1
|
Sarfraz M, Ayyaz M, Rauf A, Yaqoob A, Tooba, Arif Ali M, Siddique SA, Qureshi AM, Sarfraz MH, Aljowaie RM, Almutairi SM, Arshad M. New Pyrimidinone Bearing Aminomethylenes and Schiff Bases as Potent Antioxidant, Antibacterial, SARS-CoV-2, and COVID-19 Main Protease M Pro Inhibitors: Design, Synthesis, Bioactivities, and Computational Studies. ACS OMEGA 2024; 9:25730-25747. [PMID: 38911743 PMCID: PMC11191110 DOI: 10.1021/acsomega.3c09393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
New 2-thioxopyrimidinone derivatives (A1-A10) were synthesized in 87-96% yields via a simple three-component condensation reaction. These compounds were screened extensively through in vitro assays for antioxidant and antibacterial investigations. The DPPH assays resulted in the excellent potency of A6-A10 as antioxidants with IC50 values of 0.83 ± 0.125, 0.90 ± 0.77, 0.36 ± 0.063, 1.4 ± 0.07, and 1.18 ± 0.06 mg/mL, which were much better than 1.79 ± 0.045 mg/mL for the reference ascorbic acid. These compounds exhibited better antibacterial potency against Klebsiella with IC50 values of 2 ± 7, 1.32 ± 8.9, 1.19 ± 11, 1.1 ± 12, and 1.16 ± 11 mg/mL for A6-A10. High-throughput screenings (HTS) of these motifs were carried out including investigation of drug-like behaviors, physiochemical property evaluation, and structure-related studies involving DFT and metabolic transformation trends. The radical scavenging ability of the synthesized motifs was validated through molecular docking studies through ligand-protein binding against human inducible nitric oxide synthase (HINOS) PDB ID: 4NOS, and the results were promising. Furthermore, the antiviral capability of the compounds was examined by in silico studies using two viral proteins PDB ID: 6Y84 and PDB ID: 6LU7. Binding poses of ligands were discussed, and amino acids in the protein binding pockets were investigated, where the tested compounds showed much better binding affinities than the standard inhibitors, proving to be suitable leads for antiviral drug discovery. The stabilities of the molecular docked complexes in real systems were validated by molecular dynamics simulations.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ayyaz
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asma Yaqoob
- Institute
of Biochemistry, Biotechnology, and Bioinformatics. Department of
Biochemistry and Molecular Biology, The
Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tooba
- Institute
of Biochemistry, Biotechnology, and Bioinformatics. Department of
Biochemistry and Molecular Biology, The
Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Arif Ali
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sabir Ali Siddique
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ashfaq Mahmood Qureshi
- Department
of Chemistry, Government Sadiq College Women
University, Bahawalpur 63100, Pakistan
| | - Muhammad Hassan Sarfraz
- Nuffield
Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences,
Botnar Institute of Musculoskeletal Sciences, University of Oxford, OxfordOX3 7LD, United
Kingdom
| | - Reem M. Aljowaie
- Department
of Botany and Microbiology, College of Science, King Saud University, P O 2455 Riyadh 11451, Saudi Arabia
| | - Saeedah Musaed Almutairi
- Department
of Botany and Microbiology, College of Science, King Saud University, P O 2455 Riyadh 11451, Saudi Arabia
| | - Muhammad Arshad
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
2
|
Stefanello TB, Cardinal KM, Orso C, Franceschi CH, Silva JP, Mann MB, Frazzon J, Moraes PO, Ribeiro AML. The impact of different levels of functional oil supplementation in combination with salinomycin on growth performance and intestinal microbiota of broilers undergoing Eimeria challenge: An analysis of dynamics. Res Vet Sci 2024; 172:105249. [PMID: 38579633 DOI: 10.1016/j.rvsc.2024.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
The effect of salinomycin sodium alone and in combination with functional oils on performance and microbiota of broiler infected Eimeria were evaluated. 512 broilers were randomly assigned to 4 treatments (8 replicates, 16 birds/pen): a Control group (any additives); Ionophore group: salinomycin supplementation at 66 ppm (SS66); Ionophore +0.075% Functional oil (FO) group (SS66 + FO supplementation at 750 ppm); and Ionophore +0.10% FO group (SS66 + FO supplementation at 1000 ppm). At 14 days of age, birds were gavaged with 1 mL of a saline solution containing sporulated oocysts of E. tenella, E. acervulina and E. maxima. Performance indices were measured weekly. At 28 days, intestinal content was collected for microbiota analysis. Broilers of Control group presented the worst performance indices. Broilers of Ionophore + FO (0.075% and 0.10%) groups exhibited a higher BW at 28 days of age. The supplementation of Ionophore +0.075% FO resulted in a higher relative proportion of Firmicutes and a lower proportion of Actinobacteria in the ileum-jejunum. Lactobacillaceae was the dominant family in the jejunal, and ileal microbiotas of broilers fed diets supplemented with Ionophore, Ionophore +0.075% FO and Ionophore +0.10% FO. The supplementation of ionophore yielded higher numbers of Lactobacillaceae, Enterobactereaceae and Cloritridiaceae in the cecal. Ionophore associated with FO controlled the Lactobacillaceae, Enterobactereaceae and Cloritridiaceae families present in the cecum. Therefore, the combination of salinomycin with functional oil showed synergistic effect on performance and modulation of intestinal microbiota of broilers challenged with Eimeria.
Collapse
Affiliation(s)
- Thaís Bastos Stefanello
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kátia Maria Cardinal
- Department of Animal Science, Instituto Federal Farroupilha, Alegrete, RS, Brazil
| | - Catiane Orso
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Jéssica Pereira Silva
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Micheli Bertoni Mann
- Institute of Food Science and Technology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jeverzon Frazzon
- Institute of Food Science and Technology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Priscila Oliveira Moraes
- Department of Animal Science and Rural Development, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | |
Collapse
|
3
|
Roko G, Porada R, Gdula-Argasińska J, Piekoszewski W, Chabi-Sika K, Krakowska-Sieprawska A, Buszewski B, Librowski T, Baba-Moussa L. Comparison of supercritical CO 2 extraction and pressurized fluid extraction for isolation of alkaloids from Anacardium occidentale with the study of its anti-inflammatory activity. J Pharm Biomed Anal 2024; 241:115982. [PMID: 38237542 DOI: 10.1016/j.jpba.2024.115982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024]
Abstract
In recent years, there has been a growing interest in the therapeutic potential of natural compounds, particularly of plant origin, owing to their demonstrated anti-inflammatory properties. Among these, Anacardium occidentale, commonly known as cashew, has garnered significant attention due to its reputed health benefits. This study aim to establish a correlation between the bioactive compounds contained in the extracts of Anacardium occidentale and its anti-inflammatory activity. Dried Anacardium occidentale leaves powder was used as the extraction matrix. Extraction techniques are maceration, pressurized fluid extraction (PFE), and supercritical fluid extraction (SFE). The preliminary analysis of extracts was made by LC-MS/MS. The Response Surface Methodology (RSM), Principal Component Analysis (PCA), and heat maps were employed to model the influence of experimental conditions on extraction yield and peak area of specific compounds from the plant. To evaluate anti-inflammatory activity, RAW 264.7 cells were cultured, activated with LPS, and treated with varying concentrations of the plant extracts. Cell proliferation was assessed using the XTT assay. Indeed, Anacardium occidentale extracts contain anacardic acids, cardanols, and cardol, with distinct profiles yielded by SFE and ethanol-based methods. RSM shows that temperature and ethanol, as additives to CO2, significantly affect extraction efficiency in both PFE and SFE. Moreover, this composition with SFE demonstrate higher selectivity for specific group of compounds. The extracts exhibit anti-inflammatory properties without cytotoxicity in macrophages, reducing levels of pro-inflammatory proteins COX-2, COX-1, and TLR4 in activated cells. This suggests their potential as anti-inflammatory agents without adverse effects on cell viability or pro-inflammatory protein levels in non-activated cells. Overall, these findings underscore the promising therapeutic potential of Anacardium occidentale extracts in mitigating inflammation, while also providing crucial insights into optimizing the extraction process for targeted compound isolation. Thus, this makes a good prospect for the development of anti-inflammatory drugs from this plant.
