1
|
Gattan HS, Fouad SS, Ellisy RA, Elshazly H, El-kady AM. Eugenol: effective complementary treatment for cryptosporidiosis in experimentally infected mice. J Parasit Dis 2024; 48:370-380. [PMID: 38840881 PMCID: PMC11147982 DOI: 10.1007/s12639-024-01676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/21/2024] [Indexed: 06/07/2024] Open
Abstract
Cryptosporidiosis is an opportunistic, globally distributed parasitic disease. Whereas Cryptosporidium causes asymptomatic infection and diarrhea in healthy people, it may lead to severe illness in immunocompromised individuals. Limited, effective therapeutic alternatives are available against cryptosporidiosis in those categories of patients. So, we are in urgent need of better drugs for the treatment of cryptosporidiosis. Fifty male Swiss albino mice were used. Mice were grouped into five groups of ten mice each. Group I was left uninfected, and four groups were infected with 1000 oocysts of cryptosporidium. The first infected group was left untreated. The remaining three-infected groups received nitazoxanide (NTZ), eugenol, and eugenol + NTZ, respectively, on the 6th day post infection (dpi) for five days. Mice were sacrificed on the 30th dpi. The efficacy of treatment was evaluated using parasitological, biochemical, and histopathological parameters. Combination therapy of eugenol with NTZ caused a significant reduction of the number of oocysts secreted in stool and improved cryptosporidiosis-induced liver injury manifested by the restoration of normal levels of liver enzymes (ALT and AST). Treatment with eugenol-NTZ combination maintained a well-balanced antioxidant status, as evidenced by a reduced level of nitric oxide (NO) and increased antioxidant Superoxide dismutase (SOD) enzyme activity. Moreover, the combination of eugenol with NTZ resulted in the restoration of the normal morphology of intestinal villi, crypts, and muscularis mucosa. Based on the findings extracted from the present work, we can conclude that eugenol is a complementary therapeutic when used with NTZ in the treatment of cryptosporidiosis. The addition of eugenol to NTZ in the treatment of cryptosporidiosis synergized the effect of NTZ, causing a greater reduction of the number of shedded oocysts, improving liver enzyme levels, and restoring normal intestinal pathology. Therefore, we presume that eugenol's antioxidant capacity accounts for the protective effect seen in the current study. We suggest eugenol as a supplemental chemotherapeutic agent with good therapeutic potential and high levels of safety in the treatment of cryptosporidiosis based on the findings of the current study.
Collapse
Affiliation(s)
- Hattan S. Gattan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, 21589 Jeddah, Saudi Arabia
| | - Samer S. Fouad
- Department of Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523 Egypt
| | - Reham A. Ellisy
- Department of Medical Pharmacology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences-Scientific Departments, Qassim University, 52571 Buraidah, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, 62521 Egypt
| | - Asmaa M. El-kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, 83523 Egypt
| |
Collapse
|
2
|
Gattan HS, Wakid MH, Qahwaji RM, Altwaim S, Mahjoub HA, Alfaifi MS, Elshazly H, Al-Megrin WAI, Alshehri EA, Elshabrawy HA, El-kady AM. In silico and in vivo evaluation of the anti-cryptosporidial activity of eugenol. Front Vet Sci 2024; 11:1374116. [PMID: 38515537 PMCID: PMC10954888 DOI: 10.3389/fvets.2024.1374116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Background Cryptosporidiosis is an opportunistic parasitic disease widely distributed worldwide. Although Cryptosporidium sp. causes asymptomatic infection in healthy people, it may lead to severe illness in immunocompromised individuals. Limited effective therapeutic alternatives are available against cryptosporidiosis in this category of patients. So, there is an urgent need for therapeutic alternatives for cryptosporidiosis. Recently, the potential uses of Eugenol (EUG) have been considered a promising novel treatment for bacterial and parasitic infections. Consequently, it is suggested to investigate the effect of EUG as an option for the treatment of cryptosporidiosis. Materials and methods The in silico bioinformatics analysis was used to predict and determine the binding affinities and intermolecular interactions of EUG and Nitazoxanide (NTZ) toward several Cryptosporidium parvum (C. parvum) lowa II target proteins. For animal study, five groups of immunosuppressed Swiss albino mice (10 mice each) were used. Group I was left uninfected (control), and four groups were infected with 1,000 oocysts of Cryptosporidium sp. The first infected group was left untreated. The remaining three infected groups received NTZ, EUG, and EUG + NTZ, respectively, on the 6th day post-infection (dpi). All mice were sacrificed 30 dpi. The efficacy of the used formulas was assessed by counting the number of C. parvum oocysts excreted in stool of infected mice, histopathological examination of the ileum and liver tissues and determination of the expression of iNOS in the ileum of mice in different animal groups. Results treatment with EUG resulted in a significant reduction in the number of oocysts secreted in stool when compared to infected untreated mice. In addition, oocyst excretion was significantly reduced in mice received a combination therapy of EUG and NTZ when compared with those received NTZ alone. EUG succeeded in reverting the histopathological alterations induced by Cryptosporidium infection either alone or in combination with NTZ. Moreover, mice received EUG showed marked reduction of the expression of iNOS in ileal tissues. Conclusion Based on the results, the present study signified a basis for utilizing EUG as an affordable, safe, and alternative therapy combined with NTZ in the management of cryptosporidiosis.
Collapse
Affiliation(s)
- Hattan S. Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Majed H. Wakid
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Rowaid M. Qahwaji
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Altwaim
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haifaa A. Mahjoub
- Biological Sciences Department, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mashael S. Alfaifi
- Department of Epidemiology, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences-Scientific Departments, Qassim University, Buraidah, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, United States
| | - Asmaa M. El-kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
3
|
Pandey VK, Srivastava S, Ashish, Dash KK, Singh R, Dar AH, Singh T, Farooqui A, Shaikh AM, Kovacs B. Bioactive properties of clove ( Syzygium aromaticum) essential oil nanoemulsion: A comprehensive review. Heliyon 2024; 10:e22437. [PMID: 38163240 PMCID: PMC10755278 DOI: 10.1016/j.heliyon.2023.e22437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Syzygium aromaticum, commonly called clove, is a culinary spice with medical uses. Clove is utilized in cosmetics, medicine, gastronomy, and agriculture due to its abundance of bioactive components such as gallic acid, flavonoids, eugenol acetate, and eugenol. Clove essential oil has been revealed to have antibacterial, antinociceptive, antibacterial activities, antifungal, and anticancerous qualities. Anti-inflammatory chemicals, including eugenol and flavonoids, are found in clove that help decrease inflammation and alleviate pain. The anti-inflammatory and analgesic qualities of clove oil have made it a popular natural cure for toothaches and gum discomfort. Due to its therapeutic potential, it has been used as a bioactive ingredient in coating fresh fruits and vegetables. This review article outlines the potential food processing applications of clove essential oil. The chemical structures of components, bioactive properties, and medicinal potential of clove essential oil, including phytochemical importance in food, have also been thoroughly addressed.
