1
|
Li YQ, Zhao H, Han E, Jiang Z, Bai Q, Guan YM, Zhang Z, Wu T, Wang P. Dynamic selection in metallo-organic cube Cd II 8L 4 conformations induced by perfluorooctanoate encapsulation. Chem Sci 2024; 16:364-370. [PMID: 39620083 PMCID: PMC11604167 DOI: 10.1039/d4sc07105k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Metallo-organic cages possess flexibility comparable to that of biological receptors and can alter their conformations to better accommodate guest species due to the dynamic reversibility of the coordination bond. Induced fit is widely accepted involving conformation change of the host, while few definitive examples are related to conformation selection. Herein, we report the generation of metallo-organic cube CdII 8L4 with two coexisting conformations, which have been fully confirmed by NMR, ESI-MS and single-crystal X-ray diffraction analysis. The specific guest perfluorooctanoate PFOA selectively binds to the active conformer C 2h-1 to form the PFOA⊂C 2h-1 complex. Furthermore, conformer D 2-2 isomerizes to conformer C 2h-1 in the presence of PFOA, for maximizing the guest binding affinity. This study provides an effective working paradigm for conformation selection, facilitating the understanding of the fundamental mechanism of molecular recognition.
Collapse
Affiliation(s)
- Yu-Qing Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Ermeng Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Zhiyuan Jiang
- Department of Chemistry, The University of Hong Kong Hong Kong SAR 999077
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Pingshan Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
2
|
Azarian M, Ramezani Farani M, C Cho W, Asgharzadeh F, Yang YJ, Moradi Binabaj M, M Tambuwala M, Farahani N, Hushmandi K, Huh YS. Advancements in colorectal cancer treatment: The role of metal-based and inorganic nanoparticles in modern therapeutic approaches. Pathol Res Pract 2024; 264:155706. [PMID: 39527908 DOI: 10.1016/j.prp.2024.155706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Recent advances in the treatment of colorectal cancer (CRC) have highlighted the integration of metal-based nanoparticles into sophisticated therapeutic strategies. This examination delves into the potential applications of these nanoparticles, particularly in augmenting the effectiveness of photodynamic therapy (PDT) and targeted drug delivery systems. Metal nanoparticles, such as gold (Au), silver (Ag), and copper (Cu), possess distinctive characteristics that make them valuable in cancer treatment. Beyond their role as drug carriers, these nanoparticles actively engage in therapeutic processes like apoptosis induction, enhancement of photothermal effects, and generation of reactive oxygen species (ROS) crucial for tumor cell eradication. The utilization of metal nanoparticles in CRC therapy addresses significant challenges encountered with conventional treatments, such as drug resistance and systemic toxicity. For example, engineered Au nanoparticles enable targeted drug delivery, reducing off-target effects and maximizing therapeutic efficacy against cancerous cells. Their capacity to absorb near-infrared light allows for localized hyperthermia, effectively eliminating cancerous tissues. Similarly, Cu nanoparticles exhibit potential in overcoming drug resistance by enhancing the efficacy of traditional chemotherapeutic agents through ROS production and improved drug stability. This review underscores the significance of precision medicine in CRC care. Through the integration of metal nanoparticles alongside complementary biomarkers and personalized treatment strategies, a more efficient and tailored therapeutic approach can be achieved. The synergistic effect of PDT in combination with metal nanoparticles introduces a novel methodology to CRC treatment, offering a dual-action mechanism that enhances tumor targeting while minimizing undesirable effects. In conclusion, the integration of metal-based nanoparticles in CRC therapy marks a significant progress in oncological treatments. Continued research is imperative to comprehensively grasp their mechanisms, optimize their clinical utility, and address potential safety considerations. This thorough assessment aims to pave the way for future advancements in CRC treatment through the application of nanotechnology and personalized medicine strategies.