Collapse
Affiliation(s)
- Gautier Roko
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Benin
| | - Radosław Porada
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Medical College, Jagiellonian University in Krakow, Medyczna Street 9, 30-688 Kraków, Poland
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Kamirou Chabi-Sika
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Benin
| | - Aneta Krakowska-Sieprawska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A, 10-719 Olsztyn, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland; Prof. Jan Czochralski Kuyavian-Pomeranian Research & Development Centre, Krasińskiego 4, 87-100 Toruń, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Faculty of Pharmacy, Medical College, Jagiellonian University in Krakow, Medyczna Street 9, 30-688 Kraków, Poland
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Benin
| |
Collapse
|
4
|
Sriram S, Kumar MS, Shourie GK, Palukurthi A, Kadam S, Srikanth TM. Ninety-day toxicity and genotoxic effects of synthetically derived fully saturated forms of anacardic acid in mice. Regul Toxicol Pharmacol 2024; 147:105538. [PMID: 38151226 DOI: 10.1016/j.yrtph.2023.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/22/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Organically synthesized fully saturated form of Anacardic acid (AA) has previously shown to be effective in the treatment of inflammatory autoimmune disease. In this study, organically synthesized fully saturated form of AA was orally administered to male and female Swiss albino mice for 90 consecutive days at doses of 25, 50 and 100 mg/kg BW (n = 20 per sex/group). Administration of AA was well tolerated at all dose levels. The treated animals did not show a dose-response toxicity in their hematology, liver, or metabolic profile. Minimally significant changes in serum biochemistry and hematology parameters were noted, but these were not considered to be of biological or toxicological importance and were not outside the known accepted ranges. Sporadic differences in organ weights were observed between groups, but all were minimal (<10%) and unlikely to indicate toxicity. The incidence of histopathological lesions was comparable between treated and control groups across all tested organs. Based upon these findings, the no-observed-adverse-effect level was determined to be ≥ 100 mg/kg BW, which was the highest dose tested. There were no genotoxic (mutagenic and clastogenic) effects seen in In-vivo micronucleus test, In-vitro chromosomal aberration test and Bacterial reverse mutation test. These results support, no genotoxicity and no toxicity associated with oral consumption of AA in mice as a dietary supplement for beverages and food.
Collapse
Affiliation(s)
- S Sriram
- Department of Neurology, Vanderbilt University, Nashville, TN, 37212, USA; Department of Medicine Vanderbilt Medical Center, TN, 37212, USA.
| | - M Sai Kumar
- Vipragen Biosciences Pvt. Ltd., Mysore, KA, 570018, India
| | - G K Shourie
- Vipragen Biosciences Pvt. Ltd., Mysore, KA, 570018, India
| | - A Palukurthi
- Vipragen Biosciences Pvt. Ltd., Mysore, KA, 570018, India
| | - S Kadam
- Vipragen Biosciences Pvt. Ltd., Mysore, KA, 570018, India
| | | |
Collapse
|
5
|
Hoang SA, Pham KD, Nguyen NH, Tran HT, Hoang N, Phan CM. Synthesis of a Grease Thickener from Cashew Nut Shell Liquor. Molecules 2023; 28:7624. [PMID: 38005345 PMCID: PMC10674271 DOI: 10.3390/molecules28227624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Thickener, also known as a gelling agent, is a critical component of lubricating greases. The most critical property of thickener, temperature resistance, is determined by the molecular structure of the compounds. Currently, all high-temperature-resistant thickeners are based on 12-hydroxystearic acid, which is exclusively produced from castor oil. Since castor oil is also an important reagent for other processes, finding a sustainable alternative to 12-hydroxystearic acid has significant economic implications. This study synthesises an alternative thickener from abundant agricultural waste, cashew nut shell liquor (CNSL). The synthesis and separation procedure contains three steps: (i) forming and separating calcium anacardate by precipitation, (ii) forming and separating anacardic acid (iii) forming lithium anacardate. The obtained lithium anacardate can be used as a thickener for lubricating grease. It was found that the recovery of anacardic acid was around 80%. The optimal reaction temperature and time conditions for lithium anacardate were 100 °C and 1 h, respectively. The method provides an economical alternative to castor and other vegetable oils. The procedure presents a simple pathway to produce the precursor for the lubricating grease from agricultural waste. The first reaction step can be combined with the existing distillation of cashew nut shell processing. An effective application can promote CNSL to a sustainable feedstock for green chemistry. The process can also be combined with recycled lithium from the spent batteries to improve the sustainability of the battery industry.
Collapse
Affiliation(s)
- Son A. Hoang
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 11355, Vietnam; (K.D.P.); (N.H.N.)
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi 11355, Vietnam
| | - Khanh D. Pham
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 11355, Vietnam; (K.D.P.); (N.H.N.)
| | - Nhung H. Nguyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 11355, Vietnam; (K.D.P.); (N.H.N.)
| | - Ha T. Tran
- Viet Tri Industry Institute, Viet Tri 290000, Vietnam;
| | - Ngoc Hoang
- Government Office, Hanoi 11355, Vietnam;
| | - Chi M. Phan
- Discipline of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
6
|
Freitas ER, da Silva CP, Gomes TR, Nepomuceno RC, Dos Santos EO, Silva VS, Rocha LLCV, Trevisan MTS. Calcium anacardate and its association with citric acid in diets for meat-type breeding quails. Trop Anim Health Prod 2023; 55:305. [PMID: 37731138 DOI: 10.1007/s11250-023-03727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
The purpose of this study was to evaluate the effects of using calcium anacardate (CaA) as a source of anacardic acid and its association with citric acid (CA) in diets for breeding quails on the performance, the egg quality, incubation parameters, and progeny performance. Were used 540 quails European quails (Coturnix coturnix coturnix) that were 21 weeks old, housed in laying cages based on a completely randomized design, with nine treatments and six replications of 10 quails per parcel, with each experimental unit having eight females and two males. The following additions to the diet were evaluated: 1, no addition (control diet); 2, 0.25% CaA; 3, 0.25% CaA and 0.25% CA; 4, 0.50% CaA; 5, 0.50% CaA and 0.25% CA; 6, 0.50% CaA and 0.50% CA; 7, 0.75% CaA; 8, 0.75% CaA and 0.25% CA; and 9, 0.75% CaA and 0.50% CA. The treatments had no significant effects on the performance of the breeding quails, incubation parameters, and progeny performance. For egg quality, there was only an effect on yolk lipid oxidation, which was lower for eggs from quails fed the diets containing 0.50% CaA and 0.25% CA, 0.50% CaA and 0.50% CA, or 0.75% CaA alone, when compared with the control group. Considering that including CaA with or without CA in diets for breeding quails only affected yolk lipid oxidation, it can be recommend including 0.50% CaA and 0.25% CA or 0.75% CaA alone to mitigate oxidative damage in the yolk of fertile eggs.
Collapse
Affiliation(s)
- Ednardo Rodrigues Freitas
- Department of Animal Science, Federal University of Ceará, Mister Hull Ave, 2.977, Block 808, Campus do Pici, Fortaleza, CE, 60356-000, Brazil
| | - Cleane Pinho da Silva
- Department of Animal Science, Federal University of Ceará, Mister Hull Ave, 2.977, Block 808, Campus do Pici, Fortaleza, CE, 60356-000, Brazil
| | - Thalles Ribeiro Gomes
- Department of Animal Science, Federal University of Roraima, BR 174, Km 12, Campus Cauamé, Boa Vista, RR, 69301-970, Brazil.
| | - Rafael Carlos Nepomuceno
- Department of Animal Science, Federal University of Ceará, Mister Hull Ave, 2.977, Block 808, Campus do Pici, Fortaleza, CE, 60356-000, Brazil
| | - Edibergue Oliveira Dos Santos
- Department of Animal Science, Federal University of Ceará, Mister Hull Ave, 2.977, Block 808, Campus do Pici, Fortaleza, CE, 60356-000, Brazil
| | - Valquíria Sousa Silva
- Department of Animal Science, Federal University of Ceará, Mister Hull Ave, 2.977, Block 808, Campus do Pici, Fortaleza, CE, 60356-000, Brazil
| | - Luana Ledz Costa Vasconcelos Rocha
- Department of Animal Science, Federal University of Ceará, Mister Hull Ave, 2.977, Block 808, Campus do Pici, Fortaleza, CE, 60356-000, Brazil
| | - Maria Teresa Salles Trevisan
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Mister Hull Ave, 2.977, Block 940, Campus do Pici, Fortaleza, CE, 60356-000, Brazil
| |
Collapse
|
7
|
Boateng ID. Ginkgols and bilobols in Ginkgo biloba L. A review of their extraction and bioactivities. Phytother Res 2023; 37:3211-3223. [PMID: 37190926 DOI: 10.1002/ptr.7877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Ginkgo biloba (GB) has enormous bioactives with anti-bacterial, anti-oxidant, anti-cancer, and immune-stimulating properties, with global sales exceeding $10 billion. The terpene trilactones (ginkgolides A, B, and C) and flavonoids (mostly quercetin, isorhamnetin, and kaempferol) have received the most significant focus in GB research to date, whereas other bioactive compounds such as ginkgols and bilobols with various bioactivities such as anti-viral, anti-oxidant, and anti-tumor actions have received less attention. Therefore, for the first time, this review focused on GB ginkgols, bilobols extraction, and bioactivities. This review showed that petroleum ether and acetone extraction had successfully extracted ginkgols and bilobols. Furthermore, bioactivities such as anti-tumor activity and so on have been demonstrated for ginkgols, and bilobols, providing theoretical justification for ginkgols and bilobol as raw material for nutraceuticals, functional foods, pharmaceuticals, and cosmeceuticals. Future research could look into other biological applications (such as anti-oxidant, antitoxins, anti-radiation, anti-microbial, and antiparasite) and their applications in the pharmaceutical, cosmetic, and nutraceutical industries. Besides, the primary research should be on developing green and effective methods for preparing ginkgols and bilobols and fully utilizing their pharmacological activity. This will also provide a new avenue for efficiently utilizing these bioactive compounds.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
8
|
Arrieta AA, Nuñez de la Rosa Y, Palencia M. Electrochemistry Study of Bio-Based Composite Biopolymer Electrolyte-Starch/Cardol. Polymers (Basel) 2023; 15:polym15091994. [PMID: 37177142 PMCID: PMC10181454 DOI: 10.3390/polym15091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The environmental problems generated by pollution due to polymers of petrochemical origin have led to the search for eco-friendly alternatives such as the development of biopolymers or bio-based polymers. The aim of this work was to evaluate the electrochemical behavior of a biopolymer composite made from cassava starch and cardol extracted from cashew nut shell liquid. The biopolymers were prepared using the thermochemical method, varying the synthesis pH and the cardol amounts. The biopolymers were synthesized in the form of films and characterized by cyclic voltamperometry and electrochemical impedance spectroscopy. The biopolymers showed a rich electroactivity, with three oxidation-reduction processes evidenced in the voltamperograms. On the other hand, the equivalent circuit corresponding to the impedance behavior of biopolymers integrated the processes of electron transfer resistance, electric double layer, redox reaction process, and resistance of the biopolymeric matrix. The results allowed us to conclude that the cardol content and the synthesis pH were factors that affect the electrochemical behavior of biopolymer composite films. Electrochemical processes in biopolymers were reversible and involved two-electron transfer and were diffusion-controlled processes.