Collapse
Affiliation(s)
- Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Shivangi Srivastava
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh, India
| | - Ashish
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, 732141, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Tripti Singh
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Ayaz Mukkaram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Bela Kovacs
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
4
|
Firoozbahr M, Kingshott P, Palombo EA, Zaferanloo B. Recent Advances in Using Natural Antibacterial Additives in Bioactive Wound Dressings. Pharmaceutics 2023; 15:644. [PMID: 36839966 PMCID: PMC10004169 DOI: 10.3390/pharmaceutics15020644] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound care is a global health issue with a financial burden of up to US $96.8 billion annually in the USA alone. Chronic non-healing wounds which show delayed and incomplete healing are especially problematic. Although there are more than 3000 dressing types in the wound management market, new developments in more efficient wound dressings will require innovative approaches such as embedding antibacterial additives into wound-dressing materials. The lack of novel antibacterial agents and the misuse of current antibiotics have caused an increase in antimicrobial resistance (AMR) which is estimated to cause 10 million deaths by 2050 worldwide. These ongoing challenges clearly indicate an urgent need for developing new antibacterial additives in wound dressings targeting microbial pathogens. Natural products and their derivatives have long been a significant source of pharmaceuticals against AMR. Scrutinising the data of newly approved drugs has identified plants as one of the biggest and most important sources in the development of novel antibacterial drugs. Some of the plant-based antibacterial additives, such as essential oils and plant extracts, have been previously used in wound dressings; however, there is another source of plant-derived antibacterial additives, i.e., those produced by symbiotic endophytic fungi, that show great potential in wound dressing applications. Endophytes represent a novel, natural, and sustainable source of bioactive compounds for therapeutic applications, including as efficient antibacterial additives for chronic wound dressings. This review examines and appraises recent developments in bioactive wound dressings that incorporate natural products as antibacterial agents as well as advances in endophyte research that show great potential in treating chronic wounds.
Collapse
Affiliation(s)
- Meysam Firoozbahr
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
5
|
Hasan MR, Alotaibi BS, Althafar ZM, Mujamammi AH, Jameela J. An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: "Elixir of Life". Molecules 2023; 28:1193. [PMID: 36770859 PMCID: PMC9919305 DOI: 10.3390/molecules28031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of cancer. Tulsi, or Holy Basil, of the genus Ocimum, is one of the most widely available and cost-effective medicinal plants. In India, the tulsi plant has deep religious and medicinal significance. Tulsi essential oil contains a valuable source of bioactive compounds, such as camphor, eucalyptol, eugenol, alpha-bisabolene, beta-bisabolene, and beta-caryophyllene. These compounds are proposed to be responsible for the antimicrobial properties of the leaf extracts. The anticancer effects of tulsi (Ocimum sanctum L.) have earned it the title of "queen of herbs" and "Elixir of Life" in Ayurvedic treatment. Tulsi leaves, which have high concentrations of eugenol, have been shown to have anticancer properties. In a various cancers, eugenol exerts its antitumour effects through a number of different mechanisms. In light of this, the current review focuses on the anticancer benefits of tulsi and its primary phytoconstituent, eugenol, as apotential therapeutic agent against a wide range of cancer types. In recent years, tulsi has gained popularity due to its anticancer properties. In ongoing clinical trials, a number of tulsi plant compounds are being evaluated for their potential anticancer effects. This article discusses anticancer, chemopreventive, and antioxidant effects of tulsi.
Collapse
Affiliation(s)
- Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ziyad Mohammed Althafar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ahmed Hussain Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Jafar Jameela
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| |
Collapse
|
6
|
Hu ZJ, Yang JW, Chen ZH, Chang C, Ma YP, Li N, Deng M, Mao GL, Bao Q, Deng SZ, Liu H. Exploration of Clove Bud ( Syzygium aromaticum) Essential Oil as a Novel Attractant against Bactrocera dorsalis (Hendel) and Its Safety Evaluation. INSECTS 2022; 13:918. [PMID: 36292866 PMCID: PMC9603929 DOI: 10.3390/insects13100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive polyphagous species that targets many economically important fruits and vegetables. The primary control of B. dorsalis relies mainly on the use of synthetic chemicals, and excessive use of these chemicals has adverse effects on both the environment and human health. Environmentally friendly management of pests involving plant essential oils is useful for controlling the populations of pests responsible for decreasing the yields and quality of crops. In the present study, we demonstrate that clove bud essential oil (CBEO) is strongly attractive to sexually mature males. Mature males responded to the CBEO differently throughout the day; the strongest response was elicited during the day and decreased at dusk. Virgin and mated mature males did not respond differently to CBEO. No obvious response behaviour to the CBEO was observed in two species of beneficial natural predator ladybirds. In addition, a cytotoxicity assessment demonstrated that CBEO is nontoxic to normal human and mouse cells. Based on our laboratory experiments, CBEO may serve as a promising, sustainable, and environmentally friendly attractant for B. dorsalis males; however, field experiments are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Zhen-Jie Hu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Jing-Wei Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Zi-Han Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Cheng Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Yu-Pei Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Nan Li
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Meng Deng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Gen-Lin Mao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Qiang Bao
- Hunan Provincial Tea Research Institute, Hunan Provincial Academy of Agricultural Sciences, Changsha 410125, China
| | - Shu-Zhen Deng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Huan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| |
Collapse
|
7
|
Inhibition of Escherichia coli nitroreductase by the constituents in Syzygium aromaticum. Chin J Nat Med 2022; 20:506-517. [DOI: 10.1016/s1875-5364(22)60163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/23/2022]
|
8
|
Ansariniaki M, Behnam B, Keyghobady S, Izadisabet F, Mirmohammadkhani M, Abdollahi M, Soleimani M. The effects of aromatherapy with clove essential oil on memory function of patients during electroconvulsive therapy: A randomized controlled trial. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zari AT, Zari TA, Hakeem KR. Anticancer Properties of Eugenol: A Review. Molecules 2021; 26:molecules26237407. [PMID: 34885992 PMCID: PMC8659182 DOI: 10.3390/molecules26237407] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Conventional cancer treatments have shown several unfavourable adverse effects, as well as an increase in anticancer drug resistance, which worsens the impending cancer therapy. Thus, the emphasis is currently en route for natural products. There is currently great interest in the natural bioactive components from medicinal plants possessing anticancer characteristics. For example, clove (Syzygium aromaticum L.) (Family Myrtaceae) is a highly prized spice that has been historically utilized as a food preservative and for diverse medical uses. It is reckoned amongst the valued sources of phenolics. It is indigenous to Indonesia but currently is cultivated in various places of the world. Among diverse active components, eugenol, the principal active component of S. aromaticum, has optimistic properties comprising antioxidant, anti-inflammatory, and anticancer actions. Eugenol (4-allyl-2-methoxyphenol) is a musky oil that is mainly obtained from clove. It has long been utilized all over the world as a result of its broad properties like antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Eugenol continues to pique investigators’ interest because of its multidirectional activities, which suggests it could be used in medications to treat different ailments. Anticancer effects of eugenol are accomplished by various mechanisms like inducing cell death, cell cycle arrest, inhibition of migration, metastasis, and angiogenesis on several cancer cell lines. Besides, eugenol might be utilized as an adjunct remedy for patients who are treated with conventional chemotherapy. This combination leads to a boosted effectiveness with decreased toxicity. The present review focuses on the anticancer properties of eugenol to treat several cancer types and their possible mechanisms.
