1
|
Mo H, Li Z, Liu W, Wei J, Zhan M, Chen X, Sun J, Yang H, Du G. Biochemical characterization of the catalytic domain from a novel hyperthermophilic β-glucanase and its application for KOS production. Int J Biol Macromol 2025; 297:139622. [PMID: 39793795 DOI: 10.1016/j.ijbiomac.2025.139622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Konjac oligosaccharide (KOS) exhibits various biological activities, and hyperthermophilic β-glucanases offer many advantages for KOS production from konjac glucanmannan (KGM). In this study, a novel β-glucanase, EG003, belonging to the glycosyl hydrolase (GH) subfamily 5_1, was predicted from the genome of the a Thermus strain. The recombinant EG003 and its catalytic domain, EG003A, were successfully expressed and characterized. EG003A displayed maximum activity at 95 °C and pH 8.0, with a specific activity of 1047.6 U/mg and retained approximately 50 % activity after 6 h at 90 °C. The enzyme exhibited both β-1,4-glucanase and β-1,3-1,4-glucanase activity with KGM and sodium carboxymethylcellulose (CMC), lichenan and oat β-glucan as substrates. Degree of polymerization (DP) 3 was the major oligosaccharide from the hydrolysis of KGM, while DP3 and DP4 were predominant products from the hydrolysis of oat β-glucan. Molecular docking analyses revealed that the catalytic mechanism of EG003A is consistent with those of other reported GH5_1 β-glucanases. Additionally, the viscosity of 500 mL solution of 1 % KGM decreased rapidly from 31,193 mPa.s to 4.50 mPa.s in 3 min with 30 U EG003A. This study provides an efficient hyperthermophilic β-glucanase with promising application for KOS production.
Collapse
Affiliation(s)
- Haiying Mo
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Zhihao Li
- Chongqing Polytechnic Institute, School of Health, Chongqing, China
| | - Wang Liu
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Jirui Wei
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Mengtao Zhan
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Xin Chen
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Jingxian Sun
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Haiying Yang
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China.
| | - Gang Du
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Sun Y, Liang J, Zhang Z, Sun D, Li H, Chen L. Extraction, physicochemical properties, bioactivities and application of natural sweeteners: A review. Food Chem 2024; 457:140103. [PMID: 38905824 DOI: 10.1016/j.foodchem.2024.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Yanyu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
3
|
Yuan M, Zhang Z, Liu T, Feng H, Liu Y, Chen K. The Role of Nondigestible Oligosaccharides in Alleviating Human Chronic Diseases by Regulating the Gut Microbiota: A Review. Foods 2024; 13:2157. [PMID: 38998662 PMCID: PMC11241040 DOI: 10.3390/foods13132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
The gut has been a focus of chronic disease research. The gut microbiota produces metabolites that act as signaling molecules and substrates, closely influencing host health. Nondigestible oligosaccharides (NDOs), as a common dietary fiber, play an important role in regulating the structure and function of the gut microbiota. Their mechanism of action is mainly attributed to providing a carbon source as specific probiotics, producing related metabolites, and regulating the gut microbial community. However, due to the selective utilization of oligosaccharides, some factors, such as the type and structure of oligosaccharides, have different impacts on the composition of microbial populations and the production of metabolites in the colon ecosystem. This review systematically describes the key factors influencing the selective utilization of oligosaccharides by microorganisms and elaborates how oligosaccharides affect the host's immune system, inflammation levels, and energy metabolism by regulating microbial diversity and metabolic function, which in turn affects the onset and progress of chronic diseases, especially diabetes, obesity, depression, intestinal inflammatory diseases, and constipation. In this review, we re-examine the interaction mechanisms between the gut microbiota and its associated metabolites and diseases, and we explore new strategies for promoting human health and combating chronic diseases through dietary interventions.
Collapse
Affiliation(s)
- Meiyu Yuan
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Tongying Liu
- Jiangxi Maternel and Child Health Hospital, Nanchang 330108, China;
| | - Hua Feng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
4
|
Rao Z, Li Y, Yang X, Guo Y, Zhang W, Wang Z. Diet xylo-oligosaccharide supplementation improves growth performance, immune function, and intestinal health of broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:165-176. [PMID: 38779325 PMCID: PMC11109738 DOI: 10.1016/j.aninu.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 05/25/2024]
Abstract
The effects of xylo-oligosaccharides (XOS) on broiler growth performance, immune function, and intestinal health were investigated. A total of 540 one-d-old Arbor Acres Plus broilers were randomly divided into 5 groups with 6 replicates per group and 18 chickens per replicate. Broilers in the control (CON) group received a corn-soybean meal based basal diet, those in the antibiotics (ANT) group received the basal diet plus 500 mg/kg oxytetracycline, and those in XOS groups received the basal diet plus 150, 300, or 450 mg/kg XOS. Compared with CON, the body weight at 42 d and average daily gain from 1 to 42 d were significantly increased in the 150, 450 mg/kg XOS-added and ANT groups (P = 0.018), and the relative expression of claudin-1 and ZO-1 mRNA in the ileum was significantly higher in the 300 and 450 mg/kg XOS-added groups (P < 0.001). The feed conversion ratios (P < 0.001) and abdominal fat rates (P = 0.012) of broilers from 1 to 42 d of age were significantly lower in all XOS-added groups than in the control group. Splenic index (P = 0.036) and bursa of Fabricius index (P = 0.009) were significantly better in the ANT group and each XOS-added group than in the control group. Compared to CON and ANT, serum IgA (P = 0.007) and IgG (P = 0.002) levels were significantly higher in the 300 mg/kg XOS-added group, and the relative abundance of short-chain fatty acid-producing genera (Alistipes) was also significantly higher (P < 0.001). Meanwhile, ileal villus height (P < 0.001) and ratio of villus height to crypt depth (V:C) (P = 0.001) were significantly increased in XOS-added broilers. In analysis of relationships between cecal microbes and the physical barrier of the gut, [Ruminococcus]_torques_group was positively correlated with mRNA expression of ileal ZO-1 and claudin-1 (P < 0.05), and Bacteroides was positively correlated with increased ileal villus height and V:C (P < 0.05). Overall, XOS addition to broiler diets improved growth performance, promoted intestinal health by enhancing intestinal barrier function and regulating cecal microbiota diversity, and had positive effects on immunity.
Collapse
Affiliation(s)
- Zhiyong Rao
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Li
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaopeng Yang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongpeng Guo
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Zhang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhixiang Wang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Cui H, Li X, Que J, Li S, Shi X, Yuan T. A water-soluble arabinoxylan from Chinese liquor distillers' grains: Structural characterization and anti-colitic properties. Int J Biol Macromol 2024; 266:131186. [PMID: 38554909 DOI: 10.1016/j.ijbiomac.2024.131186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Chinese liquor distillers' grain (CLDG) is a valuable and abundant by-product from traditional Chinese baijiu production, containing a diverse array of bioactive components that have attracted significant interest. Herein, a water-soluble polysaccharide, DGPS-2B, with a weight-average molecular weight of 37.3 kDa, was isolated from the alkali-extract fraction of CLDG. Methylation and NMR analysis identified that the primary constituents of DGPS-2B are arabinoxylans, with an arabinose-to-xylose ratio of 0.66. In an animal model of colitis, DGPS-2B treatment significantly altered the gut microbiota composition by increasing the SCFA-producing bacteria (e.g., Butyricicoccus) and reducing the mucin-degrading bacteria such as Muribaculaceae. This microbial shift resulted in elevated production of butyrate, acetate, and propionate, which subsequently suppressed NF-κB signaling, decreased the levels of IL-1β, IL-6, and TNFα, and potentially inactivated Notch signaling. These multifaceted effects stimulated mucin 2 production, reduced inflammation and apoptosis in the gut epithelium, and ultimately alleviated colitis symptoms. Collectively, this study not only elucidates the purification and characterization of DGPS-2B from CLDG but also illuminates its anti-colitic properties and the underlying molecular mechanisms. These findings underscore the potential of DGPS-2B as a therapeutic intervention for managing inflammatory bowel disease and emphasize CLDG as a promising source for developing value-added products.
