1
|
Janzen DJ, Zhou J, Li SM. Biosynthesis of p-Terphenyls in Aspergillus ustus Implies Enzymatic Reductive Dehydration and Spontaneous Dibenzofuran Formation. Org Lett 2023; 25:6311-6316. [PMID: 37607357 DOI: 10.1021/acs.orglett.3c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
p-Terphenyls contain a central benzene ring substituted with two phenyl residues at its para positions. Heterologous expression of a biosynthetic gene cluster from Aspergillus ustus led to the formation of four new p-terphenyl derivatives. Gene deletion experiments proved the formation and reductive dehydration of the terphenylquinone atromentin, followed by O-methylation and prenylation. Spontaneous dibenzofuran formation led to the final products. These results provide new insights into the biosynthesis of p-terphenyls in fungi and dibenzofuran formation in the biosynthesis of numerous natural products.
Collapse
Affiliation(s)
- Daniel J Janzen
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jing Zhou
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
- School of Life Sciences, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
2
|
Insights into metabolic and pharmacological profiling of Aspergillus ficuum through bioinformatics and experimental techniques. BMC Microbiol 2022; 22:295. [PMID: 36482311 PMCID: PMC9733250 DOI: 10.1186/s12866-022-02693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/06/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recently, numerous novel bioactive fungal metabolites have been identified that possess broad therapeutic activities including anti-inflammatory, antibiotic, antioxidant, and antitumor. The fungal mycochemicals as well as extracts have increased the interest of the scientific community in drug discovery research through a combination approach such as, molecular metabolic, pharmacological and computational techniques. Therefore, the natural fungus Aspergillus ficuum (A. ficuum) (FCBP-DNA-1266) was selected for metabolic and pharmacological profiling in this study. RESULTS The metabolic profile of A. ficuum was explored for the first time and revealed the presence of bioactive compounds such as choline sulfate, noruron, hydroxyvittatine, aurasperone D, cetrimonium, kurilensoside, heneicosane, nonadecane and eicosane. Similarly, a pharmacological screen of A. ficuum was performed for the first time in in vivo and in vitro models. Interestingly, both the ethyl acetate and n-hexane fractions of A. ficuum were found to be more active against Bacillus subtilis among five tested bacteria with their zone of inhibition (ZOI) values of 21.00 mm ±1.00 and 23.00 mm ±1.00, at a concentration of 150 μgmL-1 respectively. Similarly, a significant decrease (P<0.001) and (P<0.01) in paw edema was observed in A. ficuum-treated animals at doses of 50 and 150 mgkg-1, respectively, reflecting its potent anti-inflammatory effect. Furthermore, the docking results supported the antibacterial and anti-inflammatory effects of A. ficuum. In addition, the crude extract demonstrated no acute toxicity and the highest percent radical scavenging was recorded for both n-hexane and ethyl acetate extracts. CONCLUSION The metabolic profile of A. ficuum indicated the presence of biological relevant compounds. A. ficuum extract exhibited potent antibacterial and anti-inflammatory effects supported by docking results. Furthermore, A. ficuum extract demonstrated the highest percentage of radical scavenging activity along with no acute toxicity.
Collapse
|
3
|
Glässnerová K, Sklenář F, Jurjević Ž, Houbraken J, Yaguchi T, Visagie C, Gené J, Siqueira J, Kubátová A, Kolařík M, Hubka V. A monograph of Aspergillus section Candidi. Stud Mycol 2022; 102:1-51. [PMID: 36760463 PMCID: PMC9903906 DOI: 10.3114/sim.2022.102.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
Aspergillus section Candidi encompasses white- or yellow-sporulating species mostly isolated from indoor and cave environments, food, feed, clinical material, soil and dung. Their identification is non-trivial due to largely uniform morphology. This study aims to re-evaluate the species boundaries in the section Candidi and present an overview of all existing species along with information on their ecology. For the analyses, we assembled a set of 113 strains with diverse origin. For the molecular analyses, we used DNA sequences of three house-keeping genes (benA, CaM and RPB2) and employed species delimitation methods based on a multispecies coalescent model. Classical phylogenetic methods and genealogical concordance phylogenetic species recognition (GCPSR) approaches were used for comparison. Phenotypic studies involved comparisons of macromorphology on four cultivation media, seven micromorphological characters and growth at temperatures ranging from 10 to 45 °C. Based on the integrative approach comprising four criteria (phylogenetic and phenotypic), all currently accepted species gained support, while two new species are proposed (A. magnus and A. tenebricus). In addition, we proposed the new name A. neotritici to replace an invalidly described A. tritici. The revised section Candidi now encompasses nine species, some of which manifest a high level of intraspecific genetic and/or phenotypic variability (e.g., A. subalbidus and A. campestris) while others are more uniform (e.g., A. candidus or A. pragensis). The growth rates on different media and at different temperatures, colony colours, production of soluble pigments, stipe dimensions and vesicle diameters contributed the most to the phenotypic species differentiation. Taxonomic novelties: New species: Aspergillus magnus Glässnerová & Hubka; Aspergillus neotritici Glässnerová & Hubka; Aspergillus tenebricus Houbraken, Glässnerová & Hubka. Citation: Glässnerová K, Sklenář F, Jurjević Ž, Houbraken J, Yaguchi T, Visagie CM, Gené J, Siqueira JPZ, Kubátová A, Kolařík M, Hubka V (2022). A monograph of Aspergillus section Candidi. Studies in Mycology 102: 1-51. doi: 10.3114/sim.2022.102.01.