Collapse
Affiliation(s)
- Maryam Azarian
- Department of Bioanalytical Ecotoxicology,UFZ- Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yu-Jeong Yang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Maryam Moradi Binabaj
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
3
|
Zhang D, Snider RL, Crawley MR, Fang M, Sanchez-Lievanos KR, Ang S, Cook TR. Gram-Scale, One-Pot Synthesis of a Cofacial Porphyrin Bridged by Ortho-xylene as a Scaffold for Dinuclear Architectures. Inorg Chem 2024; 63:22532-22541. [PMID: 39531411 DOI: 10.1021/acs.inorgchem.4c03958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report the reaction between four 1,2-dibromoxylenes and two tetra-3-pyridylporphyrins for the formation of a cofacial porphyrin core spanned by dipyridinium xylene moieties. The metal-free organic nanocage (oNC) was synthesized in one twenty-four h step at a gram-scale with a 91.5% yield. The free base oNC was subsequently metalated with cobalt(II) (Co-oNC), copper(II) (Cu-oNC), and nickel(II) (Ni-oNC) ions to furnish dinuclear complexes that were characterized by mix of mass spectrometry, NMR, EPR, electronic absorption spectroscopy, and for Co-oNC, single-crystal X-ray diffraction. Cofacial cobalt porphyrins are often active as catalysts for the Oxygen Reduction Reaction. Under heterogeneous conditions in water, Co-oNC was 83% selective for the electrocatalytic 4 e-/4 H+ reduction of O2 to H2O, matching homogeneous experiments which revealed consistent selectivity for H2O (88%). This oNC core offers significant advantages over prisms formed by coordination-driven self-assembly: the dipyridnium-xylene coupling can furnish over 1 g of material in a single synthesis and the tethering motif is robust, maintaining a cofacial architecture in acidic and basic solutions. We envision this approach may be generalized to other bis-bromobenzyl building blocks, providing a means to tune metal-metal separation and other structural and electronic properties.
Collapse
Affiliation(s)
- Daoyang Zhang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Rachel L Snider
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Ming Fang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Karla R Sanchez-Lievanos
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Spencer Ang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| |
Collapse
|
4
|
He YQ, Tang JH. Anthracene-Based Endoperoxides as Self-Sensitized Singlet Oxygen Carriers for Hypoxic-Tumor Photodynamic Therapy. Adv Healthc Mater 2024:e2403009. [PMID: 39506461 DOI: 10.1002/adhm.202403009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Singlet oxygen is a crucial reactive oxygen species (ROS) in photodynamic therapy (PDT). However, the hypoxic tumor microenvironment limits the production of cytotoxic singlet oxygen through the light irradiation of PDT photosensitizers (PSs). This restriction poses a major challenge in improving the effectiveness of PDT. To overcome this challenge, researchers have explored the development of singlet oxygen carriers that can capture and release singlet oxygen in physiological conditions. Among these developments, anthracene-based endoperoxides, initially discovered almost 100 years ago, have shown the ability to generate singlet oxygen controllably under thermal or photo stimuli. Recent advancements have led to the development of a new class of self-sensitized anthracene-endoperoxides, with potential applications in enhancing PDT effects for hypoxic tumors. This review discusses the current research progress in utilizing self-sensitized anthracene-endoperoxides as singlet oxygen carriers for improved PDT. It covers anthracene-conjugated small organic molecules, metal-organic complexes, polymeric structures, and other self-sensitized nano-structures. The molecular structural designs, mechanisms, and characteristics of these systems will be discussed. This review aims to provide valuable insights for developing high-performance singlet oxygen carriers for hypoxic-tumor PDT.
Collapse
Affiliation(s)
- Yan-Qin He
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Jian-Hong Tang
- School of Future technology, University of Chinese Academy of Sciences (UCAS), Beijing, 101408, P. R. China
| |
Collapse
|
5
|
Liu H, Guo C, Huang Y, Zhou Z, Jian S, Zhang Z, Hou Y, Mu C, Zhang M. Fusion of two homoleptic truncated tetrahedra into a heteroleptic truncated octahedron. Chem Sci 2024:d4sc02736a. [PMID: 39165732 PMCID: PMC11331344 DOI: 10.1039/d4sc02736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
The exploration of novel structures and structural transformation of supramolecular assemblies is of vital importance for their functions and applications. Herein, based on coordination-driven self-assembly, we prepare a neutral truncated tetrahedron and a heteroleptic truncated octahedron, whose structures are unambiguously confirmed by X-ray diffraction analysis. More importantly, the truncated tetrahedron is quantitatively transformed into the truncated octahedron through its fusion with another cationic truncated tetrahedron, as evidenced by fluorescence, mass and NMR spectroscopy. This study not only deepens our understanding of the process of supramolecular fusion but also opens up possibilities for the subsequent preparation of advanced supramolecular assemblies with complex structures and integrated functions.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 P. R. China
| | - Yujuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zilin Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Shijin Jian
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology Xi'an 710055 Shaanxi P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
6
|
Huang YH, Lu YL, Cao ZM, Zhang XD, Liu CH, Xu HS, Su CY. Multipocket Cage Enables the Binding of High-Order Bulky and Drug Guests Uncovered by MS Methodology. J Am Chem Soc 2024; 146:21677-21688. [PMID: 39042557 DOI: 10.1021/jacs.4c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Achieving high guest loading and multiguest-binding capacity holds crucial significance for advancement in separation, catalysis, and drug delivery with synthetic receptors; however, it remains a challenging bottleneck in characterization of high-stoichiometry guest-binding events. Herein, we describe a large-sized coordination cage (MOC-70-Zn8Pd6) possessing 12 peripheral pockets capable of accommodating multiple guests and a high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)-based method to understand the solution host-guest chemistry. A diverse range of bulky guests, varying from drug molecules to rigid fullerenes as well as flexible host molecules of crown ethers and calixarenes, could be loaded into open pockets with high capacities. Notably, these hollow cage pockets provide multisites to capture different guests, showing heteroguest coloading behavior to capture binary, ternary, or even quaternary guests. Moreover, a pair of commercially applied drugs for the combination therapy of chronic lymphocytic leukemia (CLL) has been tested, highlighting its potential in multidrug delivery for combined treatment.
Collapse
Affiliation(s)
- Yin-Hui Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Lin Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhong-Min Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen-Hui Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hai-Sen Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Mu C, Jian S, Zhang M. Metal-Organic Frameworks (MOFs) and Metal-Organic Cages (MOCs) for Photocatalytic Hydrogen Production. Chemistry 2024; 30:e202401264. [PMID: 38807569 DOI: 10.1002/chem.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Metal-organic frameworks (MOFs) and metal-organic cages (MOCs) have garnered significant attention as promising photocatalysts due to their tunable chemical structures and integrated multifunctionality. To increase the photocatalytic efficiency, strategies like ligand functionalization, introducing additional catalytic sites, and doping or encapsulating photosensitizers have been explored for both MOFs and MOCs. This concept review focuses on recent advancements in utilizing MOFs and MOCs for photocatalytic hydrogen production, highlighting their unique characteristics and introducing their respective mechanisms in this field. Moreover, it outlines the current challenges and prospects faced by MOFs and MOCs, offering an outlook on their future in this domain.
Collapse
Affiliation(s)
- Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, P. R. China
| | - Shijin Jian
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
8
|
Li R, Yang T, Peng X, Feng Q, Hou Y, Zhu J, Chu D, Duan X, Zhang Y, Zhang M. Enhancing the Photosensitivity of Hypocrellin A by Perylene Diimide Metallacage-Based Host-Guest Complexation for Photodynamic Therapy. NANO-MICRO LETTERS 2024; 16:226. [PMID: 38916749 PMCID: PMC11199435 DOI: 10.1007/s40820-024-01438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024]
Abstract
The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy. Here, we report two perylene diimide-based metallacages that can form stable host-guest complexes with planar conjugated molecules including polycyclic aromatic hydrocarbons and photosensitizers (hypocrellin A). Such host-guest complexation not only prevents the aggregation of photosensitizers in aqueous environments, but also offers fluorescence resonance energy transfer (FRET) from the metallacage to the photosensitizers to further improve the singlet oxygen generation (ΦΔ = 0.66). The complexes are further assembled with amphiphilic polymers, forming nanoparticles with improved stability for anticancer study. Both in vitro and in vivo studies indicate that the nanoparticles display excellent anticancer activities upon light irradiation, showing great potential for cancer photodynamic therapy. This study provides a straightforward and effective approach for enhancing the photosensitivity of conventional photosensitizers via host-guest complexation-based FRET, which will open a new avenue for host-guest chemistry-based supramolecular theranostics.