Collapse
Affiliation(s)
- Hao Cui
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xia Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiayi Que
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Shuyue Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaodan Shi
- School of Health, Jiangxi Normal University, Nanchang 330022, China.
| | - Tao Yuan
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China; School of Health, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
6
|
Leschonski KP, Mortensen MS, Hansen LB, Krogh KB, Kabel MA, Laursen MF. Structure-dependent stimulation of gut bacteria by arabinoxylo-oligosaccharides (AXOS): a review. Gut Microbes 2024; 16:2430419. [PMID: 39611305 PMCID: PMC11610566 DOI: 10.1080/19490976.2024.2430419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/05/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Arabinoxylo-oligosaccharides (AXOS) are non-digestible dietary fibers that potentially confer a health benefit by stimulating beneficial bacteria in the gut. Still, a detailed overview of the diversity of gut bacteria and their specificity to utilize structurally different AXOS has not been provided to date and was aimed for in this study. Moreover, we assessed the genetic information of summarized bacteria, and we extracted genes expected to encode for enzymes that are involved in AXOS hydrolysis (based on the CAZy database). The taxa involved in AXOS fermentation in the gut display a large variety of AXOS-active enzymes in their genome and consequently utilize AXOS to a highly different extent. Clostridia and Bacteroidales are generalists that consume many structurally diverse AXOS, whereas Bifidobacterium are specialists that specifically consume AXOS with a low degree of polymerization. Further complexity is evident from the fact that the exact bacterial species, and in some cases even the bacterial strains (e.g. in Bifidobacterium longum) that are stimulated, highly depend on the specific AXOS molecular structure. Furthermore, certain species in Bifidobacterium and Lactobacillaceae are active as cross-feeders and consume monosaccharides and unbranched short xylo-oligosaccharides released from AXOS. Our review highlights the possibility that (enzymatic) fine-tuning of specific AXOS structures leads to improved precision in targeting growth of specific beneficial bacterial species and strains in the gut.
Collapse
Affiliation(s)
- Kai P. Leschonski
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- Novonesis A/S, Kongens Lyngby, Denmark
| | - Martin S. Mortensen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Martin F. Laursen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Yang X, Zeng D, Li C, Yu W, Xie G, Zhang Y, Lu W. Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Deng J, Yun J, Gu Y, Yan B, Yin B, Huang C. Evaluating the In Vitro and In Vivo Prebiotic Effects of Different Xylo-Oligosaccharides Obtained from Bamboo Shoots by Hydrothermal Pretreatment Combined with Endo-Xylanase Hydrolysis. Int J Mol Sci 2023; 24:13422. [PMID: 37686227 PMCID: PMC10488140 DOI: 10.3390/ijms241713422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Xylo-oligosaccharides (XOS) enriched with high fractions of X2-X3 are regarded as an effective prebiotic for regulating the intestinal microflora. In this study, the original XOS solution was obtained from bamboo shoots through hydrothermal pretreatment under optimized conditions. Subsequently, enzymatic hydrolysis with endo-xylanase was performed on the original XOS solution to enhance the abundance of the X2-X3 fractions. The results demonstrated that hydrothermal pretreatment yielded 21.24% of XOS in the hydrolysate solution, and subsequent enzymatic hydrolysis significantly increased the proportion of the X2-X3 fractions from 38.87% to 68.21%. Moreover, the XOS solutions with higher amounts of X2-X3 fractions exhibited superior performance in promoting the growth of probiotics such as Bifidobacterium adolescentis and Lactobacillus acidophilus in vitro, leading to increased production of short-chain fatty acids. In the in vivo colitis mouse model, XOS solutions with higher contents of X2-X3 fractions demonstrated enhanced efficacy against intestinal inflammation. Compared with the colitis mice (model group), the XOS solution with higher X2-X3 fractions (S1 group) could significantly increase the number of Streptomyces in the intestinal microflora, while the original XOS solution (S2 group) could significantly increase the number of Bacteroides in the intestinal microflora of colitis mice. In addition, the abundances of Alcaligenes and Pasteurella in the intestinal microflora of the S1 and S2 groups were much lower than in the model group. This effect was attributed to the ability of these XOS solutions to enhance species diversity, reversing the imbalance and disorder within the intestinal microflora. Overall, this work highlights the outstanding potential of XOS enriched with high contents of X2-X3 fractions as a regulator of the intestinal microbiota and as an anti-colitis agent.
Collapse
Affiliation(s)
- Junping Deng
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China;
| | - Yang Gu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China;
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| |
Collapse
|
9
|
Østby H, Várnai A. Hemicellulolytic enzymes in lignocellulose processing. Essays Biochem 2023; 67:533-550. [PMID: 37068264 PMCID: PMC10160854 DOI: 10.1042/ebc20220154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 04/19/2023]
Abstract
Lignocellulosic biomass is the most abundant source of carbon-based material on a global basis, serving as a raw material for cellulosic fibers, hemicellulosic polymers, platform sugars, and lignin resins or monomers. In nature, the various components of lignocellulose (primarily cellulose, hemicellulose, and lignin) are decomposed by saprophytic fungi and bacteria utilizing specialized enzymes. Enzymes are specific catalysts and can, in many cases, be produced on-site at lignocellulose biorefineries. In addition to reducing the use of often less environmentally friendly chemical processes, the application of such enzymes in lignocellulose processing to obtain a range of specialty products can maximize the use of the feedstock and valorize many of the traditionally underutilized components of lignocellulose, while increasing the economic viability of the biorefinery. While cellulose has a rich history of use in the pulp and paper industries, the hemicellulosic fraction of lignocellulose remains relatively underutilized in modern biorefineries, among other reasons due to the heterogeneous chemical structure of hemicellulose polysaccharides, the composition of which varies significantly according to the feedstock and the choice of pretreatment method and extraction solvent. This paper reviews the potential of hemicellulose in lignocellulose processing with focus on what can be achieved using enzymatic means. In particular, we discuss the various enzyme activities required for complete depolymerization of the primary hemicellulose types found in plant cell walls and for the upgrading of hemicellulosic polymers, oligosaccharides, and pentose sugars derived from hemicellulose depolymerization into a broad spectrum of value-added products.
Collapse
Affiliation(s)
- Heidi Østby
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| | - Anikó Várnai
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| |
Collapse
|
10
|
Yang S, Wu C, Yan Q, Li X, Jiang Z. Nondigestible Functional Oligosaccharides: Enzymatic Production and Food Applications for Intestinal Health. Annu Rev Food Sci Technol 2023; 14:297-322. [PMID: 36972156 DOI: 10.1146/annurev-food-052720-114503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nondigestible functional oligosaccharides are of particular interest in recent years because of their unique prebiotic activities, technological characteristics, and physiological effects. Among different types of strategies for the production of nondigestible functional oligosaccharides, enzymatic methods are preferred owing to the predictability and controllability of the structure and composition of the reaction products. Nondigestible functional oligosaccharides have been proved to show excellent prebiotic effects as well as other benefits to intestinal health. They have exhibited great application potential as functional food ingredients for various food products with improved quality and physicochemical characteristics. This article reviews the research progress on the enzymatic production of several typical nondigestible functional oligosaccharides in the food industry, including galacto-oligosaccharides, xylo-oligosaccharides, manno-oligosaccharides, chito-oligosaccharides, and human milk oligosaccharides. Moreover, their physicochemical properties and prebiotic activities are discussed as well as their contributions to intestinal health and applications in foods.
