1
|
Chau SL, Tang HW, Cheng YH, Lok CN, Ng KM. Chemical Printing of Biological Tissue by Gold Nanoparticle-Assisted Laser Ablation. ACS OMEGA 2017; 2:6031-6038. [PMID: 30023759 PMCID: PMC6044615 DOI: 10.1021/acsomega.7b00385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/08/2017] [Indexed: 05/11/2023]
Abstract
A chemical printing method based on gold nanoparticle (AuNP)-assisted laser ablation has been developed. By rastering a thin layer of AuNPs coated on a rat kidney tissue section with a UV laser, biomolecules are extracted and immediately transferred/printed onto a supporting glass substrate. The integrity of the printed sample is preserved, as revealed by imaging mass spectrometric analysis. By studying the mechanism of the extraction/printing process, transiently molten AuNPs were found to be involved in the process, as supported by the color and morphological changes of the AuNP thin film. The success of this molecular printing method was based on the efficient laser-nanomaterial interaction, that is, the strong photoabsorption, laser-induced heating, and phase-transition properties of the AuNPs. It is anticipated that the molecular printing method can be applied to perform site-specific printing, which extracts and transfers biochemicals from different regions of biological tissue sections to different types of supporting materials for subsequent biochemical analysis with the preservation of the original tissue samples.
Collapse
|
2
|
Sadee BA, Foulkes ME, Hill SJ. An evaluation of extraction techniques for arsenic in staple diets (fish and rice) utilising both classical and enzymatic extraction methods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:433-41. [PMID: 26760914 DOI: 10.1080/19440049.2015.1132479] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Enzymatic extraction methods were evaluated with classical extraction approaches for the determination of arsenic in food. The extraction efficiency for total arsenic was determined by analysing CRM materials DORM-3 fish protein, NIES 106 rice flour and GBW10015 spinach. These were compared with total arsenic concentration determined using microwave-assisted acid digestion and ICP-MS. The total arsenic concentrations in the CRM materials were in good agreement with the certified values. Enzymatic hydrolysis using trypsin has been successfully employed to extract arsenic species in DORM-3 and fish samples. Whilst this method of hydrolysing the proteins worked well for the fish samples, an alternative approach was required to facilitate the digestion of cellulose in plant materials. However, enzymatic extraction using cellulase was found to give unsatisfactory results for both the NIES and GBW10015 CRM materials. Dilute nitric acid (1% HNO3) was found to give a more efficient extraction for arsenic species in the same CRM materials and rice samples. The study was extended to evaluate a range of real samples. Total arsenic concentrations in 13 different types of fish tissue were determined following microwave-assisted acid digestion using nitric acid/hydrogen peroxide, followed by measurement using HPLC-ICP-MS for speciation analysis. The results obtained for fish were in the range of 3.53-98.80 µg g(-1) As (dry weight). Similarly, the results of 17 rice samples were in the range of 0.054-0.823 µg g(-1). This study demonstrates the importance of selecting an appropriate extraction technique for the quantitative measurement of arsenic species in food.
Collapse
Affiliation(s)
- Bashdar A Sadee
- a School of Geography, Earth and Environmental Sciences , University of Plymouth , Plymouth , UK
| | - Mike E Foulkes
- a School of Geography, Earth and Environmental Sciences , University of Plymouth , Plymouth , UK
| | - Steve J Hill
- a School of Geography, Earth and Environmental Sciences , University of Plymouth , Plymouth , UK
| |
Collapse
|
3
|
Arsenic species extraction of biological marine samples (Periwinkles, Littorina littorea) from a highly contaminated site. Talanta 2012; 88:187-92. [DOI: 10.1016/j.talanta.2011.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 11/21/2022]
|
4
|
Determination of 6 arsenic species present in seaweed by solvent extraction, clean-up, and LC-ICP/MS. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0006-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Sousa-Ferreira H, Matos-Reyes MN, Cervera ML, Costa-Ferreira SL, de la Guardia M. Screening of Toxic Inorganic Arsenic Species in Garlic (Allium sativum L.). FOOD ANAL METHOD 2010. [DOI: 10.1007/s12161-010-9187-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Choi H, Park SK, Kim DS, Kim MH. Risk Assessment of Arsenic in Agricultural Products. ACTA ACUST UNITED AC 2010. [DOI: 10.5338/kjea.2010.29.3.266] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
7
|