Collapse
Affiliation(s)
- Alvaro A Arrieta
- Department of Biology and Chemistry, Universidad de Sucre (University of Sucre), Sincelejo 700001, Colombia
| | - Yamid Nuñez de la Rosa
- Faculty of Engineering and Basic Sciences, Fundación Universitaria Los Libertadores, Bogotá 110231, Colombia
| | - Manuel Palencia
- Research Group in Science with Technological Applications (GI-CAT), Department of Chemistry, Faculty of Natural and Exact Sciences, University of Valle, Cali 760042, Colombia
| |
Collapse
|
9
|
Eco-Friendly Synthesis of Functionalized Carbon Nanodots from Cashew Nut Skin Waste for Bioimaging. Catalysts 2023. [DOI: 10.3390/catal13030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
In this study, Anacardium occidentale (A. occidentale) nut skin waste (cashew nut skin waste) was used as a raw material to synthesize functionalized carbon nanodots (F-CNDs). A. occidentale biomass-derived F-CNDs were synthesized at a low temperature (200 °C) using a facile, economical hydrothermal method and subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman Spectroscopy, ATR-FTIR, and Ultraviolet-visible (UV–vis) absorption and fluorescence spectroscopy to determine their structures, chemical compositions, and optical properties. The analysis revealed that dispersed, hydrophilic F-CNDs had a mean diameter of 2.5 nm. XPS and ATR-FTIR showed F-CNDs had a crystalline core and an amorphous surface decorated with –NH2, –COOH, and C=O. In addition, F-CNDs had a quantum yield of 15.5% and exhibited fluorescence with maximum emission at 406 nm when excited at 340 nm. Human colon cancer (HCT-116) cell assays showed that F-CNDs readily penetrated into the cells, had outstanding biocompatibility, high photostability, and minimal toxicity. An MTT assay showed that the viability of HCT-116 cells incubated for 24 h in the presence of F-CNDs (200 μg mL–1) exceeded 95%. Furthermore, when stimulated by filters of three different wavelengths (405, 488, and 555 nm) under a laser scanning confocal microscope, HCT-116 cells containing F-CNDs emitted blue, red, and green, respectively, which suggests F-CNDs might be useful in the biomedical field. Thus, we describe the production of a fluorescent nanoprobe from cashew nut waste potentially suitable for bioimaging applications.
Collapse
|
10
|
Deng R, Chao X, Li H, Li X, Yang Z, Yu HZ. Smartphone-based microplate reader for high-throughput quantitation of disease markers in serum. Analyst 2023; 148:735-741. [PMID: 36533656 DOI: 10.1039/d2an01571d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, a smartphone-based portable reader with integrated optics for standard microtiter plates (96 wells) has been designed and demonstrated for high-throughput quantitation of validated biomarkers in serum. The customized optical attachment was simply constructed with a convex lens and a light source, by which the transmitted light through a 96-well microtiter plate was converged for imaging with a smartphone, so that accurate and wide-range reading of the plate can be achieved. More importantly, relying on the digitized colorimetric analysis of the obtained images, concentrations of various biomarkers can be determined directly using the customized mobile app. A set of validated biomarkers for inflammation and infection, C-reactive protein (CRP), serum amyloid A (SAA), and procalcitonin (PCT) have been quantitated with this new system; both the response ranges and limits of detection meet the requirement of clinical tests. The consistency with the results obtained using a commercial microplate reader proves its reliability and precision, augments its potential as a point-of-care diagnostic device for on-site testing or resource-limited settings.
Collapse
Affiliation(s)
- Rong Deng
- College of Biomedical Engineering, Institute of Biomedical Precision Testing and Instrumentation, Taiyuan University of Technology, Yuci, Shanxi 030600, China.
| | - Xiaoxin Chao
- College of Biomedical Engineering, Institute of Biomedical Precision Testing and Instrumentation, Taiyuan University of Technology, Yuci, Shanxi 030600, China.
| | - Haiqin Li
- College of Biomedical Engineering, Institute of Biomedical Precision Testing and Instrumentation, Taiyuan University of Technology, Yuci, Shanxi 030600, China.
| | - Xiaochun Li
- College of Biomedical Engineering, Institute of Biomedical Precision Testing and Instrumentation, Taiyuan University of Technology, Yuci, Shanxi 030600, China.
| | - Zehua Yang
- Medicine Laboratory, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030024, China.
| | - Hua-Zhong Yu
- College of Biomedical Engineering, Institute of Biomedical Precision Testing and Instrumentation, Taiyuan University of Technology, Yuci, Shanxi 030600, China. .,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
11
|
Gaitán-Jiménez SY, Restrepo-Sánchez LP, Parada-Alfonso F, Narváez-Cuenca CE. Cashew ( Anacardium occidentale) Nut-Shell Liquid as Antioxidant in Bulk Soybean Oil. Molecules 2022; 27:8733. [PMID: 36557871 PMCID: PMC9787819 DOI: 10.3390/molecules27248733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Recently, natural antioxidants for the food industry have become an important focus. Cashew nut-shell liquid (CNSL) is composed of compounds that can act as natural antioxidants in food systems. The aim of this work was to evaluate the potential of CNSL and its components to act as natural antioxidants in a bulk oil system. CNSL was treated with calcium hydroxide to obtain two fractions [cardol/cardanols acid fraction (CCF) and anacardic acid fraction (AF)]. CNSL, FF and AF were analyzed by thin-layer chromatography and Fourier-transform infrared spectroscopy. The protective effects of CNSL, CCF and AF were tested in terms of the peroxide value of bulk soybean oil in accelerated assays and were compared against controls with and without synthetic antioxidants (CSA and CWA). CNLS, CCF, AF and CSA were tested at 200 mg/kg soybean oil by incubation at 30, 40, 50 and 60 °C for five days. The activation energy (Ea) for the production of peroxides was calculated by using the linearized Arrhenius equation. Thin-layer chromatography and Fourier-transform infrared spectroscopy revealed that (i) CNSL contained cardanols, anacardic acids, and cardols; (ii) CCF contained cardanols and cardols; and (iii) AF contained anacardic acids. CSA (Ea 35,355 J/mol) was the most effective antioxidant, followed by CCF (Ea 31,498 J/mol) and by CNSL (Ea 26,351 J/mol). AF exhibited pro-oxidant activity (Ea 8339 J/mol) compared with that of CWA (Ea 15,684 J/mol). Therefore, cardols and cardanols from CNSL can be used as a natural antioxidant in soybean oil.
Collapse
Affiliation(s)
| | | | | | - Carlos-Eduardo Narváez-Cuenca
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Facultad de Ciencias, Food Chemistry Research Group, Carrera 45 No 26-85, Bogotá 111321, Colombia
| |
Collapse
|
12
|
Cardanol in the feeding of meat-type quail breeders. Trop Anim Health Prod 2022; 54:397. [DOI: 10.1007/s11250-022-03388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
|
13
|
Dinitro Anacardic Acid Copper(II) Complex—A Bio‐based Catalyst for Room Temperature Synthesis of Indolizine. ChemistrySelect 2022. [DOI: 10.1002/slct.202202420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Li F, Boateng ID, Yang X, Li Y. Extraction, Purification, and Elucidation of Six Ginkgol Homologs from Ginkgo biloba Sarcotesta and Evaluation of Their Anticancer Activities. Molecules 2022; 27:molecules27227777. [PMID: 36431878 PMCID: PMC9699512 DOI: 10.3390/molecules27227777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Ginkgols are active constituents from Ginkgo biloba L. (GB) and have pharmacological activities, such as antibacterial and antioxidant activities. In our previous report, only five ginkgols were separated. However, ginkgol C17:1 had two isomers, for which their separation, identification, and bioactivities have not yet been investigated. Hence, this research reports the successful isolation of six ginkgol homologs with alkyl substituents-C17:1-Δ12, C15:1-Δ8, C13:0, C17:2, C17:1-Δ10, and C15:0-for the first time using HPLC. This was followed by the identification of their chemical structures using Fourier transform infrared (FTIR), ultraviolet (UV), gas chromatography and mass spectrometry (GC-MS), carbon-13 nuclear magnetic resonance (13C-NMR), and proton nuclear magnetic resonance (1H-NMR) analysis. The results showed that two ginkgol isomers, C17:1-Δ12 and C17:1-Δ10, were obtained simultaneously from the ginkgol C17:1 mixture and identified entirely for the first time. That aside, the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay showed that the six ginkgol homologs possessed significant antiproliferation effects against HGC and HepG2 cells. Furthermore, the ginkgols with unsaturated side chains (C17:2, C15:1-Δ8, C17:1-Δ12, and C17:1-Δ10) exhibited more potent inhibitory effects than ginkgols with saturated side chains (C13:0, C15:0). In addition, unsaturated ginkgol C15:1-Δ8 showed the most potent cytotoxicity on HepG2 and HGC cells, of which the half-maximal inhibition concentrations (IC50) were 18.84 ± 2.58 and 13.15 ± 2.91 μM, respectively. The IC50 for HepG2 and HGC cells for the three unsaturated ginkgols (C17:1-Δ10, C17:2 and C17:1-Δ12) were ~59.97, ~60.82, and ~68.97 μM for HepG2 and ~30.97, ~33.81, and ~34.55 μM for HGC cells, respectively. Comparing the ginkgols' structure-activity relations, the findings revealed that the position and number of the double bonds of the ginkgols with 17 side chain carbons in length had no significant difference in anticancer activity.