Collapse
Affiliation(s)
- Shaoqing Yang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Chenxuan Wu
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| |
Collapse
|
11
|
Gao L, Zhang L, Liu H, Hu J. In vitro gastrointestinal digestion of whole grain noodles supplemented with soluble dietary fiber and their effects on children fecal microbiota. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Álvarez C, González A, Ballesteros I, Gullón B, Negro MJ. In Vitro Assessment of the Prebiotic Potential of Xylooligosaccharides from Barley Straw. Foods 2022; 12:foods12010083. [PMID: 36613299 PMCID: PMC9818743 DOI: 10.3390/foods12010083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Barley straw was subjected to hydrothermal pretreatment (steam explosion) processing to evaluate its potential as a raw material to produce xylooligosaccharides (XOS) suitable for use as a prebiotic. The steam explosion pretreatment generated a liquid fraction containing solubilised hemicellulose. This fraction was purified using gel permeation chromatography to obtain a fraction rich in XOS DP2-DP6. The sample was characterised through analytical techniques such as HPAEC-PAD, FTIR and MALDI-TOF-MS. The prebiotic activity was evaluated using in vitro fermentation in human faecal cultures through the quantification of short-chain fatty acid (SCFA) and lactate production, the evolution of the pH and the consumption of carbon sources. The total SCFA production at the end of fermentation (30 h) was 90.1 mM. Positive significant differences between the amount of XOS from barley straw and fructooligosaccharides after incubation were observed.
Collapse
Affiliation(s)
- Cristina Álvarez
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-346-60-57
| | - Alberto González
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
| | - Ignacio Ballesteros
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - María José Negro
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
| |
Collapse
|
13
|
Yan B, Huang C, Lai C, Ling Z, Yong Q. Production of prebiotic xylooligosaccharides from industrial-derived xylan residue by organic acid treatment. Carbohydr Polym 2022; 292:119641. [DOI: 10.1016/j.carbpol.2022.119641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022]
|
14
|
Sun Z, Yue Z, Liu E, Li X, Li C. Assessment of the bifidogenic and antibacterial activities of xylooligosaccharide. Front Nutr 2022; 9:858949. [PMID: 36091239 PMCID: PMC9453197 DOI: 10.3389/fnut.2022.858949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Xylooligosaccharide (XOS) is an attractive prebiotic mainly due to its bifidogenic effect. However, commercial XOS with different compositions is often applied in the food industry at different doses without specifications. In this study, we evaluated the bifidogenic activity of XOS at different doses with either mixtures or pure fractions with different degrees of polymerization (DP), using three strains of Bifidobacterium spp., including B. breve ATCC 15700, B. bifidum ATCC 29521, and B. animalis subsp. lactis HN019. Three growth indicators showed strain-specific bifidogenic activity of XOS, and the activity was both dose- and fraction-dependent as only certain fractions stimulated significant growth. Adding 0.25% XOS (w/v) also promoted increase in total bifidobacterial population of rat fecal samples fermented in vitro. Albeit the antibacterial activity of XOS fractions can be demonstrated, significant growth inhibition can only be achieved when 4.0% XOS mixture was added in Staphylococcus aureus ATCC 6538 pure culture. In contrast, in the presence of B. lactis HN019, 1.0% XOS showed significant antibacterial activity against S. aureus ATCC 6538 in milk. In addition, RNA sequencing suggested downregulation of genes involved in S. aureus ATCC 6538 infection, pathogenesis, and quorum sensing, by XOS. In conclusion, the report urges scientific specifications on XOS chemistry for its effective application as a novel food ingredient or functional food and provides novel insights into its bifidogenic and antibacterial activities.
Collapse
Affiliation(s)
- Zhongke Sun
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, China
- *Correspondence: Zhongke Sun,
| | - Zonghao Yue
- Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, China
| | - Erting Liu
- Henan Heagreen Bio-technology Co., Ltd., Zhoukou, China
| | - Xianfeng Li
- Henan Heagreen Bio-technology Co., Ltd., Zhoukou, China
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Chengwei Li,
| |
Collapse
|
15
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
16
|
Zhang B, Zhong Y, Dong D, Zheng Z, Hu J. Gut microbial utilization of xylan and its implication in gut homeostasis and metabolic response. Carbohydr Polym 2022; 286:119271. [DOI: 10.1016/j.carbpol.2022.119271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022]
|
17
|
Kouzounis D, Kers JG, Soares N, Smidt H, Kabel MA, Schols HA. Cereal type and combined xylanase/glucanase supplementation influence the cecal microbiota composition in broilers. J Anim Sci Biotechnol 2022; 13:51. [PMID: 35505382 PMCID: PMC9066912 DOI: 10.1186/s40104-022-00702-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/03/2022] [Indexed: 12/25/2022] Open
Abstract
Dietary fiber-degrading enzyme supplementation in broilers aims at off-setting the anti-nutritive effect of non-starch polysaccharides and at promoting broiler health. Recently, we demonstrated that xylanase/glucanase addition in wheat-based diet improved nutrient digestibility, arabinoxylan fermentability and broiler growth. Conversely, maize arabinoxylan was found to be recalcitrant to xylanase action. These findings suggested that enzyme-mediated improvement of nutrient digestion and carbohydrate fermentation depended on the cereal type present in the diet, and may have contributed to broiler growth. Hence, we aimed at further investigating the link between dietary enzymes and carbohydrate fermentation in broilers, by studying the impact of enzyme supplementation in cereal-based diets, to the microbial communities in the ileum and ceca of broilers. For that purpose, 96 one-day-old male broilers were randomly reared in two pens and received either wheat-based or maize-based starter and grower diets. At d 20, the broilers were randomly assigned to one out of four dietary treatments. The broilers received for 8 d the wheat-based or maize-based finisher diet as such (Control treatments; WC, MC) or supplemented with a xylanase/glucanase combination (Enzyme treatments; WE, ME). At d 28, samples from the digestive tract were collected, and the ileal and cecal microbiota composition was determined by 16S ribosomal RNA gene amplicon sequencing. A similar phylogenetic (alpha) diversity was observed among the four treatments, both in the ileal and the cecal samples. Furthermore, a similar microbial composition in the ileum (beta diversity) was observed, with lactobacilli being the predominant community for all treatments. In contrast, both cereal type and enzyme supplementation were found to influence cecal communities. The type of cereal (i.e., wheat or maize) explained 47% of the total variation in microbial composition in the ceca. Further stratifying the analysis per cereal type revealed differences in microbiota composition between WC and WE, but not between MC and ME. Furthermore, the prevalence of beneficial genera, such as Faecalibacterium and Blautia, in the ceca of broilers fed wheat-based diets coincided with arabinoxylan accumulation. These findings indicated that fermentable arabinoxylan and arabinoxylo-oligosaccharides released by dietary xylanase may play an important role in bacterial metabolism.
Collapse
Affiliation(s)
- Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, 6708 WG, Wageningen, The Netherlands
| | - Jannigje G Kers
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, 6708 WG, Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
18
|
Kynkäänniemi E, Lahtinen MH, Jian C, Salonen A, Hatanpää T, Mikkonen KS, Pajari AM. Gut microbiota can utilize prebiotic birch glucuronoxylan in production of short-chain fatty acids in rats. Food Funct 2022; 13:3746-3759. [DOI: 10.1039/d1fo03922a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Birch-derived polyphenol and fiber (glucuronoxylan, GX)-rich extract and highly purified GX-rich extract support the growth of beneficial gut bacteria, suppress the harmful ones, and increase the production of total short-chain fatty acids (SCFA).