Collapse
|
10
|
Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological Properties and Health Benefits of Eugenol: A Comprehensive Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2497354. [PMID: 34394824 PMCID: PMC8357497 DOI: 10.1155/2021/2497354] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023]
Abstract
The biologically active phytochemicals are sourced from edible and medicinally important plants and are important molecules being used for the formulation of thousands of drugs. These phytochemicals have great benefits against many ailments particularly the inflammatory diseases or oxidative stress-mediated chronic diseases. Eugenol (EUG) is a versatile naturally occurring molecule as phenolic monoterpenoid and frequently found in essential oils in a wide range of plant species. EUG bears huge industrial applications particularly in pharmaceutics, dentistry, flavoring of foods, agriculture, and cosmeceutics. It is being focused recently due to its great potential in preventing several chronic conditions. The World Health Organization (WHO) has declared EUG as a nonmutant and generally recognized as safe (GRAS) molecule. The available literature about pharmacological activities of EUG shows remarkable anti-inflammatory, antioxidant, analgesic, and antimicrobial properties and has a significant effect on human health. The current manuscript summarizes the pharmacological characteristics of EUG and its potential health benefits.
Collapse
Affiliation(s)
- Muhammad Farrukh Nisar
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Mahnoor Khadim
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, China
| | - Yali Yang
- Department of Pathology, Affiliated Hospital of Yunnan University/Second People's Hospital of Yunnan Province, Kunming 650021, China
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
11
|
Molecular Basis of the Therapeutical Potential of Clove ( Syzygium aromaticum L.) and Clues to Its Anti-COVID-19 Utility. Molecules 2021; 26:molecules26071880. [PMID: 33810416 PMCID: PMC8036487 DOI: 10.3390/molecules26071880] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
The current COronaVIrus Disease 19 (COVID-19) pandemic caused by SARS-CoV-2 infection is enormously affecting the worldwide health and economy. In the wait for an effective global immunization, the development of a specific therapeutic protocol to treat COVID-19 patients is clearly necessary as a short-term solution of the problem. Drug repurposing and herbal medicine represent two of the most explored strategies for an anti-COVID-19 drug discovery. Clove (Syzygium aromaticum L.) is a well-known culinary spice that has been used for centuries in folk medicine in many disorders. Interestingly, traditional medicines have used clove since ancient times to treat respiratory ailments, whilst clove ingredients show antiviral and anti-inflammatory properties. Other interesting features are the clove antithrombotic, immunostimulatory, and antibacterial effects. Thus, in this review, we discuss the potential role of clove in the frame of anti-COVID-19 therapy, focusing on the antiviral, anti-inflammatory, and antithrombotic effects of clove and its molecular constituents described in the scientific literature.
Collapse
|
12
|
Chandran R, George BP, Abrahamse H. Anti-Proliferative, Analgesic and Anti-Inflammatory Properties of Syzygium mundagam Bark Methanol Extract. Molecules 2020; 25:E2900. [PMID: 32599705 PMCID: PMC7355416 DOI: 10.3390/molecules25122900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer, pain and inflammation have long been a cause for concern amongst patients, clinicians and research scientists. There is an alarming increase in the demand for medicines suppressing these disease conditions. The present study investigates the role of Syzygium mundagam bark methanol (SMBM) extract against MCF-7 breast cancer cells, pain and inflammation. The MCF-7 cells treated with SMBM were analyzed for adenosine triphosphate (ATP), lactate dehydrogenase (LDH) levels, changes in cell morphology and nuclear damage. Hot plate, acetic acid and formalin-induced pain models were followed to determine the analgesic activity. Anti-inflammatory activity was studied using carrageenan, egg albumin and cotton pellet induced rat models. Microscopic images of cells in SMBM treated groups showed prominent cell shrinkage and nuclear damage. Hoechst stain results supported the cell death morphology. The decline in ATP (47.96%) and increased LDH (40.96%) content indicated SMBM induced toxicity in MCF-7 cells. In the in vivo study, a higher dose (200 mg/kg) of the extract was found to be effective in reducing pain and inflammation. The results are promising and the action of the extract on MCF-7 cells, pain and inflammation models indicate the potential of drugs of natural origin to improve current therapies.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; (R.C.); (B.P.G.)
| |
Collapse
|
13
|
El-Saber Batiha G, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020; 10:E202. [PMID: 32019140 PMCID: PMC7072209 DOI: 10.3390/biom10020202] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Herbal medicinal products have been documented as a significant source for discovering new pharmaceutical molecules that have been used to treat serious diseases. Many plant species have been reported to have pharmacological activities attributable to their phytoconstituents such are glycosides, saponins, flavonoids, steroids, tannins, alkaloids, terpenes, etc. Syzygium aromaticum (clove) is a traditional spice that has been used for food preservation and possesses various pharmacological activities. S. aromaticum is rich in many phytochemicals as follows: sesquiterpenes, monoterpenes, hydrocarbon, and phenolic compounds. Eugenyl acetate, eugenol, and β-caryophyllene are the most significant phytochemicals in clove oil. Pharmacologically, S. aromaticum has been examined toward various pathogenic parasites and microorganisms, including pathogenic bacteria, Plasmodium, Babesia, Theileria parasites, Herpes simplex, and hepatitis C viruses. Several reports documented the analgesic, antioxidant, anticancer, antiseptic, anti-depressant, antispasmodic, anti-inflammatory, antiviral, antifungal, and antibacterial activity of eugenol against several pathogenic bacteria including methicillin-resistant Staphylococcusepidermidis and S. aureus. Moreover, eugenol was found to protect against CCl4-induced hepatotoxicity and showed a potential lethal efficacy against the multiplication of various parasites including Giardia lamblia, Fasciolagigantica, Haemonchuscontortus, and Schistosomamansoni. This review examines the phytochemical composition and biological activities of clove extracts along with clove essential oil and the main active compound, eugenol, and implicates new findings from gas chromatography-mass spectroscopy (GC-MS) analysis.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
| | - Luay M. Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Lamiaa G. Wasef
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
| | - Eman H. Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72345, Saudi Arabia;
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| | - Eman K. Rashwan
- Department of Physiology, College of Medicine, Al-Azhar University, Assuit 71524, Egypt;
- Department of Physiology, College of Medicine, Jouf University, Sakaka 42421, Saudi Arabia
| |
Collapse
|
14
|
Huang M, Bai D, Chen Q, Zhao C, Ren T, Huang C, North M, Xie H. Facile preparation of polycarbonates from bio-based eugenol and 2-methoxy-4-vinylphenol. Polym Chem 2020. [DOI: 10.1039/d0py00291g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymerization of α,ω-diene functionalized carbonate monomers prepared from bio-based eugenol and 2-methoxy-4-vinylphenol through thiol–ene click and ADMET polymerizations produced polycarbonates with moderate molecular weight satisfactory thermal properties.