Collapse
Affiliation(s)
- Rongrong Li
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China
| | - Jiao Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xianglong Duan
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China.
| | - Yanming Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
9
|
Liu H, Guo C, Li L, Zhang Z, Hou Y, Mu C, Hou GL, Zhang Z, Wang H, Li X, Zhang M. Multicomponent, Multicavity Metallacages That Contain Different Binding Sites for Allosteric Recognition. J Am Chem Soc 2024; 146:15787-15795. [PMID: 38738985 DOI: 10.1021/jacs.4c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The encapsulation of different guest molecules by their different recognition domains of proteins leads to selective binding, catalysis, and transportation. Synthetic hosts capable of selectively binding different guests in their different cavities to mimic the function of proteins are highly desirable but challenging. Here, we report three ladder-shaped, triple-cavity metallacages prepared by multicomponent coordination-driven self-assembly. Interestingly, the porphyrin-based metallacage is capable of heteroleptic encapsulation of fullerenes (C60 or C70) and coronene using its different cavities, allowing distinct allosteric recognition of coronene upon the addition of C60 or C70. Owing to the different binding affinities of the cavities, the metallacage hosts one C60 molecule in the central cavity and two coronene units in the side cavities, while encapsulating two C70 molecules in the side cavities and one coronene molecule in the central cavity. The rational design of multicavity assemblies that enable heteroleptic encapsulation and allosteric recognition will guide the further design of advanced supramolecular constructs with tunable recognition properties.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Luqi Li
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Gao-Lei Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co., Ltd., 9F, Building NO.1, Lane 2570, Hechuan Rd., Minhang District, Shanghai 201600, P. R. China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
10
|
Hosoya S, Shoji S, Nakanishi T, Kobayashi M, Wang M, Fushimi K, Taketsugu T, Kitagawa Y, Hasegawa Y. Guest-Responsive Near-Infrared-Luminescent Metal-Organic Cage Organized by Porphyrin Dyes and Yb(III) Complexes. Inorg Chem 2024; 63:10108-10113. [PMID: 38771149 DOI: 10.1021/acs.inorgchem.4c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metal-organic cages (MOCs) with luminophores have significant advantages for the facile detection of specific molecules based on turn-on or turn-off luminescence changes induced by host-guest complexation. One important challenge is the development of turn-on-type near-infrared (NIR)-luminescent MOCs. In this study, we synthesized a novel MOC consisting of two porphyrin dyes linked by four Yb(III) complexes, which exhibit bimodal red and NIR fluorescence signals upon photoexcitation of the porphyrin π system. Single-crystal X-ray structural analysis and computational molecular modeling revealed that planar aromatic perfluorocarbons were intercalated into the MOC. The tight packing between the MOC and guests enhanced the NIR fluorescence of Yb(III) by suppressing energy transfer from the photoexcited porphyrin to oxygen molecules. Guest-responsive turn-on NIR fluorescence changes in an MOC were successfully demonstrated.
Collapse
Affiliation(s)
- Shota Hosoya
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Sunao Shoji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Takayuki Nakanishi
- Research Center for Electronic and Optical Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Masato Kobayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Mengfei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Koji Fushimi
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tetsuya Taketsugu
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
11
|
Dey S, Aggarwal M, Chakraborty D, Mukherjee PS. Uncovering tetrazoles as building blocks for constructing discrete and polymeric assemblies. Chem Commun (Camb) 2024; 60:5573-5585. [PMID: 38738480 DOI: 10.1039/d4cc01616e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Metal-organic self-assembly with flexible moieties is a budding field of research due to the possibility of the formation of unique architectures. Tetrazole, characterised by four nitrogen atoms in a five-member ring, exhibits immense potential as a component. Tetrazole offers four coordination sites for binding to the metal centre with nine distinct binding modes, leading to various assemblies. This review highlights different polymeric and discrete tetrazole-based assemblies and their functions. The meticulous manipulation of stoichiometry, ligands, and metal ions required for constructing discrete assemblies has also been discussed. The different applications of these architectures in separation, catalysis and detection have also been accentuated. The latter section of the review consolidates tetrazole-based cage composites, highlighting their applications in cell imaging and photocatalytic applications.
Collapse
Affiliation(s)
- Soumya Dey
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Medha Aggarwal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
12
|
Li J, Wang J, Li H, Wen X, He C. Encapsulated Dye in Coordination-Assembled Octahedron for Visible-Light-Driven Proton Reduction and Nitroaromatic Hydrogenation. Inorg Chem 2024; 63:8237-8243. [PMID: 38639568 DOI: 10.1021/acs.inorgchem.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
To mimic the finely tuned natural photosynthetic systems, a large metal-organic octahedron was synthesized by one-pot self-assembly with modified triphenylamine ligands and redox-active cobalt ions. By encapsulating an organic dye, fluorescein (Fl), within the inner cavity of the octahedron, the host-guest supramolecular system was provided for light-driven hydrogen production. The intimate distance between the redox site and the photosensitizer in the supramolecular metal-organic cage allowed the photoinduced electrons to transfer from the excited state Fl* to the redox cobalt center in a pseudo-intramolecular pathway. The supramolecular system showed good performance in light-driven hydrogen production and the reduction of nitroaromatic compounds. Control experiments based on a mononuclear compound resembling a cobalt corner of the octahedron and inhibitor competition provided evidence of enzyme-like catalytic behavior. The supramolecular reaction pathways within confined spaces contribute to the superior activity of the host-guest system.