Collapse
Affiliation(s)
- K. Glässnerová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ž. Jurjević
- EMSL Analytical, Cinnaminson, New Jersey, USA
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - J. Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J.P.Z. Siqueira
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
- Laboratório de Microbiologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - A. Kubátová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - M. Kolařík
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
4
|
Bailly C. Anti-inflammatory and anticancer p-terphenyl derivatives from fungi of the genus Thelephora. Bioorg Med Chem 2022; 70:116935. [PMID: 35901638 DOI: 10.1016/j.bmc.2022.116935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 02/08/2023]
Abstract
Fungi from the genus Thelephora have been exploited to identify bioactive compounds. The main natural products characterized are para-terphenyl derivatives, chiefly represented by the lead anti-inflammatory compound vialinin A isolated from species T. vialis and T. terrestris. Different series of p-terphenyls have been identified, including vialinins, ganbajunins, terrestrins, telephantins and other products. Their mechanism of action is not always clearly identified, and different potential molecule targets have been proposed. The lead vialinin A functions as a protease inhibitor, efficiently targeting ubiquitin-specific peptidases USP4/5 and sentrin-specific protease SENP1 which are prominent anti-inflammatory and anticancer targets. Protease inhibition is coupled with a powerful inhibition of the cellular production of tumor necrosis factor TNFα. Other mechanisms contributing to the anti-inflammatory or anti-proliferative action of these p-terphenyl compounds have been invoked, including the formation of cytotoxic copper complexes for derivatives bearing a catechol central unit such vialinin A, terrestrin B and telephantin O. These p-terphenyl compounds could be further exploited to design novel anticancer agents, as evidenced with the parent compound terphenyllin (essentially found in Aspergillus species) which has revealed marked antitumor and anti-metastatic effects in xenograft models of gastric and pancreatic cancer. This review shed light on the structural and functional diversity of p-terphenyls compounds isolated from Thelephora species, their molecular targets and pharmacological properties.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal) 59290, France.
| |
Collapse
|
5
|
Fungus-Derived 3-Hydroxyterphenyllin and Candidusin A Ameliorate Palmitic Acid-Induced Human Podocyte Injury via Anti-Oxidative and Anti-Apoptotic Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072109. [PMID: 35408508 PMCID: PMC9000303 DOI: 10.3390/molecules27072109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. An elevated fatty acid plasma concentration leads to podocyte injury and DN progression. This study aimed to identify and characterize cellular mechanisms of natural compounds that inhibit palmitic acid (PA)-induced human podocyte injury. By screening 355 natural compounds using a cell viability assay, 3-hydroxyterphenyllin (3-HT) and candidusin A (CDA), isolated from the marine-derived fungus Aspergillus candidus PSU-AMF169, were found to protect against PA-induced podocyte injury, with half-maximal inhibitory concentrations (IC50) of ~16 and ~18 µM, respectively. Flow cytometry revealed that 3-HT and CDA suppressed PA-induced podocyte apoptosis. Importantly, CDA significantly prevented PA-induced podocyte barrier impairment as determined by 70 kDa dextran flux. Reactive oxygen species (ROS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) direct scavenging assays indicated that both compounds exerted an anti-oxidative effect via direct free radical-scavenging activity. Moreover, 3-HT and CDA upregulated the anti-apoptotic Bcl2 protein. In conclusion, 3-HT and CDA represent fungus-derived bioactive compounds that have a novel protective effect on PA-induced human podocyte apoptosis via mechanisms involving free radical scavenging and Bcl2 upregulation.
