1
|
Paciotti R, Marrone A. A computational insight on the aromatic amino acids conjugation with [Cp*Rh(H 2O) 3] 2+ by using the meta-dynamics/FMO3 approach. J Mol Model 2023; 30:4. [PMID: 38082186 PMCID: PMC10713709 DOI: 10.1007/s00894-023-05794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
CONTEXT Rh(III) complexes demonstrated to exert promising pharmacological effects with potential applications as anti-cancer, anti-bacterial, and antimicrobial agents. One important Rh(III)-ligand is the pentamethylcyclopentadienyl (Cp*) group forming in water the [Cp*Rh(H2O)3]2+ complex. Among of its attractive chemical properties is the ability to react specifically with Tyr amino acid side chain of G-protein-coupled receptor (GPCR) peptides by means of highly chemoselective bioconjugation reaction, at room temperature and at pH 5-6. In this computational work, in order to deepen the mechanism of this chemoselective conjugation, we study the ligand exchange reaction between [Cp*Rh(H2O)3]2+ and three small molecules, namely p-cresol, 3-methylimidazole, and toluene, selected as mimetic of aromatic side chains of tyrosine (Tyr), tryptophan (Trp) and phenylalanine (Phe), respectively. Our outcomes suggest that the high selectivity for Tyr side chain might be related to OH group able to affect both thermodynamic and kinetic of ligand exchange reaction, due to its ability to act as both H bond acceptor and donor. These mechanistic aspects can be used to design new metal drugs containing the [Cp*Rh]2+ scaffold targeting specifically Tyr residues involved in biological/pathological processes such as phosphorylation by means of Tyr-kinase enzyme and protein-protein interactions. METHODS The geometry of three encounter complexes and product adducts were optimized at the B3LYP//CPCM/ωB97X-D level of theory, adopting the 6-311+G(d,p) basis set for all non-metal atoms and the LANL2DZ pseudopotential for the Rh atom. Meta-dynamics RMSD (MTD(RMSD)) calculations at GFN2-xTB level of theory were performed in NVT conditions at 298.15 K to investigate the bioconjugation reactions (simulation time: 100 ps; integration step 2.0; implicit solvent model: GBSA). The MTD(RMSD) simulation was performed in two replicates for each encounter complex. Final representative subsets of 100 structures for each run were gained with a sampling rate of 1 ps and analyzed by performing single point calculations using the FMO3 method at RI-MP2/6-311G//PCM[1] level of theory, adopting the MCP-TZP core potential for Rh atom.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, I-66100, Chieti, Italy.
| | - Alessandro Marrone
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, I-66100, Chieti, Italy
| |
Collapse
|
2
|
Cucchiaro A, Scherfler A, Corinti D, Berden G, Oomens J, Wurst K, Gust R, Crestoni ME, Kircher B, Cziferszky M. Amino Acids as Chelating Ligands for Platinum: Enhanced Stability in an Aqueous Environment Promoted by Biocompatible Molecules. J Med Chem 2023; 66:15256-15268. [PMID: 37937969 PMCID: PMC10683014 DOI: 10.1021/acs.jmedchem.3c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Platinum-based chemotherapeutics are a cornerstone in the treatment of many malignancies. However, their dose-limiting side effects have rooted efforts to develop new drug candidates with higher selectivity for tumor tissues and less problematic side effects. Here, we developed a cytotoxic platinum(II) complex based on Zeise's salt, containing the nonsteroidal anti-inflammatory drug acetylsalicylic acid and alanine as ligands (4). The previously developed complex (5) displayed high reactivity against sulfur-containing biomolecules; therefore, we put the focus on the optimization of the structure regarding its stability. Different amino acids were used as biocompatible chelating ligands to achieve this aim. Differences in the coordination sphere caused pronounced changes in the stability of Zeise-type precursors 1-3. Coordination with l-Ala through N in the trans position to ethylene showed the most promising results and was employed to stabilize 5. As a result, complex 4 showed improved stability and cytotoxicity, outperforming both 5 and 1.