Collapse
Affiliation(s)
- Jianxu Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Jing Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Hechuan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Xiaoqiong Wen
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| |
Collapse
|
13
|
Gao K, Cheng Y, Zhang Z, Huo X, Guo C, Fu W, Xu J, Hou GL, Shang X, Zhang M. Guest-Regulated Generation of Reactive Oxygen Species from Porphyrin-Based Multicomponent Metallacages for Selective Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202319488. [PMID: 38305830 DOI: 10.1002/anie.202319488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/03/2024]
Abstract
The development of novel materials for highly efficient and selective photocatalysis is crucial for their practical applications. Herein, we employ the host-guest chemistry of porphyrin-based metallacages to regulate the generation of reactive oxygen species and further use them for the selective photocatalytic oxidation of benzyl alcohols. Upon irradiation, the sole metallacage (6) can generate singlet oxygen (1O2) effectively via excited energy transfer, while its complex with C70 (6⊃C70) opens a pathway for electron transfer to promote the formation of superoxide anion (O2⋅-), producing both 1O2 and O2⋅-. The addition of 4,4'-bipyridine (BPY) to complex 6⊃C70 forms a more stable complex (6⊃BPY) via the coordination of the Zn-porphyrin faces of 6 and BPY, which drives fullerenes out of the cavities and restores the ability of 1O2 generation. Therefore, benzyl alcohols are oxidized into benzyl aldehydes upon irradiation in the presence of 6 or 6⊃BPY, while they are oxidized into benzoic acids when 6⊃C70 is employed as the photosensitizing agent. This study demonstrates a highly efficient strategy that utilizes the host-guest chemistry of metallacages to regulate the generation of reactive oxygen species for selective photooxidation reactions, which could promote the utilization of metallacages and their related host-guest complexes for photocatalytic applications.
Collapse
Affiliation(s)
- Ke Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Ying Cheng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Xingda Huo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Jianzhi Xu
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Gao-Lei Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Xiaobo Shang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| |
Collapse
|
14
|
Mu C, Zhang L, Li G, Hou Y, Liu H, Zhang Z, Zhang R, Gao T, Qian Y, Guo C, He G, Zhang M. Isoreticular Preparation of Tetraphenylethylene-based Multicomponent Metallacages towards Light-Driven Hydrogen Production. Angew Chem Int Ed Engl 2023; 62:e202311137. [PMID: 37594254 DOI: 10.1002/anie.202311137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Multicomponent metallacages can integrate the functions of their different building blocks to achieve synergetic effects for advanced applications. Herein, based on metal-coordination-driven self-assembly, we report the preparation of a series of isoreticular tetraphenylethylene-based metallacages, which are well characterized by multinuclear NMR, ESI-TOF-MS and single-crystal X-ray diffraction techniques. The suitable integration of photosensitizing tetraphenylethylene units as faces and Re catalytic complexes as the pillars into a single metallacage offers a high photocatalytic hydrogen production rate of 1707 μmol g-1 h-1 , which is one of the highest values among reported metallacages. Femtosecond transient absorption and DFT calculations reveal that the metallacage can serve as a platform for the precise and organized arrangement of the two building blocks, enabling efficient and directional electron transfer for highly efficient photocatalytic performance. This study provides a general strategy to integrate multifunctional ligands into a certain metallacage to improve the efficiency of photocatalytic hydrogen production, which will guide the future design of metallacages towards photocatalysis.