Collapse
|
6
|
Chandra P, Sharma RK, Arora DS. Antioxidant compounds from microbial sources: A review. Food Res Int 2020; 129:108849. [DOI: 10.1016/j.foodres.2019.108849] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023]
|
7
|
Shan T, Wang Y, Wang S, Xie Y, Cui Z, Wu C, Sun J, Wang J, Mao Z. A new p-terphenyl derivative from the insect-derived fungus Aspergillus candidus Bdf-2 and the synergistic effects of terphenyllin. PeerJ 2020; 8:e8221. [PMID: 31915570 PMCID: PMC6942676 DOI: 10.7717/peerj.8221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/15/2019] [Indexed: 11/29/2022] Open
Abstract
A new p-terphenyl derivative 4″-deoxy-2′-methoxyterphenyllin (1), along with six known p-terphenyl derivatives (2–7), a known flavonoid derivative dechlorochlorflavonin (8) and a known fellutanine A (9), were isolated from the insect-derived strain of the fungus Aspergillus candidus Bdf-2, associated with Blaptica dubia. The structure of 1 was established by the analysis of the 1D and 2D NMR and HR-ESI-MS spectra. Compounds 1–9 were evaluated for antibacterial activities against Staphylococcus aureus ATCC29213, Escherichia coli ATCC25922 and Ralstonia solanacearum, and for antioxidant activities. Synergistic effects of compound 2 with the other compounds were also investigated. As a result, compound 6 displayed the best antibacterial activities in all single compound with MIC value of 32 µg/mL against S. aureus ATCC29213 and R. solanacearum, respectively. However, no antibacterial effect against E. coli ATCC25922 was detected from any single compound. The combination of 2 + 6 exhibited obvious synergistic effect against S. aureus ATCC29213 and the MIC value was 4 µg/mL. Compound 6 also showed the best antioxidant activity as a single compound with an IC50 value of 17.62 µg/mL. Combinations of 5 + 6, 2 + 4 + 5 and 2 + 4 + 5 + 6 displayed synergistic effect and their antioxidant activities were better than that of any single compound.
Collapse
Affiliation(s)
- Tijiang Shan
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuyang Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Song Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yunying Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peaking Union Medical College, Beijing, China
| | - Zehua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chunyin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jun Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ziling Mao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Heo YM, Lee H, Kim K, Kwon SL, Park MY, Kang JE, Kim GH, Kim BS, Kim JJ. Fungal Diversity in Intertidal Mudflats and Abandoned Solar Salterns as a Source for Biological Resources. Mar Drugs 2019; 17:E601. [PMID: 31652878 PMCID: PMC6891761 DOI: 10.3390/md17110601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Intertidal zones are unique environments that are known to be ecological hot spots. In this study, sediments were collected from mudflats and decommissioned salterns on three islands in the Yellow Sea of South Korea. The diversity analysis targeted both isolates and unculturable fungi via Illumina sequencing, and the natural recovery of the abandoned salterns was assessed. The phylogeny and bioactivities of the fungal isolates were investigated. The community analysis showed that the abandoned saltern in Yongyudo has not recovered to a mudflat, while the other salterns have almost recovered. The results suggested that a period of more than 35 years may be required to return abandoned salterns to mudflats via natural restoration. Gigasporales sp. and Umbelopsis sp. were selected as the indicators of mudflats. Among the 53 isolates, 18 appeared to be candidate novel species, and 28 exhibited bioactivity. Phoma sp., Cladosporium sphaerospermum, Penicillium sp. and Pseudeurotium bakeri, and Aspergillus urmiensis showed antioxidant, tyrosinase inhibition, antifungal, and quorum-sensing inhibition activities, respectively, which has not been reported previously. This study provides reliable fungal diversity information for mudflats and abandoned salterns and shows that they are highly valuable for bioprospecting not only for novel microorganisms but also for novel bioactive compounds.
Collapse
Affiliation(s)
- Young Mok Heo
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Kyeongwon Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Sun Lul Kwon
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Min Young Park
- Department of Biosystems & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Ji Eun Kang
- Department of Biosystems & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Gyu-Hyeok Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Beom Seok Kim
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
9
|
ERDEN Y, TEKIN S, BETUL CEYLAN K, TEKIN C, KIRBAG S. Antioxidant, Antimicrobial and Anticancer Activities of the Aspergillin PZ and Terphenyllin Secondary Metabolites: An in vitro Study. GAZI UNIVERSITY JOURNAL OF SCIENCE 2019. [DOI: 10.35378/gujs.467166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Yurchenko EA, Menchinskaya ES, Pislyagin EA, Trinh PTH, Ivanets EV, Smetanina OF, Yurchenko AN. Neuroprotective Activity of Some Marine Fungal Metabolites in the 6-Hydroxydopamin- and Paraquat-Induced Parkinson's Disease Models. Mar Drugs 2018; 16:E457. [PMID: 30469376 PMCID: PMC6265791 DOI: 10.3390/md16110457] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022] Open
Abstract
A new melatonin analogue 6-hydroxy-N-acetyl-β-oxotryptamine (1) was isolated from the marine-derived fungus Penicillium sp. KMM 4672. It is the second case of melatonin-related compounds isolation from microfilamentous fungi. The neuroprotective activities of this metabolite, as well as 3-methylorsellinic acid (2) and 8-methoxy-3,5-dimethylisochroman-6-ol (3) from Penicillium sp. KMM 4672, candidusin A (4) and 4″-dehydroxycandidusin A (5) from Aspergillus sp. KMM 4676, and diketopiperazine mactanamide (6) from Aspergillus flocculosus, were investigated in the 6-hydroxydopamine (6-OHDA)- and paraquat (PQ)-induced Parkinson's disease (PD) cell models. All of them protected Neuro2a cells against the damaging influence of 6-OHDA to varying degrees. This effect may be realized via a reactive oxygen species (ROS) scavenging pathway. The new melatonin analogue more effectively protected Neuro2A cells against the 6-OHDA-induced neuronal death, in comparison with melatonin, as well as against the PQ-induced neurotoxicity. Dehydroxylation at C-3″ and C-4″ significantly increased free radical scavenging and neuroprotective activity of candidusin-related p-terphenyl polyketides in both the 6-OHDA- and PQ-induced PD models.