Collapse
Affiliation(s)
- Fengnan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, 1406 E Rollins Street, Columbia, MO 65211, USA
| | - Xiaoming Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence:
| | - Yuanyuan Li
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang 212004, China
| |
Collapse
|
15
|
Valério RBR, da Silva NA, Junior JRP, Chaves AV, de Oliveira BP, Souza NF, de Morais SM, dos Santos JCS, Abreu FOMDS. Chitosan-Based Nanoparticles for Cardanol-Sustained Delivery System. Polymers (Basel) 2022; 14:polym14214695. [PMID: 36365690 PMCID: PMC9658813 DOI: 10.3390/polym14214695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Cardanol, principal constituent of the technical cashew nut shell liquid, has applications as antioxidant and antibacterial, and these properties may be enhanced through encapsulation. In the present study, we isolated and purified cardanol, and nanoparticles (NPs) were produced by polyelectrolyte complexation using polysaccharide systems with chitosan, sodium alginate, and non-toxic Arabic gum, because they are biocompatible, biodegradable, and stable. We characterized the NPs for morphological, physicochemical, and antioxidant activity. The micrographs obtained revealed spherical and nanometric morphology, with 70% of the distribution ranging from 34 to 300 nm, presenting a bimodal distribution. The study of the spectra in the infrared region suggested the existence of physicochemical interactions and cross-links between the biopolymers involved in the encapsulated NPs. Furthermore, the NPs showed better antioxidant potential when compared to pure cardanol. Thus, the encapsulation of cardanol may be an effective method to maintain its properties, promote better protection of the active ingredient, minimize side effects, and can target its activities in specific locations, by inhibiting free radicals in various sectors such as pharmaceutical, nutraceutical, and biomedical.
Collapse
Affiliation(s)
| | - Nilvan Alves da Silva
- Departamento de Química Analítica e Físico-Química, Campus do Pici, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil
| | - José Ribamar Paiva Junior
- Departamento de Química Analítica e Físico-Química, Campus do Pici, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil
| | - Anderson Valério Chaves
- Departamento de Química Analítica e Físico-Química, Campus do Pici, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil
| | - Bruno Peixoto de Oliveira
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil
| | - Nágila Freitas Souza
- Departamento de Química Analítica e Físico-Química, Campus do Pici, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil
| | - Selene Maia de Morais
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil
| | - José Cleiton Sousa dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790-970, CE, Brazil
- Correspondence: (J.C.S.d.S.); (F.O.M.d.S.A.)
| | | |
Collapse
|
16
|
Calcium anacardate in the diet of broiler chickens: Performance, carcass characteristics and meat quality. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Nagarkar RA, Dapurkar SE. Disodium Anacardate: A Bio-based Catalyst for Room Temperature Synthesis of New, Fluorescent 1, 4-Benzoxazinone and Benzophenoxazinone Derivatives. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Roy A, Fajardie P, Lepoittevin B, Baudoux J, Lapinte V, Caillol S, Briou B. CNSL, a Promising Building Blocks for Sustainable Molecular Design of Surfactants: A Critical Review. Molecules 2022; 27:molecules27041443. [PMID: 35209231 PMCID: PMC8876098 DOI: 10.3390/molecules27041443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Surfactants are crystallizing a certain focus for consumer interest, and their market is still expected to grow by 4 to 5% each year. Most of the time these surfactants are of petroleum origin and are not often biodegradable. Cashew Nut Shell Liquid (CNSL) is a promising non-edible renewable resource, directly extracted from the shell of the cashew nut. The interesting structure of CNSL and its components (cardanol, anacardic acid and cardol) lead to the synthesis of biobased surfactants. Indeed, non-ionic, anionic, cationic and zwitterionic surfactants based on CNSL have been reported in the literature. Even now, CNSL is absent or barely mentioned in specialized review or chapters talking about synthetic biobased surfactants. Thus, this review focuses on CNSL as a building block for the synthesis of surfactants. In the first part, it describes and criticizes the synthesis of molecules and in the second part, it compares the efficiency and the properties (CMC, surface tension, kraft temperature, biodegradability) of the obtained products with each other and with commercial ones.
Collapse
Affiliation(s)
- Audrey Roy
- Orpia Innovation, CNRS, Bâtiment Chimie Balard, 1919 Route de Mendes, 34000 Montpellier, France;
| | - Pauline Fajardie
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (P.F.); (V.L.); (S.C.)
| | - Bénédicte Lepoittevin
- Laboratoire de Chimie Moléculaire et Thio-Organique (LCMT), Normandie Université, ENSICAEN, UNICAEN, UMR CNRS 6507, 6 Boulevard Maréchal Juin, 14050 Caen, France; (B.L.); (J.B.)
| | - Jérôme Baudoux
- Laboratoire de Chimie Moléculaire et Thio-Organique (LCMT), Normandie Université, ENSICAEN, UNICAEN, UMR CNRS 6507, 6 Boulevard Maréchal Juin, 14050 Caen, France; (B.L.); (J.B.)
| | - Vincent Lapinte
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (P.F.); (V.L.); (S.C.)
| | - Sylvain Caillol
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (P.F.); (V.L.); (S.C.)
| | - Benoit Briou
- Orpia Innovation, CNRS, Bâtiment Chimie Balard, 1919 Route de Mendes, 34000 Montpellier, France;
- Correspondence: ; Tel.: +33-6-32-83-21-76
| |
Collapse
|
19
|
DOS SANTOS REBECAC, FREITAS EDNARDOR, NEPOMUCENO RAFAELC, LIMA RAFFAELLAC, MONTEIRO NAYANNAC, DA SILVA CLEANEP, DO NASCIMENTO GERMANOA, WATANABE PEDROH. Calcium anacardate as source of anacardic acid in laying Japanese quail diet. AN ACAD BRAS CIENC 2022; 94:e20190410. [DOI: 10.1590/0001-3765202220190410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/13/2019] [Indexed: 11/22/2022] Open
|
20
|
Muldoon J, Garrison M, Savolainen M, Harvey BG. Ambient Temperature Cross-Linking of a Sustainable, Cardanol-Based Cyanate Ester Via Synergistic Thiol-ene Copolymerization. Polym Chem 2022. [DOI: 10.1039/d2py00160h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardanol, a low-cost component of cashew nut shell oil, is a phenolic compound with a 15-carbon unsaturated chain in the position meta to the hydroxyl group. This biorenewable substrate was...
Collapse
|
21
|
Groß J, Grundke C, Rocker J, Arduengo AJ, Opatz T. Xylochemicals and where to find them. Chem Commun (Camb) 2021; 57:9979-9994. [PMID: 34522925 DOI: 10.1039/d1cc03512f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article surveys a range of important platform and high value chemicals that may be considered primary and secondary 'xylochemicals'. A summary of identified xylochemical substances and their natural sources is provided in tabular form. In detail, this review is meant to provide useful assistance for the consideration of potential synthetic strategies using xylochemicals, new methodologies and the development of potentially sustainable, xylochemistry-based processes. It should support the transition from petroleum-based approaches and help to move towards more sustainability within the synthetic community. This feasible paradigm shift is demonstrated with the total synthesis of natural products and active pharmaceutical ingredients as well as the preparation of organic molecules suitable for potential industrial applications.
Collapse
Affiliation(s)
- Jonathan Groß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Caroline Grundke
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Johannes Rocker
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Anthony J Arduengo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA.