Collapse
Affiliation(s)
- Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Zhang
- School of Optoelectronic Engineering, Xidian University, Xi'an, 710126, P. R. China
| | - Guoping Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ruoqian Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tingting Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuchen Qian
- School of Optoelectronic Engineering, Xidian University, Xi'an, 710126, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
15
|
Jahović I, Yang Y, Ronson TK, Nitschke JR. Capture of Singlet Oxygen Modulates Host-Guest Behavior of Coordination Cages. Angew Chem Int Ed Engl 2023; 62:e202309589. [PMID: 37610599 PMCID: PMC10952966 DOI: 10.1002/anie.202309589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 08/24/2023]
Abstract
The anthracene panels of two tetrahedral MII 4 L6 cages, where MII =CoII or FeII , were found to react with photogenerated singlet oxygen (1 O2 ) in a hetero-Diels-Alder reaction. ESI-MS analysis showed the cobalt(II) cages to undergo complete transformation of all anthracene panels into endoperoxides, whereas the iron(II) congeners underwent incomplete conversion. The reaction was found to be partially reversible in the case of the 1-FeII cage. The dioxygen-cage cycloadducts were found to bind a set of guest molecules more weakly than the parent cages, with affinity dropping by more than two orders of magnitude in some cases. The light-driven cycloaddition reaction between cage and 1 O2 thus served as a stimulus for guest release and reuptake.
Collapse
Affiliation(s)
- Ilma Jahović
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Yuchong Yang
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | | |
Collapse
|
16
|
Hu X, Yue B, Chen C, Zong W, Li S, Yang H, Hou Y, Zhang J. Transmembrane Transporter Constructed from PlatinumMetal-organic Cage. Chempluschem 2023; 88:e202300426. [PMID: 37642319 DOI: 10.1002/cplu.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
A perylene diimide-based metal-organic cage (MOC4c) was found to be an efficient transmembrane transporter for ions and small molecules through the internal cavity of the cage. MOC4c could selectively transport different anions, as evidenced by vesicle-based fluorescenceassays and planar lipid bilayer-based current recordings.Furthermore, MOC4c appears tofacilitate calcein transport across the lipid bilayer membrane of a livingcell, suggesting that MOC4c could be used as a biologicaltool for small molecule drugstransmembrane transportation.
Collapse
Affiliation(s)
- Xinyu Hu
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Bangkun Yue
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chen Chen
- Zhejiang Marine Aquaculture Research Institute, Wenzhou, 325005, China
| | - Wei Zong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Sisi Li
- Ruian Graduate College, Wenzhou University, Wenzhou, 325035, China
| | - Haishen Yang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yali Hou
- State Key Laboratory for MechanicalBehavior of Materials School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian Zhang
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
17
|
Chen H, Roy I, Myong MS, Seale JSW, Cai K, Jiao Y, Liu W, Song B, Zhang L, Zhao X, Feng Y, Liu F, Young RM, Wasielewski MR, Stoddart JF. Triplet-Triplet Annihilation Upconversion in a Porphyrinic Molecular Container. J Am Chem Soc 2023; 145:10061-10070. [PMID: 37098077 DOI: 10.1021/jacs.2c13846] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Triplet-triplet annihilation-based molecular photon upconversion (TTA-UC) is a photophysical phenomenon that can yield high-energy emitting photons from low-energy incident light. TTA-UC is believed to fuse two triplet excitons into a singlet exciton through several consecutive energy-conversion processes. When organic aromatic dyes─i.e., sensitizers and annihilators─are used in TTA-UC, intermolecular distances, as well as relative orientations between the two chromophores, are important in an attempt to attain high upconversion efficiencies. Herein, we demonstrate a host-guest strategy─e.g., a cage-like molecular container incorporating two porphyrinic sensitizers and encapsulating two perylene emitters inside its cavity─to harness photon upconversion. Central to this design is tailoring the cavity size (9.6-10.4 Å) of the molecular container so that it can host two annihilators with a suitable [π···π] distance (3.2-3.5 Å). The formation of a complex with a host:guest ratio of 1:2 between a porphyrinic molecular container and perylene was confirmed by NMR spectroscopy, mass spectrometry, and isothermal titration calorimetry (ITC) as well as by DFT calculations. We have obtained TTA-UC yielding blue emission at 470 nm when the complex is excited with low-energy photons. This proof-of-concept demonstrates that TTA-UC can take place in one supermolecule by bringing together the sensitizers and annihilators. Our investigations open up some new opportunities for addressing several issues associated with supramolecular photon upconversion, such as sample concentrations, molecular aggregation, and penetration depths, which have relevance to biological imaging applications.