Collapse
Affiliation(s)
- Ekaterina A Yurchenko
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Ekaterina S Menchinskaya
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Evgeny A Pislyagin
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Phan Thi Hoai Trinh
- Department of Marine Biotechnology, Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang 650000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam.
| | - Elena V Ivanets
- Laboratory of Chemistry of Microbial Metabolites, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Olga F Smetanina
- Laboratory of Chemistry of Microbial Metabolites, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Anton N Yurchenko
- Laboratory of Chemistry of Microbial Metabolites, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| |
Collapse
|
11
|
Hubka V, Nováková A, Jurjević Ž, Sklenář F, Frisvad JC, Houbraken J, Arendrup MC, Jørgensen KM, Siqueira JPZ, Gené J, Kolařík M. Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of Aspergillus dobrogensis sp. nov. Int J Syst Evol Microbiol 2018; 68:995-1011. [PMID: 29458472 DOI: 10.1099/ijsem.0.002583] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aspergillus candidus is a species frequently isolated from stored grain, food, indoor environments, soil and occasionally also from clinical material. Recent bioprospecting studies highlighted the potential of using A. candidus and its relatives in various industrial sectors as a result of their significant production of enzymes and bioactive compounds. A high genetic variability was observed among A. candidus isolates originating from various European countries and the USA, that were mostly isolated from indoor environments, caves and clinical material. The A. candidus sensu lato isolates were characterized by DNA sequencing of four genetic loci, and agreement between molecular species delimitation results, morphological characters and exometabolite spectra were studied. Classical phylogenetic methods (maximum likelihood, Bayesian inference) and species delimitation methods based on the multispecies coalescent model supported recognition of up to three species in A. candidus sensu lato. After evaluation of phenotypic data, a broader species concept was adopted, and only one new species, Aspergillus dobrogensis, was proposed. This species is represented by 22 strains originating from seven countries (ex-type strain CCF 4651T=NRRL 62821T=IBT 32697T=CBS 143370T) and its differentiation from A. candidus is relevant for bioprospecting studies because these species have different exometabolite profiles. Evaluation of the antifungal susceptibility of section Candidi members to six antifungals using the reference EUCAST method showed that all species have low minimum inhibitory concentrations for all tested antifungals. These results suggest applicability of a wide spectrum of antifungal agents for treatment of infections caused by species from section Candidi.
Collapse
Affiliation(s)
- Vit Hubka
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alena Nováková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - František Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Maiken C Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - João P Z Siqueira
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Laboratório de Microbiologia, Faculdade de Medicina de SãoJosé do Rio Preto, São José do Rio Preto, Brazil
| | - Josepa Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Miroslav Kolařík
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
12
|
Wang Y, Compton C, Rankin GO, Cutler SJ, Rojanasakul Y, Tu Y, Chen YC. 3-Hydroxyterphenyllin, a natural fungal metabolite, induces apoptosis and S phase arrest in human ovarian carcinoma cells. Int J Oncol 2017; 50:1392-1402. [PMID: 28259974 PMCID: PMC5363874 DOI: 10.3892/ijo.2017.3894] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/13/2017] [Indexed: 01/20/2023] Open
Abstract
In the present study, we evaluated 3-Hydroxyter-phenyllin (3-HT) as a potential anticancer agent using the human ovarian cancer cells A2780/CP70 and OVCAR-3, and normal human epithelial ovarian cells IOSE-364 as an in vitro model. 3-HT suppressed proliferation and caused cytotoxicity against A2780/CP70 and OVCAR-3 cells, while it exhibited lower cytotoxicity in IOSE-364 cells. Subsequently, we found that 3-HT induced S phase arrest and apoptosis in a dose-independent manner. Further investigation revealed that S phase arrest was related with DNA damage which mediated the ATM/p53/Chk2 pathway. Downregulation of cyclin D1, cyclin A2, cyclin E1, CDK2, CDK4 and Cdc25C, and the upregulation of Cdc25A and cyclin B1 led to the accumulation of cells in S phase. The apoptotic effect was confirmed by Hoechst 33342 staining, depolarization of mitochondrial membrane potential and activation of cleaved caspase-3 and PARP1. Additional results revealed both intrinsic and extrinsic apoptotic pathways were involved. The intrinsic apoptotic pathway was activated through decreasing the protein levels of Bcl2, Bcl-xL and procaspase-9 and increasing the protein level of Puma. The induction of DR5 and DR4 indicated that the extrinsic apoptotic pathway was also activated. Induction of ROS and activation of ERK were observed in ovarian cancer cells. We therefore concluded that 3-HT possessed anti-proliferative effect on A2780/CP70 and OVCAR-3 cells, induced S phase arrest and caused apoptosis. Taken together, we propose that 3-HT shows promise as a therapeutic candidate for treating ovarian cancer.