Collapse
Affiliation(s)
- Mengqian Huang
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- West Campus
- Guizhou University
| | - De Bai
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- West Campus
- Guizhou University
| | - Qin Chen
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- West Campus
- Guizhou University
| | - Changbo Zhao
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- West Campus
- Guizhou University
| | - Tianhua Ren
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- West Campus
- Guizhou University
| | - Caijuan Huang
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- West Campus
- Guizhou University
| | - Michael North
- Green Chemistry Centre of Excellence
- Department of Chemistry
- University of York
- York
- UK
| | - Haibo Xie
- Department of Polymeric Materials & Engineering
- College of Materials & Metallurgy
- Guizhou University
- West Campus
- Guizhou University
| |
Collapse
|
15
|
El-Kady AM, Ahmad AA, Hassan TM, El-Deek HEM, Fouad SS, Althagfan SS. Eugenol, a potential schistosomicidal agent with anti-inflammatory and antifibrotic effects against Schistosoma mansoni, induced liver pathology. Infect Drug Resist 2019; 12:709-719. [PMID: 30992676 PMCID: PMC6445185 DOI: 10.2147/idr.s196544] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Schistosomiasis is one of the most prevalent parasitic infections in developing countries. Although chemotherapy is one of the main strategies in controlling the disease, it is less effective in reversal of schistosome-induced pathology especially in the chronic and advanced stages of schistosomiasis. New strategies and prospective therapeutic agents with antifibrotic effects are needed. Eugenol has a wide anti-inflammatory effect. In the present study, we investigated the possible antischistosomal effect of eugenol on Schistosoma mansoni. Materials and methods The murine model of S. mansoni was established in three groups of adult male Balb-c mice; group I (infected non-treated group) and groups II and III (infected groups) treated orally with eugenol and praziquantel (PZQ), respectively. The expression of the sensitive immunohistochemical marker α-smooth muscle actin (α-SMA) in schistosome-infected tissues was determined. In addition, parasitological, biochemical, and histological parameters that reflect disease severity and morbidity were examined. Results Eugenol treatment showed significant reduction in total worm burden by 19.2%; however, the oogram pattern showed no marked difference compared to that of the PZQ group. Yet, eugenol significantly reduced the serum levels of hepatic enzymes: aspartate aminotransferase and alanine aminotransferase. Histopathological examination revealed a significant reduction in both numbers and diameters of hepatic granulomata, which was consistent with reduction in collagen fiber deposition. Additionally, the antifibrotic effect of eugenol was validated by its considerable reduction in the expression of the sensitive marker α-SMA in both eugenol- and PZQ-treated groups. Conclusion Although eugenol could not totally eradicate adults of S. mansoni, the significant amelioration of liver enzymes and hepatic fibrosis potentiate eugenol’s role as a promising antifibrotic and a complementary antischistosomal agent.
Collapse
Affiliation(s)
- Asmaa M El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt,
| | | | - Tasneem M Hassan
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Heba E M El-Deek
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Samer S Fouad
- Department of Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sultan S Althagfan
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| |
Collapse
|
16
|
Melanogenesis Inhibitors from the Rhizoma of Ligusticum Sinense in B16-F10 Melanoma Cells In Vitro and Zebrafish In Vivo. Int J Mol Sci 2018; 19:ijms19123994. [PMID: 30545008 PMCID: PMC6321181 DOI: 10.3390/ijms19123994] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/27/2018] [Accepted: 12/09/2018] [Indexed: 12/31/2022] Open
Abstract
The rhizoma of Ligusticum sinense, a Chinese medicinal plant, has long been used as a cosmetic for the whitening and hydrating of the skin in ancient China. In order to investigate the antimelanogenic components of the rhizoma of L. sinense, we performed an antimelanogenesis assay-guided purification using semi-preparative HPLC accompanied with spectroscopic analysis to determine the active components. Based on the bioassay-guided method, 24 compounds were isolated and identified from the ethyl acetate layer of methanolic extracts of L. sinense, and among these, 5-[3-(4-hydroxy-3-methoxyphenyl)allyl]ferulic acid (1) and cis-4-pentylcyclohex-3-ene-1,2-diol (2) were new compounds. All the pure isolates were subjected to antimelanogenesis assay using murine melanoma B16-F10 cells. Compound 1 and (3S,3aR)-neocnidilide (8) exhibited antimelanogenesis activities with IC50 values of 78.9 and 31.1 μM, respectively, without obvious cytotoxicity. Further investigation showed that compound 8 demonstrated significant anti-pigmentation activity on zebrafish embryos (10‒20 μM) compared to arbutin (20 μM), and without any cytotoxicity against normal human epidermal keratinocytes. These findings suggest that (3S,3aR)-neocnidilide (8) is a potent antimelanogenic and non-cytotoxic natural compound and may be developed potentially as a skin-whitening agent for cosmetic uses.
Collapse
|
17
|
Electroanalytical determination of eugenol in clove oil by voltammetry of immobilized microdroplets. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3933-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Bezerra DP, Militão GCG, de Morais MC, de Sousa DP. The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment. Nutrients 2017; 9:nu9121367. [PMID: 29258206 PMCID: PMC5748817 DOI: 10.3390/nu9121367] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022] Open
Abstract
The formation of reactive oxygen species (ROS) during metabolism is a normal process usually compensated for by the antioxidant defense system of an organism. However, ROS can cause oxidative damage and have been proposed to be the main cause of age-related clinical complications and diseases such as cancer. In recent decades, the relationship between diet and cancer has been more studied, especially with foods containing antioxidant compounds. Eugenol is a natural compound widely found in many aromatic plant species, spices and foods and is used in cosmetics and pharmaceutical products. Eugenol has a dual effect on oxidative stress, which can action as an antioxidant or prooxidant agent. In addition, it has anti-carcinogenic, cytotoxic and antitumor properties. Considering the importance of eugenol in the area of food and human health, in this review, we discuss the role of eugenol on redox status and its potential use in the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Daniel Pereira Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil.
| | | | - Mayara Castro de Morais
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa 58051-970, Paraíba, Brazil.
| | - Damião Pergentino de Sousa
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa 58051-970, Paraíba, Brazil.
| |
Collapse
|
19
|
Khalil AA, Rahman UU, Khan MR, Sahar A, Mehmood T, Khan M. Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Adv 2017. [DOI: 10.1039/c7ra04803c] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphical representation regarding sources, extraction techniques and nutraceutical perspectives of eugenol.
Collapse
Affiliation(s)
- Anees Ahmed Khalil
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Ubaid ur Rahman
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Tariq Mehmood
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Muneeb Khan
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| |
Collapse
|
20
|
Ryu B, Kim HM, Woo JH, Choi JH, Jang DS. A new acetophenone glycoside from the flower buds of Syzygium aromaticum (cloves). Fitoterapia 2016; 115:46-51. [DOI: 10.1016/j.fitote.2016.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 11/28/2022]
|
21
|
El-Maati MFA, Mahgoub SA, Labib SM, Al-Gaby AM, Ramadan MF. Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2016.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Abstract
Polyphenols are a widely used class of compounds in dermatology. While phenol itself, the most basic member of the phenol family, is chemically synthesized, most polyphenolic compounds are found in plants and form part of their defense mechanism against decomposition. Polyphenolic compounds, which include phenolic acids, flavonoids, stilbenes, and lignans, play an integral role in preventing the attack on plants by bacteria and fungi, as well as serving as cross-links in plant polymers. There is also mounting evidence that polyphenolic compounds play an important role in human health as well. One of the most important benefits, which puts them in the spotlight of current studies, is their antitumor profile. Some of these polyphenolic compounds have already presented promising results in either in vitro or in vivo studies for non-melanoma skin cancer and melanoma. These compounds act on several biomolecular pathways including cell division cycle arrest, autophagy, and apoptosis. Indeed, such natural compounds may be of potential for both preventive and therapeutic fields of cancer. This review evaluates the existing scientific literature in order to provide support for new research opportunities using polyphenolic compounds in oncodermatology.