Collapse
Affiliation(s)
- Hongliang Chen
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michele S Myong
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - James S W Seale
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kang Cai
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300072, China
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Fangjun Liu
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Abdul Rinshad V, Sahoo J, Venkateswarulu M, Hickey N, De M, Sarathi Mukherjee P. Solvent Induced Conversion of a Self-Assembled Gyrobifastigium to a Barrel and Encapsulation of Zinc-Phthalocyanine within the Barrel for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202218226. [PMID: 36715420 DOI: 10.1002/anie.202218226] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
A rare gyrobifastigium architecture (GB) was constructed by self-assembly of a tetradentate donor (L) with PdII acceptor in DMSO. The GB was converted to its isomeric tetragonal barrel (MB) upon treatment with water. The hydrophobic cavity of MB has been explored for the encapsulation of zinc-phthalocyanine (ZnPc), which is an excellent photosensitizer for photodynamic therapy (PDT). However, the poor water-solubility and aggregation tendency are the main reasons for the suboptimal PDT performance of free ZnPc in the aqueous medium. Effective solubilization of ZnPc in an aqueous medium was achieved by encapsulating it in the cavity of MB. The inclusion complex (ZnPc⊂MB) showed enhanced singlet oxygen generation in water. Higher cellular uptake and anticancer activity of the ZnPc⊂MB compared to free ZnPc on HeLa cells indicate that encapsulation of ZnPc in an aqueous host is a potential strategy for enhancement of its PDT activity in water.
Collapse
Affiliation(s)
- Valiyakath Abdul Rinshad
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
19
|
Ge YY, Zhou XC, Zheng J, Luo J, Lai YL, Su J, Zhang HJ, Zhou XP, Li D. Self-Assembly of Two Tubular Metalloligand-Based Palladium-Organic Cages as Hosts for Polycyclic Aromatic Hydrocarbons. Inorg Chem 2023; 62:4048-4053. [PMID: 36847302 DOI: 10.1021/acs.inorgchem.2c04505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Herein we report two tubular metal-organic cages (MOCs), synthesized by the self-assembly of bidentate metalloligands with different lengths and PdII. These two MOCs feature Pd4L8-type square tubular and Pd3L6-type triangular cage structures, respectively. Both MOCs have been fully characterized by NMR spectroscopy, mass spectrometry, and theoretical calculation. Both cages can be employed for encapsulating polycyclic aromatic hydrocarbons and show high binding affinity toward coronene.
Collapse
Affiliation(s)
- Ying-Ying Ge
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Xian-Chao Zhou
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Ji Zheng
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Jie Luo
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Ya-Liang Lai
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Juan Su
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Hao-Jie Zhang
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao-Ping Zhou
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
20
|
Trefoil-shaped metallacycle and metallacage via heteroleptic self-assembly. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
21
|
Liu H, Guo C, Zhang Z, Mu C, Feng Q, Zhang M. Hexaphenyltriphenylene-Based Multicomponent Metallacages: Host-Guest Complexation for White-Light Emission. Chemistry 2023; 29:e202203926. [PMID: 36727501 DOI: 10.1002/chem.202203926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023]
Abstract
A hexaphenyltriphenylene-based hexatopic pyridyl ligand is designed and used to prepare three hexagonal prismatic metallacages via metal-coordination-driven self-assembly. Owing to the planar conjugated structures of the hexaphenyltriphenylene skeleton, such metallacages show good host-guest complexation with a series of emissive dyes, which have been further used to tune their emission in solution. Interestingly, based on their complementary emission colors, white light emission is achieved in a mixture of the host metallacages and the guests.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
22
|
Huang X, Zhang Q. A Gourd-shaped Organometallic Coordination Cage: Synthesis and Selective Binding of Two Drug Molecules. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
23
|
Gao K, Feng Q, Zhang Z, Zhang R, Hou Y, Mu C, Li X, Zhang M. Emissive Metallacage‐Cored Polyurethanes with Self‐Healing and Shape Memory Properties. Angew Chem Int Ed Engl 2022; 61:e202209958. [DOI: 10.1002/anie.202209958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Gao
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Ruoqian Zhang
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
24
|