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
22
|
de Andrade Ramos G, Souza de Oliveira A, Bartolini M, Naldi M, Liparulo I, Bergamini C, Uliassi E, Wu L, Fraser PE, Abreu M, Kiametis AS, Gargano R, Silveira ER, Brand GD, Prchal L, Soukup O, Korábečný J, Bolognesi ML, Soares Romeiro LA. Discovery of sustainable drugs for Alzheimer's disease: cardanol-derived cholinesterase inhibitors with antioxidant and anti-amyloid properties. RSC Med Chem 2021; 12:1154-1163. [PMID: 34355181 PMCID: PMC8293282 DOI: 10.1039/d1md00046b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
As part of our efforts to develop sustainable drugs for Alzheimer's disease (AD), we have been focusing on the inexpensive and largely available cashew nut shell liquid (CNSL) as a starting material for the identification of new acetylcholinesterase (AChE) inhibitors. Herein, we decided to investigate whether cardanol, a phenolic CNSL component, could serve as a scaffold for improved compounds with concomitant anti-amyloid and antioxidant activities. Ten new derivatives, carrying the intact phenolic function and an aminomethyl functionality, were synthesized and first tested for their inhibitory potencies towards AChE and butyrylcholinesterase (BChE). 5 and 11 were found to inhibit human BChE at a single-digit micromolar concentration. Transmission electron microscopy revealed the potential of five derivatives to modulate Aβ aggregation, including 5 and 11. In HORAC assays, 5 and 11 performed similarly to standard antioxidant ferulic acid as hydroxyl scavenging agents. Furthermore, in in vitro studies in neuronal cell cultures, 5 and 11 were found to effectively inhibit reactive oxygen species production at a 10 μM concentration. They also showed a favorable initial ADME/Tox profile. Overall, these results suggest that CNSL is a promising raw material for the development of potential disease-modifying treatments for AD.
Collapse
Affiliation(s)
- Giselle de Andrade Ramos
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Andressa Souza de Oliveira
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Irene Liparulo
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Ling Wu
- Tanz Centre for Research in Neurodegenerative Diseases and Dept. of Medical Biophysics, University of Toronto Krembil Discovery Tower, 60 Leonard Avenue, 6KD-402 M5T 2S8 Toronto ON Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Dept. of Medical Biophysics, University of Toronto Krembil Discovery Tower, 60 Leonard Avenue, 6KD-402 M5T 2S8 Toronto ON Canada
| | - Monica Abreu
- Physics Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Alessandra Sofia Kiametis
- Physics Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Ricardo Gargano
- Physics Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Edilberto Rocha Silveira
- CENAUREMN, Department of Organic and Inorganic Chemistry, Federal University of Ceará 60021-970 Fortaleza CE Brazil
| | - Guilherme D Brand
- Chemistry Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove Sokolska 581, 500 05 Hradec Kralove Czech Republic
| | - Ondřej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove Sokolska 581, 500 05 Hradec Kralove Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence Trebesska 1575, 500 01 Hradec Kralove Czech Republic
| | - Jan Korábečný
- Biomedical Research Centre, University Hospital Hradec Kralove Sokolska 581, 500 05 Hradec Kralove Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence Trebesska 1575, 500 01 Hradec Kralove Czech Republic
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Luiz Antonio Soares Romeiro
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| |
Collapse
|
23
|
Preethi R, Moses J, Anandharamakrishnan C. Development of anacardic acid incorporated biopolymeric film for active packaging applications. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Anacardic Acid Complexes as Possible Agents Against Alzheimer's Disease Through Their Antioxidant, In vitro, and In silico Anticholinesterase and Ansiolic Actions. Neurotox Res 2020; 39:467-476. [PMID: 33156514 DOI: 10.1007/s12640-020-00306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
The frequency of Alzheimer's disease (AD) is growing rapidly with longer life expectancy and the consequent increase of people with a high risk of neurodegenerative diseases. Anacardic acid (AA) has several pharmacological actions, such as antioxidants, anticholinesterase, and anti-inflammatory, which are related to the protection against aging disorders. Also, the metals copper and zinc are co-factors of antioxidant enzymes that can be associated with AA to improve brain-protective action. This study aimed to evaluate the potential of AA metal complexes using copper and zinc chelators to produce potential agents against Alzheimer's disease. For this purpose, Cu and Zn were linked to AA in the ratio of 1:1 in a basic medium. The complexes' formation was confirmed by ultraviolet and visible spectroscopy. The toxicity was evaluated in the zebrafish model, and other information related to AD was obtained using the zebrafish model of anxiety. AA-Zn and AA-Cu complexes showed better antioxidant action than free AA. In the anti-AChE activity, AA was like the AA-Cu complex. In models using adult zebrafish, no toxicity for AA complexes was found, and in the locomotor model, AA-Cu demonstrated possible anxiolytic action. In in silico experiments comparing AA and AA-Cu complex, the coupling energy with the enzyme was lower for the AA-Cu complex, showing better interaction, and also the distances of the active site amino acids with this complex were lower, similar to galantamine, the standard anti-AChE inhibitor. Thus, AA-Cu showed interesting results for more detailed study in experiments related to Alzheimer's disease.
Collapse
|
25
|
Alangode A, Reick M, Reick M. Sodium oleate, arachidonate, and linoleate enhance fibrinogenolysis by Russell's viper venom proteinases and inhibit FXIIIa; a role for phospholipase A 2 in venom induced consumption coagulopathy. Toxicon 2020; 186:83-93. [PMID: 32755649 DOI: 10.1016/j.toxicon.2020.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 06/02/2020] [Accepted: 07/12/2020] [Indexed: 12/22/2022]
Abstract
Life-threatening symptoms produced by Russell's viper (RV, Daboia russelii) envenomation result largely from venom induced consumption coagulopathy (VICC). VICC is thought to be mediated to a large degree by venom serine and metalloproteinases, as well as by snake venom phospholipase A2 (svPLA2), the most abundant constituent of RV venom (RVV). The observation that the phenolic lipid anacardic acid markedly enhances proteolytic degradation of fibrinogen by RVV proteinases led us to characterize the chemical basis of this phenomenon with results indicating that svPLA2 products may be major contributors to VICC. RESULTS: Of the chemical analogs tested, the anionic detergents sodium dodecyl sulfate, sodium deoxycholate, N-lauryl sodium sarcosine, and the sodium salts of the fatty acids arachidonic, oleic and to a lesser extend linoleic acid were able to enhance fibrinogenolysis by RVV proteinases. Enhanced Fibrinogenolysis (EF) was observed with various venom size exclusion fractions containing different proteinases, and also with trypsin, indicating that conformational changes of the substrate and increased accessibility of otherwise cryptic cleavage sites are likely to be responsible for EF. In addition to enhancing fibrinogenolysis, sodium arachidonate and oleate were found to partially inhibit thrombin induced, factor XIIIa (FXIIIa) mediated ligation of fibrin chains. In clotting experiments with fresh blood RVV was found to disrupt normal coagulation, leading to small, partial clot formation, whereas RVV pretreated with the PLA2 inhibitor Varespladib induced rapid and complete clot formation (after 5 min) compared to blood alone. CONCLUSION: The observations that fatty acid anions and anionic detergents induce conformational changes that render fibrin(ogen) more susceptible to proteolysis by RVV proteinases and that RVV-PLA2 activity (which produces FFA) is required to render blood incoagulable in clotting experiments with RVV indicate a mechanism by which the activity of highly abundant RVV-PLA2 promotes degradation and depletion of fibrin(ogen) resulting in incoagulable blood seen following RVV envenomation (VICC).
Collapse
Affiliation(s)
- Aswathy Alangode
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O., Kollam, 690 525, Kerala, India
| | - Margaret Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O., Kollam, 690 525, Kerala, India
| | - Martin Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O., Kollam, 690 525, Kerala, India.
| |
Collapse
|
26
|
Catechin isolated from cashew nut shell exhibits antibacterial activity against clinical isolates of MRSA through ROS-mediated oxidative stress. Appl Microbiol Biotechnol 2020; 104:8279-8297. [PMID: 32857200 DOI: 10.1007/s00253-020-10853-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 08/23/2020] [Indexed: 01/16/2023]
Abstract
Staphylococcus aureus causes severe infections and among all methicillin-resistant S. aureus (MRSA) remains a great challenge in spite of decade research of antibacterial compounds. Even though some synthetic antibiotics have been developed, they are not effective against MRSA, and hence, there is a search for natural, alternative and plant-based antibacterial compound. In this connection, catechin isolated from cashew nut shell was investigated for its antibacterial potential against MRSA. Catechin exhibited zone of inhibition (ZOI) and minimum inhibitory concentration (MIC) in a range of 15.1-19.5 mm and 78.1-156.2 μg/ml, respectively, against ATCC and clinical isolates of MRSA. Among all clinical isolates, clinical isolate-3 exhibited highest sensitivity to catechin. Catechin has arrested the growth of MRSA strains and also caused toxicity by membrane disruption which was illustrated by AO/EB fluorescence staining. Increased nucleic acid leakage (1.58-28.6-fold) and protein leakage (1.40-23.50-fold) was noticed in MRSA due to catechin treatment when compared to methicillin. Bacteria treated with catechin at its MIC showed 1.52-, 1.87- and 1.74-fold increase of ROS production in methicillin susceptible S. aureus (MSSA), MRSA and clinical isolate-3 strains, respectively, as compared to control. Superoxide dismutase (5.31-9.63 U/mg protein) and catalase (1573-3930 U/mg protein) were significantly decreased as compared to control in catechin-treated S. aureus. Thus, catechin exhibited antibacterial activity through oxidative stress by increased production of ROS and decreased antioxidant enzymes. Altogether results suggest that catechin is a promising lead compound with antibacterial potential against MRSA. KEY POINTS: • Catechin was isolated and identified as active compound in cashew nut shell. • Catechin exhibited antimicrobial activity against clinical isolates of MRSA. • Bacterial cell wall damage was caused by catechin in MRSA strains. • Catechin increased the oxidative stress in MRSA by intracellular ROS production.