Collapse
Affiliation(s)
- Adilson Costa
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Michael Yi Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
23
|
Ryu B, Kim HM, Lee JS, Lee CK, Sezirahiga J, Woo JH, Choi JH, Jang DS. New Flavonol Glucuronides from the Flower Buds of Syzygium aromaticum (Clove). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3048-3053. [PMID: 27045836 DOI: 10.1021/acs.jafc.6b00337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Repeated chromatography of the EtOAc-soluble fraction from the 70% EtOH extract of the flower buds of Syzygium aromaticum (clove) led to the isolation and characterization of four new flavonol glucuronides, rhamnetin-3-O-β-d-glucuronide (1), rhamnazin-3-O-β-d-glucuronide (2), rhamnazin-3-O-β-d-glucuronide-6″-methyl ester (3), and rhamnocitrin-3-O-β-d-glucuronide-6″-methyl ester (4), together with 15 flavonoids (5-19) having previously known chemical structures. The structures of the new compounds 1-4 were determined by interpretation of spectroscopic data, particularly by 1D- and 2D-NMR studies. Six flavonoids (6, 7, 9, 14, 18, and 19) were isolated from the flower buds of S. aromaticum for the first time in this study. The flavonoids were examined for their cytotoxicity against human ovarian cancer cells (A2780) using MTT assays. Among the isolates, pachypodol (19) showed the most potent cytotoxicity on A2780 cells with an IC50 value of 8.02 μM.
Collapse
Affiliation(s)
- Byeol Ryu
- Department of Life and Nanopharmaceutical Sciences and ‡College of Pharmacy, Kyung Hee University , Seoul 02447, Republic of Korea
| | - Hye Mi Kim
- Department of Life and Nanopharmaceutical Sciences and ‡College of Pharmacy, Kyung Hee University , Seoul 02447, Republic of Korea
| | - Jin Su Lee
- Department of Life and Nanopharmaceutical Sciences and ‡College of Pharmacy, Kyung Hee University , Seoul 02447, Republic of Korea
| | - Chan Kyu Lee
- Department of Life and Nanopharmaceutical Sciences and ‡College of Pharmacy, Kyung Hee University , Seoul 02447, Republic of Korea
| | - Jurdas Sezirahiga
- Department of Life and Nanopharmaceutical Sciences and ‡College of Pharmacy, Kyung Hee University , Seoul 02447, Republic of Korea
| | - Jeong-Hwa Woo
- Department of Life and Nanopharmaceutical Sciences and ‡College of Pharmacy, Kyung Hee University , Seoul 02447, Republic of Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences and ‡College of Pharmacy, Kyung Hee University , Seoul 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences and ‡College of Pharmacy, Kyung Hee University , Seoul 02447, Republic of Korea
| |
Collapse
|
24
|
Alam P, Ansari MJ, Anwer MK, Raish M, Kamal YKT, Shakeel F. Wound healing effects of nanoemulsion containing clove essential oil. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:591-597. [PMID: 28211300 DOI: 10.3109/21691401.2016.1163716] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to investigate the wound healing effects of clove oil (CO) via its encapsulation into nanoemulsion. Optimized nanoemulsion (droplet size of 29.10 nm) was selected for wound healing investigation, collagen determination, and histopathological examination in rats. Optimized nanoemulsion presented significant would healing effects in rats as compared to pure CO. Nanoemulsion also presented significant enhancement in leucine content (0.61 mg/g) as compared to pure CO (0.50 mg/g) and negative control (0.31 mg/g). Histopathology of nanoemulsion treated rats showed no signs of inflammatory cells. These results suggested that nanoemulsion of CO was safe and nontoxic.
Collapse
Affiliation(s)
- Prawez Alam
- a Department of Pharmacognosy , College of Pharmacy, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Mohammad J Ansari
- b Department of Pharmaceutics , College of Pharmacy, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Md Khalid Anwer
- b Department of Pharmaceutics , College of Pharmacy, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Mohammad Raish
- c Department of Pharmaceutics , College of Pharmacy, King Saud University , Riyadh , Saudi Arabia
| | - Yoonus K T Kamal
- a Department of Pharmacognosy , College of Pharmacy, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Faiyaz Shakeel
- d Center of Excellence in Biotechnology Research (CEBR) , King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
25
|
Rahman Alizadeh M, Mahdavi AH, Rahmani HR, Jahanian E. Clove bud (Syzygium aromaticum) improved blood and hepatic antioxidant indices in laying hens receiving low n-6 to n-3 ratios. J Anim Physiol Anim Nutr (Berl) 2016; 101:881-892. [DOI: 10.1111/jpn.12502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 02/12/2016] [Indexed: 11/28/2022]
Affiliation(s)
- M. Rahman Alizadeh
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | - A. H. Mahdavi
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | - H. R. Rahmani
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | - E. Jahanian
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| |
Collapse
|
26
|
Effects of different levels of clove bud (Syzygium aromaticum) on yolk biochemical parameters and fatty acids profile, yolk oxidative stability, and ovarian follicle numbers of laying hens receiving different n-6 to n-3 ratios. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Lin X, Ni Y, Kokot S. Electrochemical mechanism of eugenol at a Cu doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.04.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Thosar N, Basak S, Bahadure RN, Rajurkar M. Antimicrobial efficacy of five essential oils against oral pathogens: An in vitro study. Eur J Dent 2014; 7:S071-S077. [PMID: 24966732 PMCID: PMC4054083 DOI: 10.4103/1305-7456.119078] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Objectives: This study was aimed to find out the minimum inhibitory concentration (MIC) of five essential oils against oral pathogens and to find out the minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) of five essential oils against oral pathogens. Materials and Methods: The antimicrobial activities by detecting MIC and MBC/MFC of five essential oils such as tea tree oil, lavender oil, thyme oil, peppermint oil and eugenol oil were evaluated against four common oral pathogens by broth dilution method. The strains used for the study were Staphylococcus aureus ATCC 25923, Enterococcus fecalis ATCC 29212, Escherichia coli ATCC 25922 and Candida albicans ATCC 90028. Results: Out of five essential oils, eugenol oil, peppermint oil, tea tree oil exhibited significant inhibitory effect with mean MIC of 0.62 ± 0.45, 9.00 ± 15.34, 17.12 ± 31.25 subsequently. Mean MBC/MFC for tea tree oil was 17.12 ± 31.25, for lavender oil 151.00 ± 241.82, for thyme oil 22.00 ± 12.00, for peppermint oil 9.75 ± 14.88 and for eugenol oil 0.62 ± 0.45. E. fecalis exhibited low degree of sensitivity compared with all essential oils. Conclusion: Peppermint, tea tree and thyme oil can act as an effective intracanal antiseptic solution against oral pathogens.
