkali metal cations, matching the specific charge density of their inner surfaces, which enables their use as ion-exchange materials. Aggregates of the supertetrahedral chalcogenido metalate cluster offer even new perspectives for metal ion capture and separation. Herein, we report on ionothermal preparation of two corresponding model compounds, (C2C1Im)7[Cs@GeII4(GeIV4Se10)4] (1) and (C2C1Im)10[Na5(CN)6@Cu6(Ge4Se10)4(Cu)] (2). Their formation is reliant on one specific cation type each, Cs+ for 1 and Na+ for 2, thus providing promising separation potential during crystallization. Compound 1 is based on the largest discrete binary selenido germanate cluster reported to date and the first mixed-valent chalcogenido germanate(II/IV) supertetrahedron. Moreover, it adds to the few examples of chalcogenides capable of capturing Cs+ ions. Its high selectivity for Cs+ compared to that of Li+, Na+, K+, and Rb+ was confirmed by single-crystal X-ray diffraction, energy-dispersive X-ray spectroscopy, and electrospray ionization mass spectrometry. Quantum chemical studies indicate that smaller ions, K+ and Rb+, could also be embedded in an isolated cluster assembly, but as the cluster aggregate slightly distorts for crystallization, the selectivity for Cs+ becomes exclusive in the salt. The anionic substructure of compound 2 is based on a two-dimensional network of supramolecular assemblies and exhibits an exclusive preference for Na+. This work thus provides the first comprehensive insight into the selective incorporation of specific alkali metal ions into supramolecular aggregates of supertetrahedral chalcogenide clusters, as a promising basis for new ion trapping techniques─especially for heavy alkali metal ions that pose environmental challenges.
Collapse
Affiliation(s)
- Zhou Wu
- Institute
of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF),
Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Florian Weigend
- Fachbereich
Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Dieter Fenske
- Institute
of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF),
Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tim Naumann
- Fachbereich
Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - J. Michael Gottfried
- Fachbereich
Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Stefanie Dehnen
- Institute
of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF),
Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany,
| |
Collapse
|
10
|
Jiang W, Gao B, Yan G, Xu S, Chu X, Che G, Liu B, Lu M, Liu C. Ferric ion substitution renders cadmium metal-organic framework derivatives for modulated Li storage based on local oxidation active centers. Dalton Trans 2023; 52:754-762. [PMID: 36562484 DOI: 10.1039/d2dt03392e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, a novel anionic Cd-MOF ([(CH3)2NH2]n[Cd(HL)DMF]n·2nH2O·nDMF, H4L = 1,2,4,5-tetrakis[(4-carboxy)phenoxymethyl]benzene) was synthesized for the first time. As a precursor, it was utilized to obtain Fe@Cd-MOF crystals via the substitution of Fe3+ ions due to a negatively charged framework and free-coordinated carboxyl group. Fe3O4/Fe-embedded carbon-based materials (Fe@Cd-MOFD) were further constructed by deriving Fe@Cd-MOF at high temperatures. The derived Fe@Cd-MOFD showed a structure resembling a central city with metal redox centers embedded into a carbon matrix. The introduced Fe3+ ions formed a local nano-sized metal oxide upon annealing, and these derived carbon materials offered high electronic conductivity. These pushed Fe@Cd-MOFD to remarkable electrochemical performance with an initial discharge capacity of 1703.8 mA h g-1. This work offers new insights into the fabrication of novel MOF-derived iron oxide hybrids for lithium storage.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China. .,College of Engineering, Jilin Normal University, Siping, 136000, PR China
| | - Baihui Gao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China.
| | - Guosong Yan
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China.
| | - Shichong Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, the Joint Laboratory of MXene Materials, Jilin Normal University, Changchun 130103, Jilin, PR China
| | - Xianyu Chu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China.
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China. .,College of Chemistry, Baicheng Normal University, Baicheng, 137000, PR China
| | - Bo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China.
| | - Ming Lu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, PR China.,Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, the Joint Laboratory of MXene Materials, Jilin Normal University, Changchun 130103, Jilin, PR China
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China. .,College of Engineering, Jilin Normal University, Siping, 136000, PR China
| |
Collapse
|
11
|
Bikash Baruah J. Coordination polymers in adsorptive remediation of environmental contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|