Nam SH, Oh HJ, Min HS, Lee JH. A study on the extraction and quantitation of total arsenic and arsenic species in seafood by HPLC–ICP-MS. Microchem J 2010. [DOI: 10.1016/j.microc.2009.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Hamano-Nagaoka M, Hanaoka K, Usui M, Nishimura T, Maitani T. Nitric Acid-based Partial-digestion Method for Selective Determination of Inorganic Arsenic in Hijiki and Application to Soaked Hijiki. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2008; 49:88-94. [PMID: 18503244 DOI: 10.3358/shokueishi.49.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Evaluation of extraction methods for arsenic speciation in polluted soil and rotten ore by HPLC-HG-AFS analysis. Mikrochim Acta 2007. [DOI: 10.1007/s00604-006-0709-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Preliminary Results of Extraction, Separation and Quantitation of Arsenic Species in Food and Dietary Supplements by HPLC-ICP-MS. B KOREAN CHEM SOC 2006. [DOI: 10.5012/bkcs.2006.27.6.903] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Hsiung TM, Huang CW. Quantitation of toxic arsenic species and arsenobetaine in Pacific oysters using an off-line process with hydride generation-atomic absorption spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:2470-8. [PMID: 16569030 DOI: 10.1021/jf051181x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An off-line process-based speciation technique was devised here to quantitatively determine toxic inorganic arsenic (iAs), methylarsonic acid (MA), dimethylarsinic acid (DMA), and the dominant, albeit virtually nontoxic, arsenobetaine (AB) in Pacific oysters (Crassostrea gigas). Oysters were extracted with fresh methanol-water (8+2), and this was replicated three times. They were then evaporated to near dryness and subsequently redissolved in pure water; defatting was then performed with a C18 cartridge. The trace hydride active arsenic species, that is, iAs, MA, and DMA, in the defatted solutions were determined with a sensitive hydride generation-packed coldfinger trap-atomic absorption spectrometric (HG-PCFT-AAS) coupled system. The arsenicals that were desorbed from the cation-exchange resin (Dowex 50W-X8) in the washings of 4 M NH3 were categorized on the basis of AB + DMA. The total quantity of arsenic in the recovered AB + DMA was determined with a commercial hydride generation-atomic absorption spectrometric (HG-AAS) system, and finally, AB was calculated from (AB + DMA) - DMA. The average concentrations of iAs, MA, DMA, AB, and total arsenic (TAs) in the oysters collected from six aquacultural sites along the west coast of Taiwan were, respectively, 0.15, 0.06, 0.64, 6.93, and 13.74 mg kg(-1) of dry weight. AB was the major species, whereas iAs (arsenite + arsenate) were the most toxic species, although the iAs made up only approximately 1% of the TAs in the oysters. The lifetime target cancer risk, as determined by the concentration of iAs on a fresh weight basis in the oysters, was well below the ordinary health protection criteria (10(-6)).
Collapse
Affiliation(s)
- Tung-Ming Hsiung
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, Republic of China.
| | | |
Collapse
|
12
|
Pellizzari ED, Clayton CA. Assessing the measurement precision of various arsenic forms and arsenic exposure in the National Human Exposure Assessment Survey (NHEXAS). ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:220-7. [PMID: 16451858 PMCID: PMC1367835 DOI: 10.1289/ehp.8104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Archived samples collected from 1995 to 1997 in the National Human Exposure Assessment Survey (NHEXAS) in U.S. Environmental Protection Agency Region 5 (R5) and the Children's Study (CS) in Minnesota were analyzed for total arsenic, arsenate [As(V)], arsenite, dimethyl arsenic acid (DMA), monomethyl arsenic acid (MMA), arsenobetaine (AsB), and arsenocholine. Samples for the CS included drinking water, urine, hair, and dust; both studies included food (duplicate plate, composited 4-day food samples from participants). Except for AsB and As(V), the levels for As species measured in the food and drinking water samples were very low or nonexistent. The analytical methods used for measuring As species were sensitive to < 1 ppb. During the analysis of food and drinking water samples, chromatographic peaks appeared that contained As, but they did not correspond to those being quantified. Thus, in some samples, the sum of the individual As species levels was less than the total As level measured because the unknown forms of As were not quantified. On the other hand, total As was detectable in almost all samples (> 90%) except for hair (47%), indicating that the analytical method was sufficiently sensitive. Population distributions of As concentrations measured in drinking water, food (duplicate plate), dust, urine, and hair were estimated. Exposures to total As in food for children in the CS were about twice as high as in the general R5 population (medians of 17.5 ppb and 7.72 ppb, respectively). In addition, AsB was the most frequently detected form of As in food eaten by the participants, while As(V) was only rarely detected. Thus, the predominant dietary exposure was from an organic form of As. The major form of As in drinking water was As(V). Spearman (rank) correlations and Pearson (log-concentration scale) correlations between the biomarkers (urine, hair) and the other measures (food, drinking water, dust) and urine versus hair were performed. In the NHEXAS CS, total As and AsB in the food eaten were significantly correlated with their levels in urine. Also, levels of As(V) in drinking water correlated with DMA and MMA in urine. Arsenic levels in dust did not show a relationship with urine or hair levels, and no relationship was observed for food, drinking water, and dust with hair. Urine samples were collected on days 3, 5, and 7 of participants' monitoring periods. Total As levels in urine were significantly associated across the three pairwise combinations--i.e., day 3 versus day 5, day 3 versus day 7, and day 5 versus day 7. Because the half-life of As in the body is approximately 3 days, this suggests that some exposure occurred continually from day to day. This trend was also observed for AsB, suggesting that food is primarily responsible for the continual exposure. DMA and MMA in urine were also significantly correlated but not in all combinations.