Collapse
Affiliation(s)
- Nilima Thosar
- Department of Pedodontics and Preventive Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Medical Sciences (Deemed University), Wardha, Maharashtra, India
| | - Silpi Basak
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed University), Wardha, Maharashtra, India
| | | | - Monali Rajurkar
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed University), Wardha, Maharashtra, India
| |
Collapse
|
29
|
Al-Taisan WA, Bahkali AH, M. Elgorba A, A. El-Metw M. Effective Influence of Essential Oils and Microelements against Sclerotinia sclerotiorum. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.275.281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Anwer MK, Jamil S, Ibnouf EO, Shakeel F. Enhanced antibacterial effects of clove essential oil by nanoemulsion. J Oleo Sci 2014; 63:347-54. [PMID: 24599109 DOI: 10.5650/jos.ess13213] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of present study was to develop and evaluate nanoemulsion formulations of clove essential oil (CEO) for its antibacterial effects in comparison with pure CEO and standard amikacin antibiotic (positive control). Different nanoemulsions of CEO were developed by aqueous phase titration method via construction of pseudo-ternary phase diagrams and investigated for thermodynamic stability and self-nanoemulsification tests. Selected formulations (F1-F5) were characterized for droplet size distribution, viscosity, zeta potential, transmittance and surface morphology. Based on lowest droplet size (29.1 nm), lowest PI (0.026), lowest viscosity (34.6 cp), optimal zeta potential (-31.4 mV), highest transmittance (99.4 %) and lowest concentration of Triacetin (8 % w/w), CEO nanoemulsion F1 (containing 1 % w/w of CEO, 8 % w/w of Triacetin, 15 % w/w of Tween-80, 15 % w/w of Labrasol and 61 % w/w of water) was subjected to antibacterial studies in comparison with pure oil and standard amikacin. The antibacterial effects of F1 were found to be superior over pure oil against all bacterial strains investigated. However, the antibacterial effects of F1 were highly comparable with standard amikacin against all bacterial strains. The minimum inhibitory concentrations (MICs) of F1 were observed in the range of 0.075-0.300 % w/w as compared to pure oil (MICs 0.130-0.500 % w/w) and standard amikacin (MICs 2-16 μg/ml). These results indicated the potential of nanoemulsions for enhancing the therapeutic efficacy of natural bioactive ingredients such as CEO.
Collapse
Affiliation(s)
- Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Salman Bin Abdulaziz University
| | | | | | | |
Collapse
|
31
|
Liu XC, Zhou LG, Liu ZL, Du SS. Identification of insecticidal constituents of the essential oil of Acorus calamus rhizomes against Liposcelis bostrychophila Badonnel. Molecules 2013; 18:5684-96. [PMID: 23676474 PMCID: PMC6270123 DOI: 10.3390/molecules18055684] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 11/30/2022] Open
Abstract
The aim of this research was to determine the chemical composition of the essential oil of Acorus calamus rhizomes, its insecticidal activity against the booklouse, (Liposcelis bostrychophila) and to isolate any insecticidal constituents from the essential oil. The essential oil of A. calamus rhizomes was obtained by hydrodistillation and analyzed by GC-FID and GC-MS. A total of 32 components of the essential oil of A. calamus rhizomes was identified and the principal compounds in the essential oil were determined to be α-asarone (50.09%), (E)-methylisoeugenol (14.01%), and methyleugenol (8.59%), followed by β-asarone (3.51%), α-cedrene (3.09%) and camphor (2.42%). Based on bioactivity-guided fractionation, the three active constituents were isolated from the essential oil and identified as methyleugenol, (E)-methylisoeugenol and α-asarone. The essential oil exhibited contact toxicity against L. bostrychophila with an LD50 value of 100.21 µg/cm2 while three constituent compounds, α-asarone, methyleugenol, and (E)-methylisoeugenol had LD50 values of 125.73 µg/cm2, 103.22 µg/cm2 and 55.32 µg/cm2, respectively. Methyleugenol and (E)-methylisoeugenol possessed fumigant toxicity against L. bostrychophila adults with LC50 values of 92.21 μg/L air and 143.43 μg/L air, respectively, while the crude essential oil showed an LC50 value of 392.13 μg/L air. The results indicate that the essential oil of A. calamus rhizomes and its constituent compounds have potential for development into natural fumigants/insecticides for control of the booklice.
Collapse
Affiliation(s)
- Xin Chao Liu
- Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China; E-Mail:
| | - Li Gang Zhou
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing 100193, China; E-Mail:
| | - Zhi Long Liu
- Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mail: (Z.L.L.); (S.S.D.); Tel./Fax: +86-10-6273-2800 (Z.L.L.); Tel./Fax: +86-10-6220-8032 (S.S.D.)
| | - Shu Shan Du
- College of Resources Science and Technology, Beijing Normal University, Haidian District, Beijing 100875, China
- Authors to whom correspondence should be addressed; E-Mail: (Z.L.L.); (S.S.D.); Tel./Fax: +86-10-6273-2800 (Z.L.L.); Tel./Fax: +86-10-6220-8032 (S.S.D.)
| |
Collapse
|
32
|
Phytochemical Analysis and Antimicrobial, Antinociceptive, and Anti-Inflammatory Activities of Two Chemotypes of Pimenta pseudocaryophyllus (Myrtaceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:420715. [PMID: 23082081 PMCID: PMC3469278 DOI: 10.1155/2012/420715] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 08/04/2012] [Indexed: 11/17/2022]
Abstract
Preparations from Pimenta pseudocaryophyllus (Gomes) L.R. Landrum (Myrtaceae) have been widely used in Brazilian folk medicine. This study aims to evaluate the antimicrobial activity of the crude ethanol extracts, fractions, semipurified substances, and essential oils obtained from leaves of two chemotypes of P. pseudocaryophyllus and to perform the antinociceptive and anti-inflammatory screening. The ethanol extracts were purified by column chromatography and main compounds were spectrally characterised (1D and 2D 1H and 13C NMR). The essential oils constituents were identified by GC/MS. The broth microdilution method was used for testing the antimicrobial activity. The abdominal contortions induced by acetic acid and the ear oedema induced by croton oil were used for screening of antinociceptive and anti-inflammatory activities, respectively. The phytochemical analysis resulted in the isolation of pentacyclic triterpenes, flavonoids, and phenol acids. The oleanolic acid showed the best profile of antibacterial activity for Gram-positive bacteria (31.2–125 μg mL−1), followed by the essential oil of the citral chemotype (62.5–250 μg mL−1). Among the semipurified substances, Ppm5, which contained gallic acid, was the most active for Candida spp. (31.2 μg mL−1) and Cryptococcus spp. (3.9–15.6 μg mL−1). The crude ethanol extract and fractions from citral chemotype showed antinociceptive and anti-inflammatory effects.
Collapse
|
33
|
Gupta N, Manika N, Singh S, Singh S, Pragadheesh V, Yadav A, Chanotiya C. Investigation on phenylpropanoids richMelaleuca decora(Salisb.) Britt. essential oil. Nat Prod Res 2012; 26:1945-7. [PMID: 22007903 DOI: 10.1080/14786419.2011.628175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
34
|
Kamatou GP, Vermaak I, Viljoen AM. Eugenol--from the remote Maluku Islands to the international market place: a review of a remarkable and versatile molecule. Molecules 2012; 17:6953-81. [PMID: 22728369 PMCID: PMC6268661 DOI: 10.3390/molecules17066953] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 05/18/2012] [Accepted: 05/30/2012] [Indexed: 11/16/2022] Open
Abstract
Eugenol is a major volatile constituent of clove essential oil obtained through hydrodistillation of mainly Eugenia caryophyllata (=Syzygium aromaticum) buds and leaves. It is a remarkably versatile molecule incorporated as a functional ingredient in numerous products and has found application in the pharmaceutical, agricultural, fragrance, flavour, cosmetic and various other industries. Its vast range of pharmacological activities has been well-researched and includes antimicrobial, anti-inflammatory, analgesic, anti-oxidant and anticancer activities, amongst others. In addition, it is widely used in agricultural applications to protect foods from micro-organisms during storage, which might have an effect on human health, and as a pesticide and fumigant. As a functional ingredient, it is included in many dental preparations and it has also been shown to enhance skin permeation of various drugs. Eugenol is considered safe as a food additive but due to the wide range of different applications, extensive use and availability of clove oil, it is pertinent to discuss the general toxicity with special reference to contact dermatitis. This review summarises the pharmacological, agricultural and other applications of eugenol with specific emphasis on mechanism of action as well as toxicity data.