Collapse
Affiliation(s)
- Emma Kynkäänniemi
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Maarit H. Lahtinen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Timo Hatanpää
- Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland
| | - Kirsi S. Mikkonen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, 00014, Finland
| | - Anne-Maria Pajari
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
19
|
Ríos-Ríos KL, Dejonghe W, Vanbroekhoven K, Rakotoarivonina H, Rémond C. Enzymatic Production of Xylo-oligosaccharides from Destarched Wheat Bran and the Impact of Their Degree of Polymerization and Substituents on Their Utilization as a Carbon Source by Probiotic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13217-13226. [PMID: 34706532 DOI: 10.1021/acs.jafc.1c02888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The enzymatic production of xylo-oligosaccharides (XOs) from destarched wheat bran with a GH11 xylanase was studied. Xylo-oligosaccharides (XOs) produced were separated into different fractions according to their degree of polymerization (DP) and the nature of their substituents: arabinoxylo-oligosaccharides (AXOs) with a DP from 2 to 3 and DP from 2 to 6 and feruloylated arabinoxylo-oligosaccharides (FAXOs) esterified by ferulic and p-coumaric acids with a DP from 3 to 6. Both AXOs (short and long DP) and FAXOs stimulated the growth of Bifidobacterium adolescentis, Faecalibacterium prausnitzii, and Prevotella copri similarly but not Lactobacillus rhamnosus. The utilization of AXOs and FAXOs as a carbon source resulted in the increase in turbidity, decrease in pH, and production of short-chain fatty acids (SCFAs) in the culture broth. The highest amount of SCFAs was produced by F. prausnitzii using FAXOs. Results suggest that FAXOs and AXOs have the potential to be considered as prebiotics.
Collapse
Affiliation(s)
- Karina L Ríos-Ríos
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097 Reims, France
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Winnie Dejonghe
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Karolien Vanbroekhoven
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Harivony Rakotoarivonina
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097 Reims, France
| | - Caroline Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097 Reims, France
| |
Collapse
|
20
|
Wu Y, Lei Z, Wang Y, Yin D, Aggrey SE, Guo Y, Yuan J. Metabolome and Microbiota Analysis Reveals the Conducive Effect of Pediococcus acidilactici BCC-1 and Xylan Oligosaccharides on Broiler Chickens. Front Microbiol 2021; 12:683905. [PMID: 34122394 PMCID: PMC8192963 DOI: 10.3389/fmicb.2021.683905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 01/18/2023] Open
Abstract
Xylan oligosaccharides (XOS) can promote proliferation of Pediococcus acidilactic BCC-1, which benefits gut health and growth performance of broilers. The study aimed to investigate the effect of Pediococcus acidilactic BCC-1 (referred to BBC) and XOS on the gut metabolome and microbiota of broilers. The feed conversion ratio of BBC group, XOS group and combined XOS and BBC groups was lower than the control group (P < 0.05). Combined XOS and BBC supplementation (MIX group) elevated butyrate content of the cecum (P < 0.05) and improved ileum morphology by enhancing the ratio of the villus to crypt depth (P < 0.05). The 16S rDNA results indicated that both XOS and BBC induced high abundance of butyric acid bacteria. XOS treatment elevated Clostridium XIVa and the BBC group enriched Anaerotruncus and Faecalibacterium. In contrast, MIX group induced higher relative abundance of Clostridiaceae XIVa, Clostridiaceae XIVb and Lachnospiraceae. Besides, MIX group showed lower abundance of pathogenic bacteria such as Campylobacter. Metabolome analysis showed that all the 3 treatment groups (XOS, BBC and MIX) showed lower concentrations of sorbitol and both XOS and BBC group had higher concentrations of pyridoxine levels than CT group. Besides, XOS and BBC groups enhanced the content of hydroxyphenyl derivatives 4-hydroxyphenylpyruvate 1 and 3-(3-hydroxyphenyl) propionic acid, respectively (P < 0.05). Notably, MIX group enhanced both 4-hydroxyphenylpyruvate 1 and 3-(3-hydroxyphenyl) propionic acid (P < 0.05). Thus, XOS and BBC may have a synergistic role to improve the performance of broilers by modulating gut microbiota and metabolome.
Collapse
Affiliation(s)
- Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhao Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Youli Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dafei Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Fuso A, Risso D, Rosso G, Rosso F, Manini F, Manera I, Caligiani A. Potential Valorization of Hazelnut Shells through Extraction, Purification and Structural Characterization of Prebiotic Compounds: A Critical Review. Foods 2021; 10:1197. [PMID: 34073196 PMCID: PMC8229101 DOI: 10.3390/foods10061197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 11/24/2022] Open
Abstract
Hazelnuts are one of the most widely consumed nuts, but their production creates large quantities of by-products, especially shells, that could be upcycled into much more valuable products. Recent studies have shown that hazelnut shell hemicellulose is particularly rich in compounds that are potential precursors of xylooligosaccharides and arabino-xylooligosaccharides ((A)XOS), previously defined as emerging prebiotics very beneficial for human health. The production of these compounds on an industrial scale-up could have big consequences on the functional foods market. However, to produce (A)XOS from a lignocellulosic biomass, such as hazelnut shell, is not easy. Many methods for the extraction and the purification of these prebiotics have been developed, but they all have different efficiencies and consequences, including on the chemical structure of the obtained (A)XOS. The latter, in turn, is strongly correlated to the nutritional effects they have on health, which is why the optimization of the structural characterization process is also necessary. Therefore, this review aims to summarize the progress made by research in this field, so as to contribute to the exploitation of hazelnut waste streams through a circular economy approach, increasing the value of this biomass through the production of new functional ingredients.
Collapse
Affiliation(s)
- Andrea Fuso
- Food and Drug Department, University of Parma, Via Parco Area delle Scienze 17/A, 43124 Parma, Italy;
| | - Davide Risso
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Ginevra Rosso
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Franco Rosso
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Federica Manini
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Ileana Manera
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Augusta Caligiani
- Food and Drug Department, University of Parma, Via Parco Area delle Scienze 17/A, 43124 Parma, Italy;
| |
Collapse
|
22
|
Purohit A, Singh G, Yadav SK. Chimeric bi-functional enzyme possessing xylanase and deacetylase activity for hydrolysis of agro-biomass rich in acetylated xylan. Colloids Surf B Biointerfaces 2021; 204:111832. [PMID: 33984614 DOI: 10.1016/j.colsurfb.2021.111832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Here, a chimeric bifunctional enzyme was developed for two activities xylanase and deacetylase. Chimeric enzyme was designed by combining the relevant amino acid stretches from two different parent sequences, such as polysaccharide/xylan deacetylase (ref id: MT682066) and xylanase (ref id WP_110897546.1). Five different hypothetical chimeras were developed and one of the best predicted chimeric protein GA_2(syn_SKYAP01) was synthesized. The GA_2(syn_SKYAP01) possessed the specific activity of 14.905 ± 0.8 U/mg for deacetylase and 100.87 ± 14.2 U/mg for xylanase. Optimum level of both the activities together was achieved at pH 5 and 60 °C. The chimeric protein was also found to be stable at higher temperature of 71°C. Functionality of the developed chimeric protein for both the activities was confirmed by the hydrolysis of commercial xylan into xylooligosaccharides and the release of acetic acid from glucose pentacetate and 7-amino cephalosporin. The designed bifunctional enzyme was found to be highly efficient.