Collapse
Affiliation(s)
- Andrea Cucchiaro
- Institute
of Pharmacy, Pharmaceutical Chemistry, Center for Molecular Biosciences
Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Amelie Scherfler
- Institute
of Pharmacy, Pharmaceutical Chemistry, Center for Molecular Biosciences
Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Davide Corinti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, P. le A. Moro 5, I-00185 Roma, Italy
| | - Giel Berden
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Klaus Wurst
- Institute
of General, Inorganic and Theoretical Chemistry, CCB-Centrum for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Institute
of Pharmacy, Pharmaceutical Chemistry, Center for Molecular Biosciences
Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, P. le A. Moro 5, I-00185 Roma, Italy
| | - Brigitte Kircher
- Tyrolean
Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
- Immunobiology
and Stem Cell Laboratory, Department of Internal Medicine V (Hematology
and Oncology), Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Monika Cziferszky
- Institute
of Pharmacy, Pharmaceutical Chemistry, Center for Molecular Biosciences
Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
3
|
Corinti D, Paciotti R, Coletti C, Re N, Chiavarino B, Frison G, Crestoni ME, Fornarini S. IRMPD spectroscopy and quantum-chemical simulations of the reaction products of cisplatin with the dipeptide CysGly. J Inorg Biochem 2023; 247:112342. [PMID: 37536163 DOI: 10.1016/j.jinorgbio.2023.112342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
The inorganic antineoplastic drug cisplatin was made to react in solution with the dipeptide cysteinylglycine (CysGly), chosen as a functional model of glutathione, and the reaction products were analyzed using electrospray ionization mass spectrometry (ESI-MS). Selected complexes, i.e., the primary substitution product cis-[PtCl(NH3)2(CysGly)]+ and the chelate cis-[PtCl(NH3)(CysGly)]+, were submitted to IR multiple photon dissociation (IRMPD) spectroscopy obtaining their vibrational features. The experimental IR ion spectra were compared with the calculated IR absorptions of different plausible isomeric families, finding CysGly to bind preferentially platinum(II) via its deprotonated thiolic group in the monovalent complex, cis-[PtCl(NH3)2(CysGly)]+, and to evolve in the S,N-bound chelate structure cis-[PtCl(NH3)(CysGly)]+ through the SH and NH2 functionality of the cysteine residue. Moreover, our findings indicate that the platination reaction does not affect the CysGly peptide bond, which remains in its trans configuration. These results provide additional insights into the reactivity of Pt(II)-complexes with glutathione which is involved in cellular cisplatin resistance.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy.
| | - Roberto Paciotti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy.
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Gilles Frison
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F-75005 Paris, France
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
4
|
Corinti D, Paciotti R, Coletti C, Re N, Chiavarino B, Crestoni ME, Fornarini S. Elusive intermediates in cisplatin reaction with target amino acids: Platinum(II)-cysteine complexes assayed by IR ion spectroscopy and DFT calculations. J Inorg Biochem 2022; 237:112017. [PMID: 36209532 DOI: 10.1016/j.jinorgbio.2022.112017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 01/18/2023]
Abstract
The reactivity of a widely used metal based antineoplastic drug, cisplatin, cis-PtCl2(NH3)2, with L-cysteine (Cys) has been investigated using a combination of electrospray ionization mass spectrometry (ESI-MS), IRMPD gas phase ion spectroscopy and DFT calculations. The cysteine lateral chain represents one of the main platination sites in proteins, which is believed to be related to the resistance mechanisms to cisplatin. The vibrational features of the mass-selected substitution product cis-[PtCl(NH3)2(Cys)]+ and the intercepted cis-[PtCl(NH3)2(H2O)(Cys)]+ intermediate complex were compared to calculated IR spectra, enabling the assessment of the sampled ions structures. In cis-[PtCl(NH3)2(Cys)]+, cysteine was found to bind platinum through the sulfur atom as a thiolate zwitterion, highlighting the enhanced acidity of the cysteine thiol group upon metal coordination. The cis-[PtCl(NH3)2(H2O)(Cys)]+ structure complies with the non-covalent encounter complex, formed by cis-[PtCl(NH3)2(H2O)]+ and neutral cysteine. This species is able to undergo the substitution process to produce cis-[PtCl(NH3)2(Cys)]+ when activated as a mass-isolated ion suggesting its participation in the reaction mechanism of cisplatin with cysteine in solution. Finally, the DFT-calculated energy profile for the substitution reaction was correlated with the peculiar gas-phase reactivity of this non-covalent complex, resulting to be 10-fold less reactive toward substitution than the corresponding methionine complex.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma, "La Sapienza", I-00185 Roma, Italy.
| | - Roberto Paciotti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy.
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma, "La Sapienza", I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma, "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma, "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
5
|
He CC, Hamlow LA, Roy HA, Devereaux ZJ, Hasan MA, Israel E, Cunningham NA, Martens J, Berden G, Oomens J, Rodgers MT. Structural Determination of Lysine-Linked Cisplatin Complexes via IRMPD Action Spectroscopy: NN s and NO - Binding Modes of Lysine to Platinum Coexist. J Phys Chem B 2022; 126:9246-9260. [PMID: 36326184 DOI: 10.1021/acs.jpcb.2c06234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite its success as an anticancer drug, cisplatin suffers from resistance and produces side effects. To overcome these limitations, amino-acid-linked cisplatin analogues have been investigated. Lysine-linked cisplatin, Lysplatin, (Lys)PtCl2, exhibited outstanding reactivity toward DNA and RNA that differs from that of cisplatin. To gain insight into its differing reactivity, the structure of Lysplatin is examined here using infrared multiple photon dissociation (IRMPD) action spectroscopy. To probe the influence of the local chemical environment on structure, the deprotonated and sodium-cationized Lysplatin complexes are examined. Electronic structure calculations are performed to explore possible modes of binding of Lys to Pt, their relative stabilities, and to predict their infrared spectra. Comparisons of the measured IRMPD and predicted IR spectra elucidate the structures contributing to the experimental spectra. Coexistence of two modes of binding of Lys to Pt is found where Lys binds via the backbone and side-chain amino nitrogen atoms, NNs, or to the backbone amino and carboxylate oxygen atoms, NO-. Glycine-linked cisplatin and arginine-linked cisplatin complexes have previously been found to bind only via the NO- binding mode. Present results suggest that the NNs binding conformers may be key to the outstanding reactivity of Lysplatin toward DNA and RNA.