Collapse
Affiliation(s)
| | | | - Alvaro M. Viljoen
- Author to whom correspondence should be addressed; ; Tel.: +27-12-382-6360; Fax: +27-12-382-6243
| |
Collapse
|
35
|
Jaganathan SK, Supriyanto E. Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 2012; 17:6290-304. [PMID: 22634840 PMCID: PMC6268974 DOI: 10.3390/molecules17066290] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/28/2012] [Accepted: 05/09/2012] [Indexed: 11/28/2022] Open
Abstract
Phenolic phytochemicals are a broad class of nutraceuticals found in plants which have been extensively researched by scientists for their health-promoting potential. One such a compound which has been comprehensively used is eugenol (4-allyl-2-methoxyphenol), which is the active component of Syzigium aromaticum (cloves). Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature showed eugenol possesses antioxidant, antimutagenic, antigenotoxic, anti-inflammatory and anticancer properties. Molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented. This review article will highlight the antiproliferative activity and molecular mechanism of the eugenol induced apoptosis against the cancer cells and animal models.
Collapse
Affiliation(s)
- Saravana Kumar Jaganathan
- Department of Biomedical Engineering, PSNA college of Engineering and Technology, Kothandaraman Nagar, Dindigul 624622, Tamil Nadu, India
| | - Eko Supriyanto
- Department of Clinical science and Engineering, University Technology Malaysia, Johor bahru 81310, Malaysia;
| |
Collapse
|
36
|
Bachiega TF, de Sousa JPB, Bastos JK, Sforcin JM. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages. ACTA ACUST UNITED AC 2012; 64:610-6. [PMID: 22420667 DOI: 10.1111/j.2042-7158.2011.01440.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The extract and essential oil of clove (Syzygium aromaticum) are widely used because of their medicinal properties. Eugenol is the most important component of clove, showing several biological properties. Herein we have analysed the immunomodulatory/anti-inflammatory effect of clove and eugenol on cytokine production (interleukin (IL)-1β, IL-6 and IL-10) in vitro. METHODS Macrophages were incubated with clove or eugenol (5, 10, 25, 50 or 100µg/well) for 24h. Concentrations that inhibited the production of cytokines were used before or after incubation with lipopolysaccharide (LPS), to verify a preventive or therapeutic effect. Culture supernatants were harvested for measurement of cytokines by enzyme-linked immunosorbent assay. KEY FINDINGS Clove (100µg/well) inhibited IL-1β, IL-6 and IL-10 production and exerted an efficient action either before or after LPS challenge for all cytokines. Eugenol did not affect IL-1β production but inhibited IL-6 and IL-10 production. The action of eugenol (50 or 100µg/well) on IL-6 production prevented efficiently effects of LPS either before or after its addition, whereas on IL-10 production it counteracted significantly LPS action when added after LPS incubation. CONCLUSIONS Clove exerted immunomodulatory/anti-inflammatory effects by inhibiting LPS action. A possible mechanism of action probably involved the suppression of the nuclear factor-κB pathway by eugenol, since it was the major compound found in clove extract.
Collapse
|
37
|
Anticariogenic and cytotoxic activity of clove essential oil (Eugenia caryophyllata) against a large number of oral pathogens. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0092-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Pal D, Banerjee S, Mukherjee S, Roy A, Panda CK, Das S. Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: Downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway. J Dermatol Sci 2010; 59:31-9. [DOI: 10.1016/j.jdermsci.2010.04.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/19/2010] [Accepted: 04/26/2010] [Indexed: 02/02/2023]
|
39
|
Kimura Y, Ito H, Hatano T. Effects of Mace and Nutmeg on Human Cytochrome P450 3A4 and 2C9 Activity. Biol Pharm Bull 2010; 33:1977-82. [DOI: 10.1248/bpb.33.1977] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuka Kimura
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Hideyuki Ito
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Tsutomu Hatano
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
40
|
Liu Y, Mulabagal V, Bowen-Forbes CS, Aviayan R, Nair MG. Inhibition of lipid peroxidation, cyclooxygenase enzyme and human tumor cell proliferation by compounds in herbal water. Mol Nutr Food Res 2009; 53:1177-86. [DOI: 10.1002/mnfr.200800545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Chaieb K, Hajlaoui H, Zmantar T, Kahla-Nakbi AB, Rouabhia M, Mahdouani K, Bakhrouf A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res 2007; 21:501-6. [PMID: 17380552 DOI: 10.1002/ptr.2124] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The essential oil extracted from the dried flower buds of clove, Eugenia caryophyllata L. Merr. & Perry (Myrtaceae), is used as a topical application to relieve pain and to promote healing and also finds use in the fragrance and flavouring industries. The main constituents of the essential oil are phenylpropanoids such as carvacrol, thymol, eugenol and cinnamaldehyde. The biological activity of Eugenia caryophyllata has been investigated on several microorganisms and parasites, including pathogenic bacteria, Herpes simplex and hepatitis C viruses. In addition to its antimicrobial, antioxidant, antifungal and antiviral activity, clove essential oil possesses antiinflammatory, cytotoxic, insect repellent and anaesthetic properties. This short review addresses the chemical composition and biological effects of clove essential oil, and includes new results from GC/MS analysis and a study of its antimicrobial activity against a large number of multi-resistant Staphylococcus epidermidis isolated from dialysis biomaterials.
Collapse
Affiliation(s)
- Kamel Chaieb
- Laboratoire d'Analyses, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie, rue Avicenne 5000 Monastir, Tunisie.
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Mohottalage S, Tabacchi R, Guerin PM. Components from Sri LankanPiper betle L. leaf oil and their analogues showing toxicity against the housefly,Musca domestica. FLAVOUR FRAG J 2007. [DOI: 10.1002/ffj.1770] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Fabian D, Dusan F, Sabol M, Marián S, Domaracká K, Katarína D, Bujnáková D, Dobroslava B. Essential oils--their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. Toxicol In Vitro 2006; 20:1435-45. [PMID: 16919909 DOI: 10.1016/j.tiv.2006.06.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/19/2006] [Accepted: 06/26/2006] [Indexed: 11/26/2022]
Abstract
Essential oils are known to possess antimicrobial activity against a wide spectrum of bacteria. The main objective of this study was to evaluate possible harmful effects of four commonly used essential oils and their major components on intestinal cells. Antimicrobial activity of selected plant extracts against enteroinvasive Escherichia coli was dose dependent. However, doses of essential oils with the ability to completely inhibit bacterial growth (0.05%) showed also relatively high cytotoxicity to intestinal-like cells cultured in vitro. Lower doses of essential oils (0.01%) had only partial antimicrobial activity and their damaging effect on Caco-2 cells was only modest. Cell death assessment based on morphological and viability staining followed by fluorescence microscopy showed that essential oils of cinnamon and clove and their major component eugenol had almost no cytotoxic effect at lower doses. Although essential oil of oregano and its component carvacrol slightly increased the incidence of apoptotic cell death, they showed extensive antimicrobial activity even at lower concentrations. Relatively high cytotoxicity was demonstrated by thyme oil, which increased both apoptotic and necrotic cell death incidence. In contrast, its component thymol showed no cytotoxic effect as well as greatly-reduced ability to inhibit visible growth of the chosen pathogen in the doses used. On the other hand, the addition of all essential oils and their components at lower doses, with the exception of thyme oil, to bacterial suspension significantly reduced the cytotoxic effect of E. coli on Caco-2 cells after 1h culture. In conclusion, it is possible to find appropriate doses of essential oils showing both antimicrobial activity and very low detrimental effect on intestinal cells.