Collapse
Affiliation(s)
- Anjali Purohit
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140306, PB, India
| | - Gurjant Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140306, PB, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140306, PB, India.
| |
Collapse
|
23
|
Rashid R, Sohail M. Xylanolytic Bacillus species for xylooligosaccharides production: a critical review. BIORESOUR BIOPROCESS 2021; 8:16. [PMID: 38650226 PMCID: PMC10991489 DOI: 10.1186/s40643-021-00369-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
The capacity of different Bacillus species to produce large amounts of extracellular enzymes and ability to ferment various substrates at a wide range of pH and temperature has placed them among the most promising hosts for the industrial production of many improved and novel products. The global interest in prebiotics, for example, xylooligosaccharides (XOs) is ever increasing, rousing the quest for various forms with expanded productivity. This article provides an overview of xylanase producing bacilli, with more emphasis on their capacity to be used in the production of the XOs, followed by the purification strategies, characteristics and application of XOs from bacilli. The large-scale production of XOs is carried out from a number of xylan-rich lignocellulosic materials by chemical or enzymatic hydrolysis followed by purification through chromatography, vacuum evaporation, solvent extraction or membrane separation methods. Utilization of XOs in the production of functional products as food ingredients brings well-being to individuals by improving defense system and eliminating pathogens. In addition to the effects related to health, a variety of other biological impacts have also been discussed.
Collapse
Affiliation(s)
- Rozina Rashid
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
24
|
Enhanced konjac glucomannan hydrolysis by lytic polysaccharide monooxygenases and generating prebiotic oligosaccharides. Carbohydr Polym 2021; 253:117241. [DOI: 10.1016/j.carbpol.2020.117241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
|
25
|
Zidan D, Sabran MR, Ramli NS, Shafie SR, Fikry M. Prebiotic properties of xylooligosaccharide extracted from sugarcane wastes (pith and rind): a comparative study. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dina Zidan
- Department of Nutrition Faculty of Medicine and Health Sciences Universiti Putra Malaysia Serdang Selangor43400 UPMMalaysia
| | - Mohd Redzwan Sabran
- Department of Nutrition Faculty of Medicine and Health Sciences Universiti Putra Malaysia Serdang Selangor43400 UPMMalaysia
| | - Nurul Shazini Ramli
- Department of Food Science Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor43400 UPMMalaysia
| | - Siti Raihanah Shafie
- Department of Nutrition Faculty of Medicine and Health Sciences Universiti Putra Malaysia Serdang Selangor43400 UPMMalaysia
| | - Mohammad Fikry
- Department of Agricultural and Biosystems Engineering Faculty of Agriculture Benha University Toukh Qalyoubia Governorate13736Egypt
| |
Collapse
|
26
|
Santibáñez L, Henríquez C, Corro-Tejeda R, Bernal S, Armijo B, Salazar O. Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydr Polym 2021; 251:117118. [DOI: 10.1016/j.carbpol.2020.117118] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 09/04/2020] [Indexed: 02/04/2023]
|
27
|
High-Throughput Generation of Product Profiles for Arabinoxylan-Active Enzymes from Metagenomes. Appl Environ Microbiol 2020; 86:AEM.01505-20. [PMID: 32948521 DOI: 10.1128/aem.01505-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022] Open
Abstract
Metagenomics is an exciting alternative to seek carbohydrate-active enzymes from a range of sources. Typically, metagenomics reveals dozens of putative catalysts that require functional characterization for further application in industrial processes. High-throughput screening methods compatible with adequate natural substrates are crucial for an accurate functional elucidation of substrate preferences. Based on DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) analysis of enzymatic-reaction products, we generated product profiles to consequently infer substrate cleavage positions, resulting in the generation of enzymatic-degradation maps. Product profiles were produced in high throughput for arabinoxylan (AX)-active enzymes belonging to the glycoside hydrolase families GH43 (subfamilies 2 [MG432], 7 [MG437], and 28 [MG4328]) and GH8 (MG8) starting from 12 (arabino)xylo-oligosaccharides. These enzymes were discovered through functional metagenomic studies of feces from the North American beaver (Castor canadensis). This work shows how enzyme loading alters the product profiles of all enzymes studied and gives insight into AX degradation patterns, revealing sequential substrate preferences of AX-active enzymes.IMPORTANCE Arabinoxylan is mainly found in the hemicellulosic fractions of rice straw, corn cobs, and rice husk. Converting arabinoxylan into (arabino)xylo-oligosaccharides as added-value products that can be applied in food, feed, and cosmetics presents a sustainable and economic alternative for the biorefinery industries. Efficient and profitable AX degradation requires a set of enzymes with particular characteristics. Therefore, enzyme discovery and the study of substrate preferences are of utmost importance. Beavers, as consumers of woody biomass, are a promising source of a repertoire of enzymes able to deconstruct hemicelluloses into soluble oligosaccharides. High-throughput analysis of the oligosaccharide profiles produced by these enzymes will assist in the selection of the most appropriate enzymes for the biorefinery.
Collapse
|
28
|
Dale T, Hannay I, Bedford MR, Tucker GA, Brameld JM, Parr T. The effects of exogenous xylanase supplementation on the in vivo generation of xylooligosaccharides and monosaccharides in broilers fed a wheat-based diet. Br Poult Sci 2020; 61:471-481. [PMID: 32683884 DOI: 10.1080/00071668.2020.1751805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. This study quantified xylanase-induced changes in soluble monosaccharides, xylooligosaccharides (XOS) and volatile fatty acid (VFA) contents of the different sections of the gastrointestinal tract (GIT) and whether these were related to altered bird performance. 2. An in vitro digestion of the wheat-based diet was carried out with the xylanase (Econase XT at 16,000BXU/kg diet) to compare the in vitro and in vivo generation of these XOS and monosaccharides. For the in vivo study, 80 male Ross 508 b roiler chicks were split into two groups fed a wheat-based diet with or without Econase XT (16,000BXU/kg diet) for 21 days. 3. There were no effects of Econase XT inclusion on growth performance characteristics, likely a result of the high-quality wheat diet, the corresponding high performance of the control group (FCR average of 1.45 in controls) and the relatively young age of the birds (from four to 26 days of age). 4. Econase XT supplementation increased the xylotetraose (X4) content in the colon (P = 0.046, enzyme x GIT section interaction) and the xylose contents in the colon and caeca (P < 0.001, enzyme x GIT section interaction). 5. The trend for increased acetate production in the caeca of Econase XT treated birds (P = 0.062) suggested that the XOS generated were subsequently fermented in the caeca, potentially impacting upon the types of microbiota present. 6. The present study suggested that wheat arabinoxylan degradation was enhanced by xylanase supplementation, which may have increased the production of beneficial volatile fatty acids (VFA) in the caeca, and thereby potentially modulated the caecal microbiome, but without affecting bird performance at this early age.
Collapse
Affiliation(s)
- T Dale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| | - I Hannay
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| | | | - G A Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| | - J M Brameld
- School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| | - T Parr
- School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| |
Collapse
|
29
|
Wu Y, Chen Y, Lu Y, Hao H, Liu J, Huang R. Structural features, interaction with the gut microbiota and anti-tumor activity of oligosaccharides. RSC Adv 2020; 10:16339-16348. [PMID: 35498870 PMCID: PMC9053055 DOI: 10.1039/d0ra00344a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Some oligosaccharides are regarded as biological constituents with benefits to human health in an indirect way. They enter the intestinal tract to be fermented by the gut microbiota, causing changes in the abundance and composition of the gut microbiota and producing fermentation products such as short-chain fatty acids (SCFAs). In this review, the structural features and biological activities of eight common natural oligosaccharides were summarized, including human milk oligosaccharides (HMOS), xylo-oligosaccharides (XOS), arabinoxylo-oligosaccharides (AXOS), isomaltooligosaccharides (IMOS), chitin oligosaccharides (NACOS), mannan-oligosaccharides (MOS), galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS). Furthermore, XOS were selected to explain the anti-tumor mechanism mediated by gut microbiota. The review aims to reveal primary structural features of natural functional oligosaccharides related to the biological activities and also provide an explanation of the anti-tumor activity of functional oligosaccharides mediated by the gut microbiota.