Collapse
Affiliation(s)
- Yaomin Wang
- Department of Tea Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Casey Compton
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Gary O Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Stephen J Cutler
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yi Charlie Chen
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| |
Collapse
|
13
|
Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl Microbiol Biotechnol 2015; 99:7859-77. [DOI: 10.1007/s00253-015-6839-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
|
14
|
Hubka V, Lyskova P, Frisvad JC, Peterson SW, Skorepova M, Kolarik M. Aspergillus pragensis sp. nov. discovered during molecular reidentification of clinical isolates belonging to Aspergillus section Candidi. Med Mycol 2014; 52:565-76. [PMID: 24951723 DOI: 10.1093/mmy/myu022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The identity of nine clinical isolates recovered from Czech patients and presumptively identified as Aspergillus sp. section Candidi based on colony morphology was revised using sequences of β-tubulin, calmodulin gene sequence, and internal transcribed spacer rDNA. Six isolates were from suspected and proven onychomycosis, one from otitis externa, and two associated with probable invasive aspergillosis. The results showed that one Aspergillus candidus isolate was the cause of otitis externa, and both isolates obtained from sputa of patients with probable invasive aspergillosis were reidentified as A. carneus (sect. Terrei) and A. flavus (sect. Flavi). Three isolates from nail scrapings were identified as A. tritici, a verified agent of nondermatophyte onychomycosis. One isolate from toenail was determined to be A. candidus and the two isolates belonged to a hitherto undescribed species, Aspergillus pragensis sp. nov. This species is well supported by phylogenetic analysis based on β-tubulin and calmodulin gene and is distinguishable from other members of sect. Candidi by red-brown reverse on malt extract agar, slow growth on Czapek-Dox agar and inability to grow at 37°C. A secondary metabolite analysis was also provided with comparison of metabolite spectrum to other species. Section Candidi now encompasses five species for which a dichotomous key based on colony characteristics is provided. All clinical isolates were tested for susceptibilities to selected antifungal agents using the Etest and disc diffusion method. Overall sect. Candidi members are highly susceptible to common antifungals.
Collapse
Affiliation(s)
- Vit Hubka
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Praha 2, Czech Republic Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the AS CR, v.v.i., Vídeňská 1083, 142 20 Praha 4, Czech Republic
| | - Pavlina Lyskova
- Laboratory of Medical Mycology, Department of Parasitology, Mycology and Mycobacteriology Prague, Public Health Institute in Ústí nad Labem, Czech Republic
| | - Jens C Frisvad
- Department for Systems Biology, Technical University of Denmark, Soltofts Plads, Building 221, DK-2800 Lyngby, Denmark
| | - Stephen W Peterson
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Magdalena Skorepova
- Department of Dermatology and Venerology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Miroslav Kolarik
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Praha 2, Czech Republic Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the AS CR, v.v.i., Vídeňská 1083, 142 20 Praha 4, Czech Republic
| |
Collapse
|
15
|
Abo-Elmagd HI. Evaluation and optimization of antioxidant potentiality of Chaetomium madrasense AUMC 9376. J Genet Eng Biotechnol 2014. [DOI: 10.1016/j.jgeb.2014.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Trabolsy ZBKA, Anouar EH, Zakaria NSS, Zulkeflee M, Hasan MH, Zin MM, Ahmad R, Sultan S, Weber JFF. Antioxidant activity, NMR, X-ray, ECD and UV/vis spectra of (+)-terrein: Experimental and theoretical approaches. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.12.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Hamaoka N, Shimajiri J, Abe M, Hosokawa M, Miyashita K. Oxidative stability of lipids rich in EPA and DHA extracted from fermented scallop ovary. J Food Sci 2013; 78:C1348-53. [PMID: 23915081 DOI: 10.1111/1750-3841.12210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/05/2013] [Indexed: 01/15/2023]
Abstract
A novel seafood paste was developed by the fermentation of scallop ovary using rice malt (koji) and yeast culture. Chemical analysis of the product showed the formation of high level of free amino acids and organic acids during the fermentation. The product color and flavor resembled to Japanese traditional soybean miso. The contents of total lipids (TLs) extracted from the fermented products were ranged from 9.18% to 11.59% or 11.38% to 13.57%/dry sample weight. Although the TL was rich in oxidatively unstable polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), little decrease was found in these PUFAs during the fermentation, showing the high oxidative stability of the TL from the fermented scallop ovary. Moreover, the oxidative stability of the TL extracted from the fermented products increased with increasing the fermentation time. This would be mainly due to the formation of lipid soluble antioxidants such as tocopherols, which might be derived from yeast used for fermentation.