Collapse
Affiliation(s)
- Edo D Pellizzari
- RTI International, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
13
|
|
14
|
Yeh CF, Jiang SJ. Speciation of arsenic compounds in fish and oyster tissues by capillary electrophoresis-inductively coupled plasma-mass spectrometry. Electrophoresis 2005; 26:1615-21. [PMID: 15759302 DOI: 10.1002/elps.200410116] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A capillary electrophoresis-inductively coupled plasma-mass spectrometric (CE-ICP-MS) method for the speciation of six arsenic compounds, namely arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid, dimethylarsinic acid, arsenobetaine and arsenocholine is described. The separation has been achieved on a 70 cm length x 75 microm ID fused-silica capillary. The electrophoretic buffer used was 15 mM Tris (pH 9.0) containing 15 mM sodium dodecyl sulfate (SDS), while the applied voltage was set at +22 kV. The arsenic species in biological tissues were extracted into 80% v/v methanol-water mixture, put in a closed centrifuge tube and kept in a water bath, using microwaves at 80 degrees C for 3 min. The extraction efficiencies of individual arsenic species added to the sample at 0.5 microg As/g level were between 96% and 107%, except for As(III), for which it was 89% and 77% for oyster and fish samples, respectively. The detection limits of the species studied were in the range 0.3-0.5 ng As/mL. The procedure has been applied for the speciation analysis of two reference materials, namely dogfish muscle tissue (NRCC DORM-2) and oyster tissue (NIST SRM 1566a), and two real-world samples.
Collapse
Affiliation(s)
- Ching-Fen Yeh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | |
Collapse
|
15
|
|
16
|
Kannamkumarath SS, Wróbel K, Wróbel K, Caruso JA. Speciation of arsenic in different types of nuts by ion chromatography-inductively coupled plasma mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:1458-1463. [PMID: 15030196 DOI: 10.1021/jf035180l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this work the quantitative determination and analytical speciation of arsenic were undertaken in different types of nuts, randomly purchased from local markets. The hardness of the whole nuts and high lipid content made the preparation of this material difficult for analysis. The lack of sample homogeneity caused irreproducible results. To improve the precision of analysis, arsenic was determined separately in nut oil and in the defatted sample. The lipids were extracted from the ground sample with the two portions of a mixture of chloroform and methanol (2:1). The defatted material was dried and ground again, yielding a fine powder. The nut oil was obtained by combining the two organic extracts and by evaporating the solvents. The two nut fractions were microwave digested, and total arsenic was determined by inductively coupled plasma mass spectrometry (ICP-MS). The results obtained for oils from different types of nuts showed element concentration in the range 2.9-16.9 ng g(-)(1). Lower levels of arsenic were found in defatted material (<0.1 ng g(-)(1) with the exception of Brazil nuts purchased with and without shells, 3.0 and 2.8 ng g(-)(1) respectively). For speciation analysis of arsenic in nut oils, elemental species were extracted from 2 g of oil with 12 mL of chloroform/methanol (2:1) and 8 mL of deionized water. The aqueous layer, containing polar arsenic species, was evaporated and the residue dissolved and analyzed by ion chromatography-ICP-MS. The anion exchange chromatography enabled separation of As(III), dimethylarsinic acid (DMAs(V)), monomethylarsonic acid (MMAs(V)), and As(V) within 8 min. Several types of nuts were analyzed, including walnuts, Brazil nuts, almonds, cashews, pine nuts, peanuts, pistachio nuts, and sunflower seeds. The recovery for the speciation procedure was in the range 72.7-90.6%. The primary species found in the oil extracts were As(III) and As(V). The arsenic concentration levels in these two species were 0.7-12.7 and 0.5-4.3 ng g(-)(1), respectively. The contribution of As in DMAs(V) ranged from 0.1 +/- 0.1 ng g(-)(1) in walnuts to 1.3 +/- 0.3 ng g(-)(1) in pine nuts. MMAs(V) was not detected in almonds, peanuts, pine nuts, sunflower seeds, or walnuts, and the highest concentration was found in pistachio nuts (0.5 +/- 0.2 ng g(-)(1)).
Collapse
|
17
|
Francesconi KA, Kuehnelt D. Determination of arsenic species: A critical review of methods and applications, 2000–2003. Analyst 2004; 129:373-95. [PMID: 15116227 DOI: 10.1039/b401321m] [Citation(s) in RCA: 362] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We review recent research in the field of arsenic speciation analysis with the emphasis on significant advances, novel applications and current uncertainties.
Collapse
Affiliation(s)
- Kevin A Francesconi
- Institute of Chemistry - Analytical Chemistry, Karl-Franzens University, Universitaetsplatz 1, 8010 Graz, Austria
| | | |
Collapse
|