Collapse
Affiliation(s)
- Yulin Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448 +86 7592388240
| | - Yinning Chen
- Guangdong Polytechnic College 526100 Zhaoqing China
| | - Yingfang Lu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448 +86 7592388240
| | - Huili Hao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448 +86 7592388240
| | - Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University Zhanjiang 524023 China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448 +86 7592388240
| |
Collapse
|
30
|
Dysvik A, La Rosa SL, Buffetto F, Liland KH, Myhrer KS, Rukke EO, Wicklund T, Westereng B. Secondary Lactic Acid Bacteria Fermentation with Wood-Derived Xylooligosaccharides as a Tool To Expedite Sour Beer Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:301-314. [PMID: 31820631 DOI: 10.1021/acs.jafc.9b05459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Xylooligosaccharides (XOS) from woody biomass were evaluated as a substrate for secondary lactic acid bacteria (LAB) fermentation in sour beer production. XOS were extracted from birch (Betula pubescens) and added to beer to promote the growth of Lactobacillus brevis BSO 464. Growth, pH, XOS degradation, and metabolic products were monitored throughout fermentations, and the final beer was evaluated sensorically. XOS were utilized, metabolic compounds were produced (1800 mg/L lactic acid), and pH was reduced from 4.1 to 3.6. Secondary fermentation changed sensory properties significantly, and the resulting sour beer was assessed as similar to a commercial reference in multiple attributes, including acidic taste. Overall, secondary LAB fermentation induced by wood-derived XOS provided a new approach to successfully produce sour beer with reduced fermentation time (from 1-3 years to 4 weeks). The presented results demonstrate how hemicellulosic biomass can be valorized for beverage production and to obtain sour beer with improved process control.
Collapse
Affiliation(s)
- Anna Dysvik
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Fanny Buffetto
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology , Norwegian University of Life Sciences , P.O. Box 5003, N-1433 Ås , Norway
| | - Kristine S Myhrer
- NOFIMA - Norwegian Institute of Food, Fisheries and Aquaculture Research , PB 210, N-1431 Ås , Norway
| | - Elling-Olav Rukke
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Trude Wicklund
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| |
Collapse
|
31
|
Mahmood T, Guo Y. Dietary fiber and chicken microbiome interaction: Where will it lead to? ACTA ACUST UNITED AC 2019; 6:1-8. [PMID: 32211522 PMCID: PMC7082689 DOI: 10.1016/j.aninu.2019.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
The last few decades have been marked by a rapid genetic improvement in chicken growth rates. The modern-day chicken is more efficient in converting feed into muscle mass than their predecessors. This enhanced efficiency emanates from better nutrient digestion, absorption, and metabolism. The gut has therefore become a research focus especially after the ban on the use of antibiotics as growth promoters (AGP) in poultry. In pursuance of better gut health in the post-AGP era, many different strategies are being continuously sought and tested. The gut is inhabited by more than 900 bacterial species along with fungi and archaea, and they play an important role to maintain a conducive milieu for the host. A beneficial shift in the microbial ecosystem of the chicken can be promoted by many dietary and non-dietary interventions, however, diet is ranked as one of the most important and potent regulators of gut microbiota composition. Therefore, the constituents of the diet warrant special attention in the modulation of the gut ecosystem. Among dietary constituents, fiber possesses a significant ability to modulate the microbiota. In this review, we will highlight the importance of fiber in poultry nutrition and will also discuss the effects of fiber on gut microbiota and its resultant ramifications on the liver and brain.
Collapse
|
32
|
Parageobacillus thermantarcticus, an Antarctic Cell Factory: From Crop Residue Valorization by Green Chemistry to Astrobiology Studies. DIVERSITY 2019. [DOI: 10.3390/d11080128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Knowledge of Antarctic habitat biodiversity, both marine and terrestrial, has increased considerably in recent years, causing considerable development in the studies of life science related to Antarctica. In the Austral summer 1986–1987, a new thermophilic bacterium, Parageobacillus thermantarcticus strain M1 was isolated from geothermal soil of the crater of Mount Melbourne (74°22′ S, 164°40′ E) during the Italian Antarctic Expedition. In addition to the biotechnological potential due to the production of exopolysaccharides and thermostable enzymes, successful studies have demonstrated its use in the green chemistry for the transformation and valorization of residual biomass and its employment as a suitable microbial model for astrobiology studies. The recent acquisition of its genome sequence opens up new opportunities for the use of this versatile bacterium in still unexplored biotechnology sectors.
Collapse
|
33
|
Delineating thermophilic xylanase from Bacillus licheniformis DM5 towards its potential application in xylooligosaccharides production. World J Microbiol Biotechnol 2019; 35:34. [DOI: 10.1007/s11274-019-2605-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
34
|
Abstract
Woody biomass is a sustainable and virtually unlimited source of hemicellulosic polysaccharides. The predominant hemicelluloses in softwood and hardwood are galactoglucomannan (GGM) and arabinoglucuronoxylan (AGX), respectively. Based on the structure similarity with common dietary fibers, GGM and AGX may be postulated to have prebiotic properties, conferring a health benefit on the host through specific modulation of the gut microbiota. In this study, we evaluated the prebiotic potential of acetylated GGM (AcGGM) and highly acetylated AGX (AcAGX) obtained from Norwegian lignocellulosic feedstocks in vitro In pure culture, both substrates selectively promoted the growth of Bifidobacterium, Lactobacillus, and Bacteroides species in a manner consistent with the presence of genetic loci for the utilization of β-manno-oligosaccharides/β-mannans and xylo-oligosaccharides/xylans. The prebiotic potential of AcGGM and AcAGX was further assessed in a pH-controlled batch culture fermentation system inoculated with healthy adult human feces. Results were compared with those obtained with a commercial fructo-oligosaccharide (FOS) mixture. Similarly to FOS, both substrates significantly increased (P < 0.05) the Bifidobacterium population. Other bacterial groups enumerated were unaffected with the exception of an increase in the growth of members of the Bacteroides-Prevotella group, Faecalibacterium prausnitzii, and clostridial cluster IX (P < 0.05). Compared to the other substrates, AcGGM promoted butyrogenic fermentation whereas AcAGX was more propiogenic. Although further in vivo confirmation is necessary, these results demonstrate that both AcGGM and AcAGX from lignocellulosic feedstocks can be used to direct the promotion of beneficial bacteria, thus exhibiting a promising prebiotic ability to improve or restore gut health.IMPORTANCE The architecture of the gut bacterial ecosystem has a profound effect on the physiology and well-being of the host. Modulation of the gut microbiota and the intestinal microenvironment via administration of prebiotics represents a valuable strategy to promote host health. This work provides insights into the ability of two novel wood-derived preparations, AcGGM and AcAGX, to influence human gut microbiota composition and activity. These compounds were selectively fermented by commensal bacteria such as Bifidobacterium, Bacteroides-Prevotella, F. prausnitzii, and clostridial cluster IX spp. This promoted the microbial synthesis of acetate, propionate, and butyrate, which are beneficial to the microbial ecosystem and host colonic epithelial cells. Thus, our results demonstrate potential prebiotic properties for both AcGGM and AcAGX from lignocellulosic feedstocks. These findings represent pivotal requirements for rationally designing intervention strategies based on the dietary supplementation of AcGGM and AcAGX to improve or restore gut health.