Collapse
Affiliation(s)
- Naohiro Hamaoka
- Laboratory of Bio-functional Material Chemistry, Div. of Marine Bioscience, Graduate School of Fisheries Science, Hokkaido Univ., Hakodate 041-8611, Japan
| | | | | | | | | |
Collapse
|
18
|
Ravindran C, Varatharajan GR, Rajasabapathy R, Vijayakanth S, Kumar AH, Meena RM. A role for antioxidants in acclimation of marine derived pathogenic fungus (NIOCC 1) to salt stress. Microb Pathog 2012; 53:168-79. [PMID: 22809619 DOI: 10.1016/j.micpath.2012.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 11/18/2022]
Abstract
Salinity tolerance a key factor helps in understanding the ionic homeostasis in general, which is a fundamental cellular phenomenon in all living cells. Here, a marine derived pathogenic fungus was examined for its adaptation under salt stress using antioxidant properties. The aqueous extracts of halophilic fungus exhibited different levels of antioxidant activity in all the in vitro tests such as α,α-diphenyl-β-picrylhydrazyl (DPPH(·)), Hydroxyl Radical Scavenging Assay (HRSA), Metal chelating assay and β-carotene-linoleic acid model system. The antioxidant capacity of marine fungus exposed to high salt condition showed an increase in activity. In addition, the production of intra and extracellular antioxidant enzymes of the fungus at various salt stresses were analyzed and discussed for their possible role in the stress mechanism. The marine derived fungus was identified as Phialosimplex genus, which is associated with infections in dogs. Thus the present study elucidates that the scavenging activity is one of the protective mechanisms developed in the fungus to avoid the deleterious effect of salt stress. In addition, the study also helps in understanding how the pathogenic fungus tackles the oxidative burst i.e. hypersensitivity reaction performed by host to kill the pathogens.
Collapse
Affiliation(s)
- Chinnarajan Ravindran
- Biotechnology Laboratory, Biological Oceanography Division, National Institute of Oceanography, Council of Scientific and Industrial Research, Dona Paula, Goa 403004, India.
| | | | | | | | | | | |
Collapse
|
19
|
Varga J, Frisvad JC, Samson RA. Polyphasic taxonomy of Aspergillus section Candidi based on molecular, morphological and physiological data. Stud Mycol 2011; 59:75-88. [PMID: 18490951 PMCID: PMC2275198 DOI: 10.3114/sim.2007.59.10] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Aspergillus section Candidi historically included a single white-spored species, A. candidus. Later studies clarified that other species may also belong to this section. In this study, we examined isolates of species tentatively assigned to section Candidi using a polyphasic approach. The characters examined include sequence analysis of partial beta-tubulin, calmodulin and ITS sequences of the isolates, morphological and physiological tests, and examination of the extrolite profiles. Our data indicate that the revised section Candidi includes 4 species: A. candidus, A. campestris, A. taichungensis and A. tritici. This is strongly supported by all the morphological characteristics that are characteristic of section Candidi: slow growing colonies with globose conidial heads having white to yellowish conidia, conidiophores smooth, small conidiophores common, metulae present and covering the entire vesicle, some large Aspergillus heads with large metulae, presence of diminutive heads in all species, conidia smooth or nearly so with a subglobose to ovoid shape, and the presence of sclerotia in three species (A. candidus, A. taichungensis and A. tritici). Aspergillus tritici has been suggested to be the synonym of A. candidus previously, however, sequence data indicate that this is a valid species and includes isolates came from soil, wheat grain, flour and drums from India, Ghana, Sweden, The Netherlands and Hungary, making it a relatively widespread species. All species produce terphenyllins and candidusins and three species (A. candidus, A. campestris and A. tritici) produce chlorflavonins. Xanthoascins have only been found in A. candidus. Each of the species in section Candidi produce several other species specific extrolites, and none of these have been found in any other Aspergillus species. A. candidus has often been listed as a human pathogenic species, but this is unlikely as this species cannot grow at 37 degrees C. The pathogenic species may be A. tritici or white mutants of Aspergillus flavus.