Collapse
|
27
|
Sowndarya J, Rubini D, Sinsinwar S, Senthilkumar M, Nithyanand P, Vadivel V. Gallic Acid an Agricultural Byproduct Modulates the Biofilm Matrix Exopolysaccharides of the Phytopathogen Ralstonia solanacearum. Curr Microbiol 2020; 77:3339-3354. [PMID: 32749521 DOI: 10.1007/s00284-020-02141-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/22/2020] [Indexed: 11/24/2022]
Abstract
Ralstonia solanacearum is a soil-borne plant pathogen which causes wilt disease in economically important crops of the Solanaceae family in tropical and temperate regions. As biofilm formation is the major virulence factor in R. solanacearum, research inputs are necessary to identify natural biofilm inhibitors to mitigate virulence of this bacterium. Hence in the present work, the anti-biofilm potential of phytochemical compound gallic acid (GA) isolated from an agricultural byproduct (cashewnut shell) was investigated. Initially the Minimum inhibitory concentration (MIC) of crude extracts of cashewnut shell and coconut shell against R. solanacearum were investigated. The MIC of both the extracts were 400 µg/ml and their sub-MIC (200 µg/ml) inhibited biofilms in the range of 62-70% and 49-57%, respectively. As the cashewnut shell extract have higher biofilm inhibitory effect compared to coconut shell extract, we proceeded our further study by isolating the major compound GA from cashewnut shell by acid hydrolysate method. The sub-MIC of crude cashewnut shell extract inhibited 85% of young biofilms. The MIC of GA were observed at 3 mg/ml and sub-MIC (1.5 mg/ml) was found to eradicate 85% of mature biofilms which was confirmed by standard crystal violet assay and the biofilm reduction was further visualized under light microscopy and scanning electron microscopic images. Toxicity of GA was evaluated against R. solanacearum through XTT cell viability assay and found no antibacterial effect at sub-MIC. Additionally, it is confirmed with growth curve and time kill assays. Swimming and twitching motility were considered as an important virulence factors to invade plants and to block the xylem vessels. Therefore, sub-MIC of GA was found to inhibit both swimming and twitching motility of about 93% and 63% respectively. Anti-biofilm efficacy of GA was also worked well with tomato plant model where remarkable biofilm inhibition was found on treatment with GA before and after 24 h of infection with R. solanacearum. Hence GA will be an alternative, cheap source which is eco-friendly as well as novel source for the treatment of R. solanacearum biofilms and to prevent wilt disease in important crops.
Collapse
Affiliation(s)
- Jothipandiyan Sowndarya
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Durairajan Rubini
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Simran Sinsinwar
- Chemical Biology Laboratory (ASK II 409), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Murugaiyan Senthilkumar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India.
| | - Vellingiri Vadivel
- Chemical Biology Laboratory (ASK II 409), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
28
|
|
29
|
Anjum MM, Patel KK, Dehari D, Pandey N, Tilak R, Agrawal AK, Singh S. Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: chitosan and DNase coating improves antimicrobial activity. Drug Deliv Transl Res 2020; 11:305-317. [PMID: 32519201 DOI: 10.1007/s13346-020-00795-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biofilm mediated bacterial infections are the key factors in the progression of infectious diseases due to the evolution of antimicrobial resistance. Traditional therapy involving antibiotics is not adequate enough for treatment of such infections due to the increased resistance triggered by biofilm. To overcome this challenge, we developed anacardic acid (Ana) loaded solid lipid nanoparticles (SLNs), further coated with chitosan and DNase (Ana-SLNs-CH-DNase). The DNase coating was hypothesized to degrade the e-DNA, while chitosan was coated to yield positively charged SLNs with additional adhesion to biofilms. The SLNs were developed using homogenization method and further evaluated for particle size, polydispersity index, zeta potential, and entrapment efficiency. Drug excipient compatibility was confirmed by using FT-IR study, while encapsulation of Ana in SLNs was confirmed by X-ray diffraction study. The SLNs demonstrated sustained release for up to 24 h and excellent stability at room temperature for up to 3 months. The developed SLNs were found non-toxic against human immortalized keratinocyte (HaCaT) cells while demonstrated remarkably higher antimicrobial efficacy against Staphylococcus aureus. Excellent effect of the developed SLNs on minimum biofilm inhibition concentration and minimum biofilm eradication concentration further confirmed the superiority of the developed formulation strategy. A significant (p < 0.05) reduction in biofilm thickness and biomass, as confirmed by confocal laser scanning microscopy, was observed in the case of developed SLNs in comparison with control. Cumulatively, the results suggest the enhanced efficacy of the developed formulation strategy to overcome the biofilm-mediated antimicrobial resistance. Graphical abstract.
Collapse
Affiliation(s)
- Md Meraj Anjum
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Krishna Kumar Patel
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Nidhi Pandey
- Department of Microbiology, Institute of Medical Sciences (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Ragini Tilak
- Department of Microbiology, Institute of Medical Sciences (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
30
|
Koteich Khatib S, Bullón J, Vivas J, Bahsas A, Rosales‐Oballos Y, Marquez R, Forgiarini A, Salager JL. Synthesis, Characterization, Evaluation of Interfacial Properties and Antibacterial Activities of Dicarboxylate Anacardic Acid Derivatives from Cashew Nut Shell Liquid of
Anacardium occidentale
L. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sonia Koteich Khatib
- Laboratorio de Resonancia Magnética Nuclear. Grupo de Productos Naturales. Departamento de Química. Facultad de CienciasUniversidad de Los Andes 5101 Mérida Venezuela
- Laboratorio de Formulación, Interfases, Reología y Procesos FIRP, Escuela de Ingeniería Química, Facultad de IngenieríaUniversidad de Los Andes 5101 Mérida Venezuela
| | - Johnny Bullón
- Laboratorio de Formulación, Interfases, Reología y Procesos FIRP, Escuela de Ingeniería Química, Facultad de IngenieríaUniversidad de Los Andes 5101 Mérida Venezuela
| | - Jesús Vivas
- Laboratorio de Resonancia Magnética Nuclear. Grupo de Productos Naturales. Departamento de Química. Facultad de CienciasUniversidad de Los Andes 5101 Mérida Venezuela
| | - Ali Bahsas
- Laboratorio de Resonancia Magnética Nuclear. Grupo de Productos Naturales. Departamento de Química. Facultad de CienciasUniversidad de Los Andes 5101 Mérida Venezuela
| | - Yolima Rosales‐Oballos
- Departamento de Microbiología y Parasitología. Facultad de Farmacia y BioanálisisUniversidad de Los Andes 5101 Mérida Venezuela
| | - Ronald Marquez
- Laboratorio de Formulación, Interfases, Reología y Procesos FIRP, Escuela de Ingeniería Química, Facultad de IngenieríaUniversidad de Los Andes 5101 Mérida Venezuela
| | - Ana Forgiarini
- Laboratorio de Formulación, Interfases, Reología y Procesos FIRP, Escuela de Ingeniería Química, Facultad de IngenieríaUniversidad de Los Andes 5101 Mérida Venezuela
| | - Jean Louis Salager
- Laboratorio de Formulación, Interfases, Reología y Procesos FIRP, Escuela de Ingeniería Química, Facultad de IngenieríaUniversidad de Los Andes 5101 Mérida Venezuela
| |
Collapse
|
31
|
Kühlborn J, Groß J, Opatz T. Making natural products from renewable feedstocks: back to the roots? Nat Prod Rep 2020; 37:380-424. [DOI: 10.1039/c9np00040b] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the utilization of biomass-derived building blocks in the total synthesis of natural products.
Collapse
Affiliation(s)
- Jonas Kühlborn
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Jonathan Groß
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Till Opatz
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| |
Collapse
|
32
|
Development of Anacardic Acid/hydroxypropyl-β-cyclodextrin inclusion complex with enhanced solubility and antimicrobial activity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Ma J, Liu N, Huang M, Wang L, Han J, Qian H, Che F. Synthesis, physicochemical and antimicrobial properties of cardanol-derived quaternary ammonium compounds (QACs) with heterocyclic polar head. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Salehi B, Gültekin-Özgüven M, Kırkın C, Özçelik B, Morais-Braga MFB, Carneiro JNP, Bezerra CF, Silva TGD, Coutinho HDM, Amina B, Armstrong L, Selamoglu Z, Sevindik M, Yousaf Z, Sharifi-Rad J, Muddathir AM, Devkota HP, Martorell M, Jugran AK, Martins N, Cho WC. Anacardium Plants: Chemical,Nutritional Composition and Biotechnological Applications. Biomolecules 2019; 9:465. [PMID: 31505888 PMCID: PMC6769990 DOI: 10.3390/biom9090465] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Anacardium plants are native to the American tropical regions, and Anacardium occidentale L. (cashew tree) is the most recognized species of the genus. These species contain rich secondary metabolites in their leaf and shoot powder, fruits and other parts that have shown diverse applications. This review describes the habitat and cultivation of Anacardium species, phytochemical and nutritional composition, and their industrial food applications. Besides, we also discuss the secondary metabolites present in Anacardium plants which display great antioxidant and antimicrobial effects. These make the use of Anacardium species in the food industry an interesting approach to the development of green foods.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Mine Gültekin-Özgüven
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Celale Kırkın
- Department of Gastronomy and Culinary Arts, School of Applied Sciences, Özyeğin University, Çekmeköy, 34794 Istanbul, Turkey
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer, 34467, Istanbul, Turkey
| | | | - Joara Nalyda Pereira Carneiro
- Laboratory of Applied Mycology of Cariri, Department of Biological Sciences, Cariri Regional University, Crato, Ceará-Brazil
| | - Camila Fonseca Bezerra
- Laboratory of Planning and Synthesis of Drugs, Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Teresinha Gonçalves da Silva
- Laboratory of Planning and Synthesis of Drugs, Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil
| | - Benabdallah Amina
- Department of Agronomy, SAPVESA Laboratory, Nature and Life Sciences Faculty, University Chadli BENDJEDID, El-Tarf 36000, Algeria
| | - Lorene Armstrong
- State University of Ponta Grossa, Departament of Pharmaceutical Sciences, Ponta Grossa, Paraná, Brazil
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, Nigde, Turkey
| | - Mustafa Sevindik
- Department of Food Processing, Bahçe Vocational School, Osmaniye Korkut Ata University, 80500 Osmaniye, Turkey
| | - Zubaida Yousaf
- Department of Botany, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Ali Mahmoud Muddathir
- Department of Horticulture, Faculty of Agriculture, University of Khartoum, Shambat 13314, Khartoum North, Sudan
| | - Hari Prasad Devkota
- School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto 860-8555, Japan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepcion, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion 4070386, Chile.