Collapse
|
35
|
Ribeiro T, Cardoso V, Ferreira LMA, Lordelo MMS, Coelho E, Moreira ASP, Domingues MRM, Coimbra MA, Bedford MR, Fontes CMGA. Xylo-oligosaccharides display a prebiotic activity when used to supplement wheat or corn-based diets for broilers. Poult Sci 2019; 97:4330-4341. [PMID: 30101299 DOI: 10.3382/ps/pey336] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/27/2018] [Indexed: 01/11/2023] Open
Abstract
It is now well established that exogenous β-1,4-xylanases improve the nutritive value of wheat-based diets for poultry. Among other factors, the mechanism of action of exogenous enzymes may involve a microbial route resulting from the generation of prebiotic xylo-oligosaccharides (XOS) in the birds' gastro-intestinal (GI) tract. In a series of three experiments, the effect of XOS on the performance of broilers fed wheat or corn-based diets was investigated. In experiment 1, birds receiving diets supplemented with XOS displayed an increased weight gain (P = 0.08). The capacity of XOS to improve the performance of animals during a longer trial (42 d) was investigated (Experiment 2). The data revealed that diet supplementation with XOS, tested at two incorporation rates (0.1 and 1 g/kg), or with an exogenous β-1,4-xylanase resulted in an increased nutritive value of the wheat-based diet. An improvement in animal performance was accompanied by a shift in the microbial populations colonizing the upper portions of the GI tract. XOS were also able to improve the performance of broilers fed a corn-based diet, although the effects were not apparent at incorporation rates of 10 g/kg. Together these studies suggest that in some cases the capacity of β-1,4-xylanases to improve the nutritive value of wheat-based diets is more related to their ability to produce prebiotic XOS than to their ability to degrade arabinoxylans. The extremely low quantities of XOS used in this study also challenge the depiction of a prebiotic being a quantitatively fermented substrate. These data also bring into question the validity of the "cell wall" mechanism, as XOS elicited an effect with clearly no action on endosperm cell wall integrity and yet the performance effects noted were equivalent or superior to the added enzymes.
Collapse
Affiliation(s)
- T Ribeiro
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - V Cardoso
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.,NZYTech - genes & enzymes - Estrada do Paço do Lumiar, Campus do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal
| | - L M A Ferreira
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - M M S Lordelo
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - E Coelho
- QOPNA, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A S P Moreira
- QOPNA, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M R M Domingues
- QOPNA, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M A Coimbra
- QOPNA, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M R Bedford
- AB Vista, Woodstock Court, Blenheim Rd. Marlborough, UK
| | - C M G A Fontes
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.,NZYTech - genes & enzymes - Estrada do Paço do Lumiar, Campus do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal
| |
Collapse
|
36
|
Nordberg Karlsson E, Schmitz E, Linares-Pastén JA, Adlercreutz P. Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Appl Microbiol Biotechnol 2018; 102:9081-9088. [PMID: 30196329 PMCID: PMC6208967 DOI: 10.1007/s00253-018-9343-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 01/14/2023]
Abstract
Xylan has a main chain consisting of β-1,4-linked xylose residues with diverse substituents. Endoxylanases cleave the xylan chain at cleavage sites determined by the substitution pattern and thus give different oligosaccharide product patterns. Most known endoxylanases belong to glycoside hydrolase (GH) families 10 and 11. These enzymes work well on unsubstituted xylan but accept substituents in certain subsites. The GH11 enzymes are more restricted by substituents, but on the other hand, they are normally more active than the GH10 enzymes on insoluble substrates, because of their smaller size. GH5 endoxylanases accept arabinose substituents in several subsites and require it in the - 1 subsite. This specificity makes the GH5 endoxylanases very useful for degradation of highly arabinose-substituted xylans and for the selective production of arabinoxylooligosaccharides, without formation of unsubstituted xylooligosaccharides. The GH30 endoxylanases have a related type of specificity in that they require a uronic acid substituent in the - 2 subsite, which makes them very useful for the production of uronic acid substituted oligosaccharides. The ability of dietary xylooligosaccharides to function as prebiotics in humans is governed by their substitution patterns. Endoxylanases are thus excellent tools to tailor prebiotic oligosaccharides to stimulate various types of intestinal bacteria and to cause fermentation in different parts of the gastrointestinal tract. Continuously increasing knowledge on the function of the gut microbiota and discoveries of novel endoxylanases increase the possibilities to achieve health-promoting effects.
Collapse
Affiliation(s)
| | - Eva Schmitz
- Division of Biotechnology, Lund University, P.O.Box 124, 221 00, Lund, Sweden
| | | | - Patrick Adlercreutz
- Division of Biotechnology, Lund University, P.O.Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
37
|
Gullón B, Eibes G, Dávila I, Moreira MT, Labidi J, Gullón P. Hydrothermal treatment of chestnut shells (Castanea sativa) to produce oligosaccharides and antioxidant compounds. Carbohydr Polym 2018; 192:75-83. [DOI: 10.1016/j.carbpol.2018.03.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/08/2018] [Accepted: 03/16/2018] [Indexed: 11/30/2022]
|
38
|
Yuan L, Li W, Huo Q, Du C, Wang Z, Yi B, Wang M. Effects of xylo-oligosaccharide and flavomycin on the immune function of broiler chickens. PeerJ 2018. [PMID: 29527412 PMCID: PMC5842763 DOI: 10.7717/peerj.4435] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study investigated the effects of xylo-oligosaccharide (XOS) and flavomycin (FLA) on the performance and immune function of broiler chickens. A total of 150 ArborAcres broilers were randomly divided into three groups and fed for six weeks from one day of age in cascade cages. The diets of each test group were (1) a basal diet, (2) the basal diet supplemented with 2 mg/kg FLA, and (3) the basal diet supplemented with 2 mg/kg XOS. At 21 and 42 days, the growth performance index values and short-chain fatty acid (SCFA) concentrations in the cecum were quantified. Furthermore, immunoglobulin G (IgG) and plasma interleukin 2 (IL-2) as well as mRNA expression of LPS-Induced TNF-alpha Factor (LITAF), Toll-like receptor-5 (TLR5) and interferon gamma (IFNγ ) in the jejunum were quantified. The results showed that administration of XOS or FLA to chickens significantly improved the average daily gain. Supplementation with XOS increased acetate and butyrate in the cecum, while FLA supplementation increased propionate in the cecum. An increase in plasma IgG was observed in XOS-fed 21-day-old broilers, but FLA supplementation decreased IgG in the plasma of 42-day-old broilers and increased plasma IL-2. Furthermore, FLA or XOS supplementation downregulated mRNA expression of IFNγ , LITAF and TLR5. The above data suggest that addition of XOS and FLA to the diet could improve the growth performance of broilers and reduce the expression of cytokine genes by stimulating SCFA.