Collapse
Affiliation(s)
- J Varga
- CBS Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, the Netherlands
| | | | | |
Collapse
|
20
|
Cai S, Sun S, Zhou H, Kong X, Zhu T, Li D, Gu Q. Prenylated Polyhydroxy-p-terphenyls from Aspergillus taichungensis ZHN-7-07. JOURNAL OF NATURAL PRODUCTS 2011; 74:1106-10. [PMID: 21486068 DOI: 10.1021/np2000478] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Six new prenylated polyhydroxy-p-terphenyl metabolites, named prenylterphenyllins A-C (1-3) and prenylcandidusins A-C (5-7), and one new polyhydroxy-p-terphenyl with a simple tricyclic C-18 skeleton, named 4''-dehydro-3-hydroxyterphenyllin (4), were obtained together with eight known analogues (8-15) from Aspergillus taichungensis ZHN-7-07, a root soil fungus isolated from the mangrove plant Acrostichum aureum. Their structures were determined by spectroscopic methods, and their cytotoxicity was evaluated using HL-60, A-549, and P-388 cell lines. Compounds 1 and 8 exhibited moderate activities against all three cell lines (IC50 1.53-10.90 μM), whereas compounds 4 and 6 displayed moderate activities only against the P-388 cell line (IC50 of 2.70 and 1.57 μM, respectively).
Collapse
Affiliation(s)
- Shengxin Cai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Arora DS, Chandra P. Antioxidant Activity of Aspergillus fumigatus. ISRN PHARMACOLOGY 2011; 2011:619395. [PMID: 22084718 PMCID: PMC3198597 DOI: 10.5402/2011/619395] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/21/2011] [Indexed: 12/05/2022]
Abstract
The antioxidant activity of Aspergillus fumigatus was assayed by different procedures and correlated with its extracellular total phenolic contents. Different physio-chemical parameters were optimized to enhance the activity. The culture grown under stationary conditions for 10 days at 25°C at pH 7 gave the best antioxidant activity. Statistical approaches demonstrated sucrose and NaNO(3) to be the most suitable carbon and nitrogen sources, respectively. Response surface analysis showed 5% sucrose, 0.05% NaNO(3), and incubation temperature of 35°C to be the optimal conditions for best expression of antioxidant activity. Under these conditions, the antioxidant potential assayed through different procedures was 89.8%, 70.1%, and 70.2% scavenging effect for DPPH radical, ferrous ion and nitric oxide ion, respectively. The reducing power showed an absorbance of 1.0 and FRAP assay revealed the activity of 60.5%. Extracellular total phenolic content and antioxidant activity as assayed by different procedures positively correlated.
Collapse
Affiliation(s)
- Daljit Singh Arora
- Microbial Technology Laboratory, Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - Priyanka Chandra
- Microbial Technology Laboratory, Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
22
|
Ravindran C, Naveenan T. Adaptation of marine derived fungus Chaetomium globosum (NIOCC 36) to alkaline stress using antioxidant properties. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Arora DS, Chandra P. Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Braz J Microbiol 2010; 41:765-77. [PMID: 24031554 PMCID: PMC3768632 DOI: 10.1590/s1517-83822010000300029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 03/16/2010] [Indexed: 11/24/2022] Open
Abstract
The objective of this work was to screen fungi isolated from soil of different areas of Punjab, India for antioxidant activity by dot blot assay and around 45% of fungal isolates demonstrated antioxidant potential. Two selected strains of Aspergillus spp (Aspergillus PR78 and Aspergillus PR66) showing quantitatively best antioxidant activity by DPPH assay were further tested for their reducing power, ferrous ion and nitric oxide ion scavenging activity, FRAP assay and total phenolic content. Different physio-chemical parameters were optimized for enhancement of the activity. This revealed stationary culture grown for 10 days at 25 (o)C at pH 7 to be the best for antioxidant activity. Sucrose in the medium as carbon source resulted in highest antioxidant activity. Sodium nitrate, yeast extract, and peptone were good sources of nitrogen but sodium nitrate was the best among these. The extraction of the broth culture filtrates with different solvents revealed ethyl acetate extract to possess the best antioxidant activity. The activity as expressed by ethyl acetate extract of Aspergillus PR78 was equally effective as that of commonly used antioxidant standard, ascorbic acid.