| | - Arun Kumar Jugran
- Govind Ballabh Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre, Srinagar-246 174, Uttarakhand, India.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| |
Collapse
|
35
|
Osman SM, Abdel-Megied AM, Zain Eldain MH, Haleema S, Gopinath C, Sumalekshmy SA, Aboul-Enein HY. A highly sensitive GC-MS method for simultaneous determination of anacardic acids in cashew (Anacardium occidentale) nut shell oil in the presence of other phenolic lipid derivatives. Biomed Chromatogr 2019; 33:e4659. [PMID: 31325174 DOI: 10.1002/bmc.4659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 11/09/2022]
Abstract
The commercial value of cashew nut shell liquid (CNSL) has become a cornerstone of the agrowaste industry. It is the by-product of the cashew industry and has an 1/8 inch thickness of soft honeycomb structure. CNSL contains phenolic lipids with aliphatic chains such as anacardic acid, cardanol, cardol and methyl cardol, and their derivatives. The developed GC-MS method is rapid, accurate and selective using a selected derivatizing reagent, namely N-methyl-N-(trimethylsilyl)-trifluoroacetamide that was previously diluted 1:1% with anhydrous pyridine. The proposed GC-MS method was applied for the analysis of different CNSL samples. The results showed that all classes of CNSL compounds were detected. The four alkyl phenols were detected with their different alkyl sidechains without any interference. This method is also specified for the detection of fatty acids of saturated and unsaturated chains. Silylation did not cause any alteration in the chemical structure of CNSL compounds regardless of esterification action. Silylation is considered a safe derivatizing agent compatible with GC chromatography and specific for all volatile and nonvolatile polar and nonpolar CNSL compounds that could be detected in CNSL samples.
Collapse
Affiliation(s)
- Samir M Osman
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, 6th October City, Egypt
| | - Ahmed M Abdel-Megied
- Pharmaceutical Analytical Chemistry Department., Faculty of Pharmacy, Kafrelshekh University, Kafrelsheikh City, Egypt
| | - Mohammed H Zain Eldain
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, 6th October City, Egypt
| | - Simimole Haleema
- Department of Chemistry, T.K.M. College of Arts and Science, Kollam, Kerala, India
| | - Chithra Gopinath
- Department of Chemistry, T.K.M. College of Arts and Science, Kollam, Kerala, India
| | | | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Cairo, Egypt
| |
Collapse
|
36
|
Utility of dry load injection for an efficient natural products isolation at the semi-preparative chromatographic scale. J Chromatogr A 2019; 1598:85-91. [DOI: 10.1016/j.chroma.2019.03.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/01/2023]
|
37
|
Krishnadevi K, Devaraju S, Sriharshitha S, Alagar M, Keerthi Priya Y. Environmentally sustainable rice husk ash reinforced cardanol based polybenzoxazine bio-composites for insulation applications. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02854-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Oiram Filho F, Zocolo GJ, Canuto KM, Silva Junior IJD, Brito ES. Productivity of a preparative high‐performance liquid chromatography isolation of anacardic acids from cashew nut shell liquid. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201900014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | | | | | - Edy S. Brito
- Embrapa Agroindústria Tropical Fortaleza CE Brazil
| |
Collapse
|
39
|
Chemical Constituents of Anacardium occidentale as Inhibitors of Trypanosoma cruzi Sirtuins. Molecules 2019; 24:molecules24071299. [PMID: 30987092 PMCID: PMC6479711 DOI: 10.3390/molecules24071299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 11/17/2022] Open
Abstract
Benznidazole and nifurtimox, the only drugs available for the treatment of Chagas disease, have limited efficacy and have been associated with severe adverse side effects. Thus, there is an urgent need to find new biotargets for the identification of novel bioactive compounds against the parasite and with low toxicity. Silent information regulator 2 (Sir2) enzymes, or sirtuins, have emerged as attractive targets for the development of novel antitrypanosomatid agents. In the present work, we evaluated the inhibitory effect of natural compounds isolated from cashew nut (Anacardium occidentale, L. Anacardiaceae) against the target enzymes TcSir2rp1 and TcSir2rp3 as well as the parasite. Two derivates of cardol (1, 2), cardanol (3, 4), and anacardic acid (5, 6) were investigated. The two anacardic acids (5, 6) inhibited both TcSir2rp1 and TcSir2rp3, while the cardol compound (2) inhibited only TcSir2rp1. The most potent sirtuin inhibitor active against the parasite was the cardol compound (2), with an EC50 value of 12.25 µM, similar to that of benznidazole. Additionally, compounds (1, 4), which were inactive against the sirtuin targets, presented anti-T. cruzi effects. In conclusion, our results showed the potential of Anacardium occidentale compounds for the development of potential sirtuin inhibitors and anti-Trypanosoma cruzi agents.
Collapse
|
40
|
Abreu VKG, Pereira ALF, de Freitas ER, Trevisan MTS, da Costa JMC, Cruz CEB. Lipid and color stability of the meat and sausages of broiler fed with calcium anacardate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2124-2131. [PMID: 30298680 DOI: 10.1002/jsfa.9404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Anacardic acid, a phenolic compound, represents 90% of cashew nut shell liquid, which is a byproduct from the industrial processing of cashew nuts. This study aimed to add calcium anacardate (CA) to broilers' diets as a source of anacardic acid, to evaluate its antioxidant effect in breast meat and in processed meat products (sausages). For this purpose, birds were fed according to the following treatments: diet without antioxidant and diets containing 2.5, 5.0, 7.5, or 10.0 g kg-1 CA. Chicken breast meat was stored frozen for 90 days. The thigh and drumsticks were used to produce chicken sausages that were kept in refrigerated conditions for 90 days. Lipid oxidation and color stability were assessed every 30 days. RESULTS For breast meat, a 2.5 g kg-1 concentration of CA was insufficient to retard lipid oxidation, whereas 10.0 g kg-1 gave rise to a pro-oxidant effect and 5.0 g kg-1 slowed the oxidation up to 50 days. A level of 7.5 g kg-1 of CA was effective in retarding oxidation, favoring colour stability during the 90-days frozen storage. For sausages, 2.5 g kg-1 of calcium anacardate in broiler diets was sufficient to retard lipid oxidation. Calcium anacardate 7.5 g kg-1 provided greater redness in the sausages compared with the control and with the other treatments containing 5.0 and 10.0 g kg-1 . CONCLUSIONS Calcium anacardate is a potential natural antioxidant for breast meat and sausages in storage when added to broilers' diets. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Virgínia Kelly G Abreu
- Food Engineering Course, Federal University of Maranhão, Social Science, Health, and Technology Center, Universidade Avenue, Imperatriz, Brazil
| | - Ana Lúcia F Pereira
- Food Engineering Course, Federal University of Maranhão, Social Science, Health, and Technology Center, Universidade Avenue, Imperatriz, Brazil
| | - Ednardo R de Freitas
- Department of Animal Science, Federal University of Ceará, Agricultural Sciences Center, Campus do Pici, Fortaleza, Brazil
| | - Maria Teresa S Trevisan
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Agricultural Sciences Center, Campus do Pici, Fortaleza, Brazil
| | - José Maria C da Costa
- Department of Food Technology, Federal University of Ceará, Agricultural Sciences Center, Campus do Pici, Fortaleza, Brazil
| | - Carlos Eduardo B Cruz
- Department of Animal Science, Federal University of Ceará, Agricultural Sciences Center, Campus do Pici, Fortaleza, Brazil
| |
Collapse
|
41
|
Tyman JH, Patel M. Phenolic Structure and Colour in Mannich Reaction Products. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/030823407780199586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mannich reactions have been carried out with a variety of model alkylphenols and dimethylamine, methylamine, and diethylenetriamine to trace the origin of persistent coloured products occurring in related reactions with pentadeca(e)nylphenol and 4- tert-alkylphenols. It was found to be attributable to the presence of resorcinolic impurities.