Collapse
Affiliation(s)
- C C He
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zachary J Devereaux
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - M A Hasan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - E Israel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - J Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
6
|
Corinti D, Maccelli A, Chiavarino B, Schütz M, Bouchet A, Dopfer O, Crestoni ME, Fornarini S. Cation-π Interactions between a Noble Metal and a Polyfunctional Aromatic Ligand: Ag + (benzylamine). Chemistry 2022; 28:e202200300. [PMID: 35412692 PMCID: PMC9325466 DOI: 10.1002/chem.202200300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Indexed: 12/21/2022]
Abstract
The structure of an isolated Ag+ (benzylamine) complex is investigated by infrared multiple photon dissociation (IRMPD) spectroscopy complemented with quantum chemical calculations of candidate geometries and their vibrational spectra, aiming to ascertain the role of competing cation-N and cation-π interactions potentially offered by the polyfunctional ligand. The IRMPD spectrum has been recorded in the 800-1800 cm-1 fingerprint range using the IR free electron laser beamline coupled with an FT-ICR mass spectrometer at the Centre Laser Infrarouge d'Orsay (CLIO). The resulting IRMPD pattern points toward a chelate coordination (N-Ag+ -π) involving both the amino nitrogen atom and the aromatic π-system of the phenyl ring. The gas-phase reactivity of Ag+ (benzylamine) with a neutral molecular ligand (L) possessing either an amino/aza functionality or an aryl group confirms N- and π-binding affinity and suggests an augmented silver coordination in the product adduct ionAg + ( benzylamine ) ( L ) .
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità degli studi di Roma La SapienzaP.le A. Moro 5I-00185RomaItaly
| | - Alessandro Maccelli
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità degli studi di Roma La SapienzaP.le A. Moro 5I-00185RomaItaly
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità degli studi di Roma La SapienzaP.le A. Moro 5I-00185RomaItaly
| | - Markus Schütz
- Institut für Optik und Atomare PhysikTechnische Universität BerlinHardenbergstr. 3610623BerlinGermany
- present address: Eagleyard Photonics GmbHRudower Chaussee 2912489BerlinGermany
| | - Aude Bouchet
- Institut für Optik und Atomare PhysikTechnische Universität BerlinHardenbergstr. 3610623BerlinGermany
- present address: Université Lille LASIRE Lab Adv Spect Interact React & Environm Cite Sci, CNRS, UMR 851659000LilleFrance
| | - Otto Dopfer
- Institut für Optik und Atomare PhysikTechnische Universität BerlinHardenbergstr. 3610623BerlinGermany
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità degli studi di Roma La SapienzaP.le A. Moro 5I-00185RomaItaly
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità degli studi di Roma La SapienzaP.le A. Moro 5I-00185RomaItaly
| |
Collapse
|
7
|
Ligation Motifs in Zinc-Bound Sulfonamide Drugs Assayed by IR Ion Spectroscopy. Molecules 2022; 27:molecules27103144. [PMID: 35630621 PMCID: PMC9146759 DOI: 10.3390/molecules27103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The sulfonamide–zinc ion interaction, performing a key role in various biological contexts, is the focus of the present study, with the aim of elucidating ligation motifs in zinc complexes of sulfa drugs, namely sulfadiazine (SDZ) and sulfathiazole (STZ), in a perturbation-free environment. To this end, an approach is exploited based on mass spectrometry coupled with infrared multiple photon dissociation (IRMPD) spectroscopy backed by quantum chemical calculations. IR spectra of Zn(H2O+SDZ−H)+ and Zn(H2O+STZ−H)+ ions are consistent with a three-coordinate zinc complex, where ZnOH+ binds to the uncharged sulfonamide via N(heterocycle) and O(sulfonyl) donor atoms. Alternative prototropic isomers Zn(OH2)(SDZ−H)+ and Zn(OH2)(STZ−H)+ lie 63 and 26 kJ mol−1 higher in free energy, respectively, relative to the ground state Zn(OH)(SDZ)+ and Zn(OH)(STZ)+ species and do not contribute to any significant extent in the sampled population.
Collapse
|