Collapse
Affiliation(s)
- Lin Yuan
- Henan Academy of Agricultural Sciences, Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of animal Husbandry and Veterinary Medicine, Zhengzhou, Henan, China
| | - Wanli Li
- Henan Academy of Agricultural Sciences, Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of animal Husbandry and Veterinary Medicine, Zhengzhou, Henan, China
| | - Qianqian Huo
- Henan Agricultural University, College of Animal Science and Veterinary Medicine, Zhengzhou, Henan, China
| | - Chenhong Du
- Henan Agricultural University, College of Animal Science and Veterinary Medicine, Zhengzhou, Henan, China
| | - Zhixiang Wang
- Henan Agricultural University, College of Animal Science and Veterinary Medicine, Zhengzhou, Henan, China
| | - Baodi Yi
- Henan Academy of Agricultural Sciences, Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of animal Husbandry and Veterinary Medicine, Zhengzhou, Henan, China
| | - Mingfa Wang
- Henan Academy of Agricultural Sciences, Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of animal Husbandry and Veterinary Medicine, Zhengzhou, Henan, China
| |
Collapse
|
39
|
Ho AL, Kosik O, Lovegrove A, Charalampopoulos D, Rastall RA. In vitro fermentability of xylo-oligosaccharide and xylo-polysaccharide fractions with different molecular weights by human faecal bacteria. Carbohydr Polym 2018; 179:50-58. [DOI: 10.1016/j.carbpol.2017.08.077] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022]
|
40
|
Pham T, Teoh KT, Savary BJ, Chen MH, McClung A, Lee SO. In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota. Nutrients 2017; 9:nu9111237. [PMID: 29137150 PMCID: PMC5707709 DOI: 10.3390/nu9111237] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Whole grain rice is a rich source of fiber, nutrients, and phytochemicals that may promote gastrointestinal health, but such beneficial components are typically removed with the bran during polishing. Soluble feruloylated arabinoxylan oligosaccharides (FAXO) and polyphenols (RBPP) isolated from rice bran are hypothesized to have positive impacts on human gut microbiota through a prebiotic function. Using an in vitro human fecal fermentation bioassay, FAXO and RBPP treatments were assessed for short-chain fatty acids (SCFA) production patterns and by evaluating their impacts on the phylogentic composition of human gut microbiota by 16S rRNA gene sequencing. Fresh fecal samples collected from healthy adults (n = 10, 5 males, 5 females) were diluted with anaerobic medium. Each sample received five treatments: CTRL (no substrates), FOS (fructooligosaccharides), FAXO, RBPP, and MIX (FAXO with RBPP). Samples were incubated at 37 °C and an aliquot was withdrawn at 0, 4, 8, 12, and 24 h Results showed that SCFA production was significantly increased with FAXO and was comparable to fermentation with FOS, a well-established prebiotic. RBPP did not increase SCFA productions, and no significant differences in total SCFA production were observed between FAXO and MIX, indicating that RBPP does not modify FAXO fermentation. Changes in microbiota population were found in FAXO treatment, especially in Bacteroides, Prevotella, and Dorea populations, indicating that FAXO might modulate microbiota profiles. RBPP and MIX increased Faecalibacterium, specifically F. prausnitzii. Combined FAXO and RBPP fermentation increased abundance of butyrogenic bacteria, Coprococcus and Roseburia, suggesting some interactive activity. Results from this study support the potential for FAXO and RBPP from rice bran to promote colon health through a prebiotic function.
Collapse
Affiliation(s)
- Tung Pham
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Keat Thomas Teoh
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.
| | - Brett J Savary
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.
- College of Agriculture and Technology, Arkansas State University, Jonesboro, AR 72401, USA.
| | - Ming-Hsuan Chen
- USDA Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Anna McClung
- USDA Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Sun-Ok Lee
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
41
|
Surek E, Buyukkileci AO. Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr Polym 2017; 174:565-571. [DOI: 10.1016/j.carbpol.2017.06.109] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/30/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
|
42
|
Nieto-Domínguez M, de Eugenio LI, York-Durán MJ, Rodríguez-Colinas B, Plou FJ, Chenoll E, Pardo E, Codoñer F, Jesús Martínez M. Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase. Food Chem 2017; 232:105-113. [DOI: 10.1016/j.foodchem.2017.03.149] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/21/2022]
|
43
|
Kong L, Zhao XH. Yields of three acids during simulated fermentation of inulin and xylo-oligosaccharides enhanced by six exogenous strains. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-016-9439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Pu J, Zhao X, Wang Q, Xiao L, Zhao H. Structural characterization of xylo-oligosaccharides from corncob residues. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1239107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jianghua Pu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, China
| | - Qingchi Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao, China
| | - Lin Xiao
- Shandong Long live Bio-technology Co.,Ltd. Yucheng, China
- Shandong Key Laboratory of Straw and Stover Biorefinement Technologies, High-technology Development Zone, Yucheng, Shandong, China
| | - Haitao Zhao
- Shandong Long live Bio-technology Co.,Ltd. Yucheng, China
- Shandong Functional Sugar Engineering Research Center, Yucheng, Shandong, China
| |
Collapse
|
45
|
Preparation of xylooligosaccharides from xylan by controlled acid hydrolysis and fast protein liquid chromatography coupled with refractive index detection. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.06.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Revisiting the structural features of arabinoxylans from brewers’ spent grain. Carbohydr Polym 2016; 139:167-76. [DOI: 10.1016/j.carbpol.2015.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/29/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022]
|
47
|
Rumpagaporn P, Reuhs BL, Cantu-Jungles TM, Kaur A, Patterson JA, Keshavarzian A, Hamaker BR. Elevated propionate and butyrate in fecal ferments of hydrolysates generated by oxalic acid treatment of corn bran arabinoxylan. Food Funct 2016; 7:4935-4943. [PMID: 27841429 DOI: 10.1039/c6fo00975a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxalic acid-debranched corn arabinoxylan increased butyrate while maintaining high proprionate in human fecalin vitrofermentations.
Collapse
Affiliation(s)
- Pinthip Rumpagaporn
- Whistler Center for Carbohydrate Research and Department of Food Science
- Purdue University
- West Lafayette
- USA
| | - Brad L. Reuhs
- Whistler Center for Carbohydrate Research and Department of Food Science
- Purdue University
- West Lafayette
- USA
| | - Thaisa M. Cantu-Jungles
- Whistler Center for Carbohydrate Research and Department of Food Science
- Purdue University
- West Lafayette
- USA
| | - Amandeep Kaur
- Whistler Center for Carbohydrate Research and Department of Food Science
- Purdue University
- West Lafayette
- USA
| | | | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition
- Rush University
- Chicago
- USA
| | - Bruce R. Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
48
|
Basinskiene L, Juodeikiene G, Vidmantiene D, Tenkanen M, Makaravicius T, Bartkiene E. Non-Alcoholic Beverages from Fermented Cereals with Increased Oligosaccharide Content. Food Technol Biotechnol 2016; 54:36-44. [PMID: 27904391 DOI: 10.17113/ftb.54.01.16.4106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The aim of this study is to develop a new technology for making traditional Lithuanian non-alcoholic beverage kvass from fermented cereals by extending the spectrum of raw materials (extruded rye) and applying new biotechnological resources (xylanolytic enzymes and lactic acid bacteria (LAB)) to improve its functional properties. Arabinoxylans in extruded rye were very efficiently hydrolysed into oligosaccharides by xylanolytic complex Ceremix Plus MG. Using Ceremix Plus MG and LAB fermentation, the yield of arabinoxylooligosaccharides and xylooligosaccharides in beverage was increased to 300 and 1100 mg/L, respectively. Beverages fermented by LAB had lower pH values and ethanol volume fraction compared to the yeast-fermented beverage. The acceptability of the beverage fermented by Lactobacillus sakei was higher than of Pediococcus pentosaceus- or yeast- -fermented beverages and similar to the acceptability of commercial kvass made from malt extract. The results showed that extruded rye, xylanolytic enzymes and LAB can be used for production of novel and safe high-value non-alcoholic beverages.
Collapse
Affiliation(s)
- Loreta Basinskiene
- Kaunas University of Technology, K. Donelaicio St. 73, LT-44029 Kaunas, Lithuania
| | - Grazina Juodeikiene
- Kaunas University of Technology, K. Donelaicio St. 73, LT-44029 Kaunas, Lithuania
| | - Daiva Vidmantiene
- Kaunas University of Technology, K. Donelaicio St. 73, LT-44029 Kaunas, Lithuania
| | - Maija Tenkanen
- University of Helsinki, Latokartanonkaari 11, FIN-00014 Helsinki, Finnland
| | - Tomas Makaravicius
- Kaunas University of Technology, K. Donelaicio St. 73, LT-44029 Kaunas, Lithuania
| | - Elena Bartkiene
- Lithuanian University of Health Sciences, Veterinary Academy, Tilzes 18, LT- 47181 Kaunas, Lithuania
| |
Collapse
|
49
|
Reddy SS, Krishnan C. Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of Bacillus subtilis KCX006 and their bifidogenic function. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.08.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Moniz P, Ho AL, Duarte LC, Kolida S, Rastall RA, Pereira H, Carvalheiro F. Assessment of the bifidogenic effect of substituted xylo-oligosaccharides obtained from corn straw. Carbohydr Polym 2016; 136:466-73. [DOI: 10.1016/j.carbpol.2015.09.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 10/23/2022]
|