Collapse
Affiliation(s)
- John H.P. Tyman
- Department of Chemistry, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
| | - Mahesh Patel
- Department of Chemistry, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
| |
Collapse
|
42
|
Costa LP, Oechsler BF, Brandão ALT, Galvão LA, Pinto JC. Copolymerization of Styrene and Cardanol from Cashew Nut Shell Liquid. Part I – Kinetic Modeling of Bulk Copolymerizations. MACROMOL REACT ENG 2019. [DOI: 10.1002/mren.201800065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Laura P. Costa
- Programa de Engenharia Química/COPPE – Universidade Federal do Rio de JaneiroCidade Universitária CP: 68502 Rio de Janeiro 21941–972 RJ Brazil
| | - Bruno F. Oechsler
- Programa de Engenharia Química/COPPE – Universidade Federal do Rio de JaneiroCidade Universitária CP: 68502 Rio de Janeiro 21941–972 RJ Brazil
| | - Amanda L. T. Brandão
- Departamento de Engenharia Química e de MateriaisPontifícia Universidade Católica do Rio de Janeiro CP: 38097 Rio de Janeiro 22451–900 RJ Brazil
| | - Letícia A. Galvão
- Programa de Engenharia Química/COPPE – Universidade Federal do Rio de JaneiroCidade Universitária CP: 68502 Rio de Janeiro 21941–972 RJ Brazil
| | - José Carlos Pinto
- Programa de Engenharia Química/COPPE – Universidade Federal do Rio de JaneiroCidade Universitária CP: 68502 Rio de Janeiro 21941–972 RJ Brazil
| |
Collapse
|
43
|
Prakash Rao HS, Kamalraj M, Prabakaran M. Synthesis and physico-chemical properties of a H-cardanol triazole zinc porphyrin conjugate. RSC Adv 2019; 9:4499-4506. [PMID: 35520169 PMCID: PMC9060588 DOI: 10.1039/c8ra09998g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
Although a large number of natural and non-natural metalloporphyrins are known, examples with fluorescence and fat-soluble properties are rare. We have achieved the synthesis of a fluorescent and fat-soluble zinc porphyrin incorporating four units of hydrogenated cardanol (H-cardanol). The synthesis is sustainable since the product is derived from cashew-nut shell liquid (CNSL), which is a renewable and bio-waste material. The H-cardanol triazole zinc porphyrin conjugate (HTZPC) was synthesized through applying a copper(i) catalyzed azide–alkyne cycloaddition (CuAAC) reaction between a H-cardanol derived azide and a tetraarylporphyrin derived alkyne. The absorption and emission properties of the hydrocarbon solvent soluble HTZPC were evaluated using UV-vis and fluorescence emission spectra obtained in various solvents. The results were compared with related molecules like a triazole-zinc porphyrin conjugate (TZPC), zinc tetra-C(4)-methoxyphenyl porphyrin (ZP), and a H-cardanol-triazole conjugate (HTC). The results showed that HTZPC undergoes J-type aggregation in both non-polar and highly polar solvents, which is dictated by van der Waals attractive forces between H-cardanol units in polar solvents (e.g. methanol and dimethylformamide) and π–π stacking interactions between porphyrin units in non-polar solvents (hexane). Moreover, the spectra indicated that the triazole units could stabilize the zinc porphyrin via intermolecular coordinate-complex formation. We anticipate that fat-soluble HTZPC could find applications in medical fields (e.g. in the photodynamic therapy of fat tissue). A fluorescent and fat-soluble zinc porphyrin incorporating four units of hydrogenated cardanol (H-cardanol) was synthesized, and its physico-chemical properties were characterized.![]()
Collapse
Affiliation(s)
- H Surya Prakash Rao
- Department of Chemistry, Pondicherry University Pondicherry India +914132654411 +919870414222.,Sharda University Knowledge Park III Greater Noida Uttar Pradesh India 201306
| | - M Kamalraj
- Department of Chemistry, Pondicherry University Pondicherry India +914132654411 +919870414222
| | - M Prabakaran
- Department of Chemistry, Pondicherry University Pondicherry India +914132654411 +919870414222
| |
Collapse
|
44
|
Paiva Filho JC, Morais SMD, Nogueira Sobrinho AC, Cavalcante GS, Silva NAD, Abreu FOMDS. Design of chitosan-alginate core-shell nanoparticules loaded with anacardic acid and cardol for drug delivery. POLIMEROS 2019. [DOI: 10.1590/0104-1428.08118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Sanches LM, Eyng C, Garcia RG, Alves GP, Sangalli GG, Nunes RV. Technical Cashew Nutshell Liquid in Diets of Growing Meat-Type Quails. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- LM Sanches
- Universidade Federal da Grande Dourados, Brazil
| | - C Eyng
- Universidade Estadual do Oeste do Paraná, Brazil
| | - RG Garcia
- Universidade Federal da Grande Dourados, Brazil
| | - GP Alves
- Universidade Federal da Grande Dourados, Brazil
| | - GG Sangalli
- Universidade Estadual do Oeste do Paraná, Brazil
| | - RV Nunes
- Universidade Federal da Grande Dourados, Brazil
| |
Collapse
|
46
|
Monisha M, Amarnath N, Mukherjee S, Lochab B. Cardanol Benzoxazines: A Versatile Monomer with Advancing Applications. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Monisha Monisha
- Materials Chemistry LaboratoryDepartment of ChemistrySchool of Natural SciencesShiv Nadar University Gautam Buddha Nagar Uttar Pradesh 201314 India
| | - Nagarjuna Amarnath
- Materials Chemistry LaboratoryDepartment of ChemistrySchool of Natural SciencesShiv Nadar University Gautam Buddha Nagar Uttar Pradesh 201314 India
| | - Sourav Mukherjee
- Materials Chemistry LaboratoryDepartment of ChemistrySchool of Natural SciencesShiv Nadar University Gautam Buddha Nagar Uttar Pradesh 201314 India
| | - Bimlesh Lochab
- Materials Chemistry LaboratoryDepartment of ChemistrySchool of Natural SciencesShiv Nadar University Gautam Buddha Nagar Uttar Pradesh 201314 India
| |
Collapse
|
47
|
Pollini J, Bragoni V, Gooßen LJ. Synthesis of a tyrosinase inhibitor by consecutive ethenolysis and cross-metathesis of crude cashew nutshell liquid. Beilstein J Org Chem 2018; 14:2737-2744. [PMID: 30498524 PMCID: PMC6244364 DOI: 10.3762/bjoc.14.252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 11/23/2022] Open
Abstract
A convenient and sustainable three-step synthesis of the tyrosinase inhibitor 2-hydroxy-6-tridecylbenzoic acid was developed that starts directly from the anacardic acid component of natural cashew nutshell liquid (CNSL). Natural CNSL contains 60-70% of anacardic acid as a mixture of several double bond isomers. The anacardic acid component was converted into a uniform starting material by ethenolysis of the entire mixture and subsequent selective precipitation of 6-(ω-nonenyl)salicylic acid from cold pentane. The olefinic side chain of this intermediate was elongated by its cross-metathesis with 1-hexene using a first generation Hoveyda-Grubbs catalyst, which was reused as precatalyst in a subsequent hydrogenation step. Overall, the target compound was obtained in an overall yield of 61% based on the unsaturated anacardic acid content and 34% based on the crude CNSL.
Collapse
Affiliation(s)
- Jacqueline Pollini
- Lehrstuhl für Organische Chemie I, Ruhr-Universität Bochum, ZEMOS, Universitätsstraße 150, 44801 Bochum, Germany
| | - Valentina Bragoni
- Lehrstuhl für Organische Chemie I, Ruhr-Universität Bochum, ZEMOS, Universitätsstraße 150, 44801 Bochum, Germany
| | - Lukas J Gooßen
- Lehrstuhl für Organische Chemie I, Ruhr-Universität Bochum, ZEMOS, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
48
|
Ramos EH, Nomen R, Sempere J. Recovery of Anacardic Acids from Cashew Nut Shell Liquid with Ion-Exchange Resins. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Erick H. Ramos
- Department of Process Engineering and Environmental Sciences, Universidad Centroamericana José Simeón Cañas (UCA), Boulevard Los Próceres, San Salvador, El Salvador
| | - Rosa Nomen
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Juliá Sempere
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| |
Collapse
|
49
|
Evaluation of antioxidant and antimicrobial properties of solvent extracts of agro-food by-products (cashew nut shell, coconut shell and groundnut hull). ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.anres.2018.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Weigel WK, Dennis TN, Kang AS, Perry JJP, Martin DBC. A Heck-Based Strategy To Generate Anacardic Acids and Related Phenolic Lipids for Isoform-Specific Bioactivity Profiling. Org Lett 2018; 20:6234-6238. [PMID: 30251866 DOI: 10.1021/acs.orglett.8b02705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A synthetic strategy for phenolic lipids such as anacardic acid and ginkgolic acid derivatives using an efficient and selective redox-relay Heck reaction followed by a stereoselective olefination is reported. This approach controls both the alkene position and stereochemistry, allowing the synthesis of natural and unnatural unsaturated lipids as single isomers. By this strategy, the activities of different anacardic acid and ginkgolic acid derivatives have been examined in a matrix metalloproteinase inhibition assay.
Collapse
|