Collapse
Affiliation(s)
- Dusan Fabian
- Institute of Animal Physiology, Slovak Academy of Sciences, Soltésovej 4-6, 04001 Kosice, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Miyazawa M, Kohno G, Okuno Y, Oda Y. Suppression of MeIQ-induced SOS response by allylbenzenes fromAsiasarum heterotropoidesin theSalmonella typhimuriumOY1001/1A2umutest. Nat Prod Res 2006; 20:671-5. [PMID: 16901810 DOI: 10.1080/14786410500462629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Three allylbenzenes from Asiasarum heterotropoides, methyleugenol (1), elemicin (2) and gamma-asaron (3) showed suppressive effects on umu gene expression of the SOS response in the Salmonella typhimurium OY1001/1A2 umu test against the mutagen 2-amino-3,4-dimethylimidazo[4,5-f ]quinoline (MeIQ). Gene expression was suppressed 70.0, 75.9 and 81.7% at a concentration of 0.4 mM, respectively. The ID50 values (50% inhibition dose) of these compounds were 0.125, 0.098 and 0.059 mM, respectively. On the other hand, compounds 1-3 showed weak suppressive effects of the SOS-inducing activity on activated MeIQ.
Collapse
Affiliation(s)
- Mitsuo Miyazawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, Higashiosaka-shi, Osaka 577-8502, Japan.
| | | | | | | |
Collapse
|
46
|
Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C. Comparative repellency of 38 essential oils against mosquito bites. Phytother Res 2005; 19:303-9. [PMID: 16041723 DOI: 10.1002/ptr.1637] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mosquito repellent activity of 38 essential oils from plants at three concentrations was screened against the mosquito Aedes aegypti under laboratory conditions using human subjects. On a volunteer's forearm, 0.1 mL of oil was applied per 30 cm2 of exposed skin. When the tested oils were applied at a 10% or 50% concentration, none of them prevented mosquito bites for as long as 2 h, but the undiluted oils of Cymbopogon nardus (citronella), Pogostemon cablin (patchuli), Syzygium aromaticum (clove) and Zanthoxylum limonella (Thai name: makaen) were the most effective and provided 2 h of complete repellency. From these initial results, three concentrations (10%, 50% and undiluted) of citronella, patchouli, clove and makaen were selected for repellency tests against Culex quinquefasciatus and Anopheles dirus. As expected, the undiluted oil showed the highest protection in each case. Clove oil gave the longest duration of 100% repellency (2-4 h) against all three species of mosquito.
Collapse
Affiliation(s)
- Yuwadee Trongtokit
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | | | | | |
Collapse
|
47
|
Yoo CB, Han KT, Cho KS, Ha J, Park HJ, Nam JH, Kil UH, Lee KT. Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Lett 2005; 225:41-52. [PMID: 15922856 DOI: 10.1016/j.canlet.2004.11.018] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 10/07/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
Eugenol is a major component of essential oil isolated from the Eugenia caryophyllata (Myrtaceae), which has been widely used as a herbal drug. In this study, we investigated the effects of eugenol on the cytotoxicity, induction of apoptosis, and the putative pathways of its actions in human promyelocytic leukemia cells (HL-60) under the standard laboratory illumination. Eugenol-treated HL-60 cells displayed features of apoptosis including DNA fragmentation and formation of DNA ladders in agarose gel electrophoresis. We observed that eugenol transduced the apoptotic signal via ROS generation, thereby inducing mitochondrial permeability transition (MPT), reducing anti-apoptotic protein bcl-2 level, inducing cytochrome c release to the cytosol, and subsequent apoptotic cell death. Taken together, the present study demonstrated that ROS plays a critical role in eugenol-induced apoptosis in HL-60, and this is the first report on the mechanism of the anticancer effect of eugenol.
Collapse
Affiliation(s)
- Chae-Bin Yoo
- Department of Biochemistry, College of Pharmacy, Kyung-Hee University, Hoegi-Dong, Seoul 130-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Miyazawa M, Kohno G. Suppression of chemical mutagen-induced SOS response by allylbenzen from Asiasarum heterotropoides in the Salmonella typhimurium TA1535/PSK1002 umu test. Nat Prod Res 2005; 19:29-36. [PMID: 15700642 DOI: 10.1080/14786410310001643858] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A methanol extract from Asiasarum heterotropoides showed a suppressive effect of the SOS-including activity on the mutagen 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) in the Salmonella typhimurium TA1535/pSK1002 umu test. The methanol extract was re-extracted with chloroform, butanol, and water. The chloroform fraction showed a suppressive effect. Suppressive compounds in the chloroform fraction were isolated by silica gel column chromatography and identified as methyleugenol (1), elemicin (2), and gamma-asaron (3) by GC/MS, IR, and 1H- and 13C-NMR spectroscopy. These compounds suppressed the MeIQ-induced SOS response in the umu test. Gene expression was suppressed 52.2, 61.8, and 71.6% at a concentration of 0.1 mM, respectively. The ID50 values (50% inhibition dose) of these compounds were 0.080, 0.028, and 0.013 mM, respectively. On the other hand, Compounds 1-3 showed weak suppressive effect of the SOS-inducing activity on activated MeIQ. These results indicate that the inhibition of the SOS-inducing activity on MeIQ, which was caused by Compound 1-3 was due to the inhibition of metabolic activity by S9.
Collapse
Affiliation(s)
- Mitsuo Miyazawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, Kowakae, Higashiosaka-shi, Osaka 577-8502, Japan.
| | | |
Collapse
|
49
|
Kil UH, Lee KH, Lee KT, Jin JY. Eugenol Induces a Reactive Oxygen Species-mediated Apoptosis in HL-60 Human Promyelocytic Leukemia Cell. THE KOREAN JOURNAL OF HEMATOLOGY 2005. [DOI: 10.5045/kjh.2005.40.2.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Uk-Hyun Kil
- Department of Internal Medicine, Holy Family Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Kee Hyun Lee
- Department of Internal Medicine, Holy Family Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Kyung-Tae Lee
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jong-Youl Jin
- Department of Internal Medicine, Holy Family Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
50
|
Protti S, Fagnoni M, Albini A. Expeditious synthesis of bioactive allylphenol constituents of the genus Piper through a metal-free photoallylation procedure. Org Biomol Chem 2005; 3:2868-71. [PMID: 16032365 DOI: 10.1039/b506735a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nine bioactive allylphenol (anisole) derivatives (e.g. eugenol, safrole and asaricin) present in several plants of the genus Piper have been synthesized in medium to high yield via aryl cation intermediates. This expeditious metal-free procedure involves the irradiation of the corresponding chlorophenols or chloroanisoles in a polar solvent (MeCN or, better, TFE or aqueous acetonitrile) in the presence of allyltrimethylsilane. Estragole has also been synthesized starting from the corresponding fluoroderivative and diazonium salt, though in a lower yield.
Collapse
Affiliation(s)
- Stefano Protti
- Dipartimento di Chimica Organica, Università, V. Taramelli 10, 27100 Pavia, Italy
| | | | | |
Collapse
|