Feng Q, Yang T, Ma L, Li X, Yuan H, Zhang M, Zhang Y, Fan L. Morpholine-Functionalized Multicomponent Metallacage as a Vector for Lysosome-Targeted Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38594-38603. [PMID: 35981928 DOI: 10.1021/acsami.2c11662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metallacages with suitable cavities and specific functions are promising delivery vectors in biological systems. Herein, we report a morpholine-functionalized metallacage for lysosome-targeted cell imaging. The efficient host-guest interactions between the metallacage and dyes prevent them from aggregation, so their emission in aqueous solutions is well maintained. The fluorescence quantum yield of these host-guest complexes reaches 74.40%. Therefore, the metallacage is further employed as a vector to deliver dyes with different emission colors (blue, green, and red) into lysosomes for targeted imaging. This research affords a type of vector for the delivery of various cargos toward biological applications, which will enrich the usage of metallacages in biomedical engineering.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Lihong Fan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
25
|
Liu H, Zhang Z, Mu C, Ma L, Yuan H, Ling S, Wang H, Li X, Zhang M. Hexaphenylbenzene-Based Deep Blue-Emissive Metallacages as Donors for Light-Harvesting Systems. Angew Chem Int Ed Engl 2022; 61:e202207289. [PMID: 35686675 DOI: 10.1002/anie.202207289] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/14/2022]
Abstract
We herein report the preparation of a series of hexaphenylbenzene (HPB)-based deep blue-emissive metallacages via multicomponent coordination-driven self-assembly. These metallacages feature prismatic structures with HPB derivatives as the faces and tetracarboxylic ligands as the pillars, as evidenced by NMR, mass spectrometry and X-ray diffraction analysis. Light-harvesting systems were further constructed by employing the metallacages as the donor and a naphthalimide derivative (NAP) as the acceptor, owing to their good spectral overlap. The judiciously chosen metallacage serves as the antenna, providing the suitable energy to excite the non-emissive NAP, and thus resulting in bright emission for NAP in the solid state. This study provides a type of HPB-based multicomponent emissive metallacage and explores their applications as energy donors to light up non-emissive fluorophores in the solid state, which will advance the development of emissive metallacages as useful luminescent materials.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Sanliang Ling
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
26
|
Gao K, Feng Q, Zhang Z, Zhang R, Hou Y, Mu C, Li X, Zhang M. Emissive Metallacage‐Cored Polyurethanes with Self‐Healing and Shape Memory Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai Gao
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering CHINA
| | - Qian Feng
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering CHINA
| | - Zeyuan Zhang
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering CHINA
| | - Ruoqian Zhang
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering CHINA
| | - Yali Hou
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering CHINA
| | - Chaoqun Mu
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering CHINA
| | - Xiaopeng Li
- Shenzhen University College of Chemistry and Environmental Engineering CHINA
| | - Mingming Zhang
- Xi'an Jiaotong Univeristy School of Material and Science No. 28 Xianning West Road 710049 Xi'an CHINA
| |
Collapse
|
27
|
Hou Y, Shi R, Yuan H, Zhang M. Highly emissive perylene diimide-based bowtie-shaped metallacycles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Liu H, Zhang Z, Mu C, Ma L, Yuan H, Ling S, Wang H, Li X, Zhang M. Hexaphenylbenzene‐Based Deep Blue‐Emissive Metallacages as Donors for Light‐Harvesting Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haifei Liu
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Zeyuan Zhang
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Chaoqun Mu
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Lingzhi Ma
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Hongye Yuan
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Sanliang Ling
- University of Nottingham University Park Campus: University of Nottingham Advanced Materials Research Group, Faculty of Engineering UNITED KINGDOM
| | - Heng Wang
- Shenzhen University College of Chemistry and Environmental Engineering CHINA
| | - Xiaopeng Li
- Shenzhen University College of Chemistry and Environmental Engineering CHINA
| | - Mingming Zhang
- Xi'an Jiaotong Univeristy School of Material and Science No. 28 Xianning West Road 710049 Xi'an CHINA
| |
Collapse
|
29
|
Cheng Y, Zhang Z, Duan X, Zhang M. cis-Dipyridyl porphyrin-based multicomponent organoplatinum( ii) bismetallacycles for photocatalytic oxidation. Dalton Trans 2022; 51:16517-16521. [DOI: 10.1039/d2dt02197h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three organoplatinum(ii) bismetallacycles were prepared with good singlet oxygen generation efficiency, which were used for the photocatalytic oxidation reaction.
Collapse
Affiliation(s)
- Ying Cheng
- Second Department of General Surgery, Shaanxi Provincial People's Hospital and Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, P. R. China
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zeyuan Zhang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital and Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, P. R. China
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital and Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, P. R. China
| | - Mingming Zhang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital and Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, P. R. China
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|