Collapse
Affiliation(s)
- Daljit Singh Arora
- Microbial Technology Laboratory, Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, India
| | - Priyanka Chandra
- Microbial Technology Laboratory, Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, India
| |
Collapse
|
24
|
Isolation and characterization of a new steroid derivative as a powerful antioxidant from Cleome arabica in screening the in vitro antioxidant capacity of 18 Algerian medicinal plants. Food Chem Toxicol 2010; 48:2599-606. [PMID: 20600536 DOI: 10.1016/j.fct.2010.06.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/23/2010] [Accepted: 06/17/2010] [Indexed: 11/21/2022]
Abstract
Hydromethanolic extracts from 18 Algerian medicinal plants were screened for their phenolic contents and radical scavenging activities. The phenolic extract of Cleome arabica (Capparaceae) was found to be the most active one. Purification of this extract by semi-preparative high performance liquid chromatography led to the isolation and identification of new steroid derivative. The structure of the active principle is proposed as (17-(4-hydroxy-1,5-dimethylhexyl)-2,3,7-(acetyloxy) gona-1,3,5(10)-trien-15-ol). Compared to six other standard antioxidants which were ascorbic acid, α-tocopherol, Trolox, (+) catechin, p-coumaric acid and gallic acid, the isolated compound was found to be significantly more active in the radical scavenging assay using 2,2-diphenyl-1-picrylhydrazyl (DPPH). Similar results were obtained in the hemolysis assay. The antioxidant capacities of the methanolic extract of C. arabica and its principle compound indicate that this plant may be an important source of chemopreventive and chemotherapeutic natural products activity.
Collapse
|
25
|
Femenía-Ríos M, García-Pajón CM, Hernández-Galán R, Macías-Sánchez AJ, Collado IG. Synthesis and free radical scavenging activity of a novel metabolite from the fungus Colletotrichum gloeosporioides. Bioorg Med Chem Lett 2006; 16:5836-9. [PMID: 16950623 DOI: 10.1016/j.bmcl.2006.08.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 08/12/2006] [Accepted: 08/14/2006] [Indexed: 11/17/2022]
Abstract
A novel metabolite (-)-1 was isolated as its peracetylated derivative, (-)-2-(3',4'-diacetoxyphenyl)-3,4-diacetoxytetrahydrofuran (2), from a strain of the phytopathogenic fungus Colletotrichum gloeosporioides CECT 20122. The synthesis of (-)-1 was carried out by ring-closing metathesis of diene 6 and stereoselective dihydroxylation of a dihydrofuran derivative 7 as key steps. The tetraol (-)-1 showed free radical scavenging activity comparable to that of BHT, caffeic acid or protocatechuic acid.
Collapse
Affiliation(s)
- Marienca Femenía-Ríos
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, s/n, Apdo. 40, 11510 Puerto Real, Cádiz, Spain
| | | | | | | | | |
Collapse
|
26
|
Yen GC, Chiang HC, Wu CH, Yeh CT. The protective effects of Aspergillus candidus metabolites against hydrogen peroxide-induced oxidative damage to Int 407 cells. Food Chem Toxicol 2003; 41:1561-7. [PMID: 12963009 DOI: 10.1016/s0278-6915(03)00174-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The protective effects of 3,3"-di-OH-terphenyllin (3,3"-DHT) and 3-OH-terphenyllin (3-HT), two secondary metabolites produced by Aspergillus candidus (CCRC31543), against hydrogen peroxide-induced oxidative damage to Int 407 cells, were evaluated. The results showed that H2O2 caused an increase in lactate dehydrogenase (LDH) leakage and DNA damage in Int 407 cells; however, the addition of 3,3"-DHT and 3-HT significantly reduced this effect (P<0.05). Intracellular reactive oxygen species (ROS) formation in Int 407 cells pre-incubated with 3,3"-DHT and 3-HT was decreased by 30 and 35%, respectively. The activity of glutathione peroxidase and catalase in Int 407 cells pre-incubated with 3,3"-DHT was increased 25 and 33%, respectively; however, the activity of catalase was increased 30% in Int 407 cells pre-incubated with 3-HT. The activity of glutathione reductase in Int 407 cells pre-incubated with 3,3"-DHT and 3-HT was decreased 36 and 21%, respectively. The intracellular glutathione level did not vary (P>0.05), but oxidized glutathione levels increased when Int 407 cells were pre-incubated with these two compounds. These findings suggest that 3,3"-DHT and 3-HT have the ability to protect against oxidative damage to Int 407 cells and that this protective effect may be associated with the ability to reduce ROS formation and increase catalase activity.
Collapse
Affiliation(s)
- Gow-Chin Yen
- Department of Food Science, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan.
| | | | | | | |
Collapse
|
27
|
Yen GC, Chang YC, Su SW. Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chem 2003. [DOI: 10.1016/s0308-8146(03)00035-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
|
29
|
ValeriA Calì CS, Tringali C. Polyhydroxy-P-Terphenyls and Related P-Terphenylquinones From Fungi. BIOACTIVE NATURAL PRODUCTS (PART J) 2003. [DOI: 10.1016/s1572-5995(03)80009-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
|