1
|
Liu C, Wu H, Duan H, Hou Y, Wang S, Liu Y, Zhang X, Zhao H, Gong L, Wan H, Zeng B, Quan X, Cui M, Chen L, Jin M, Wang Q, Gao Z, Huang W. An EGCG-mediated self-assembled micellar complex acts as a bioactive drug carrier. Food Chem 2023; 418:135939. [PMID: 36948024 DOI: 10.1016/j.foodchem.2023.135939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Epigallocatechin gallate (EGCG) has attracted the increasing attention of many researchers, especially in the field of tumor therapy. However, EGCG has poor fat solubility, low stability, low bioavailability, and a high effective dose in vivo. Traditional drug delivery methods are difficult to deliver the water-soluble EGCG efficiently and in high doses to tumor sites. To address these issues, a new type of strategy has been tried in this study to transform EGCG from a "Bioactive natural ingredient" into a "Bioactive drug carrier". Briefly, the EGCG was modified with a fat-soluble 9-fluorene methoxy carbonyl (Fmoc) motif, and the obtained EGCG-Fmoc showed a considerable improvement in lipid solubility and stability. Interestingly, EGCG-Fmoc obtained the characteristic of self-assembly in water, making it easier to take up by tumor cells. Furthermore, the self-assembled nanocomplex exhibited paclitaxel encapsulation performance and could achieve the dual delivery of EGCG and paclitaxel.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Pharmacy, Yanbian University, Yanji, Jilin 133000, PR China
| | - Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yan Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Pharmacy, Yanbian University, Yanji, Jilin 133000, PR China
| | - Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Pharmacy, Yanbian University, Yanji, Jilin 133000, PR China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Heming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Hongshuang Wan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin 133000, PR China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin 133000, PR China
| | - Xiuquan Quan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin 133000, PR China
| | - Minhu Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin 133000, PR China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
2
|
Tanabe H, Suzuki T, Ohishi T, Isemura M, Nakamura Y, Unno K. Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020525. [PMID: 36677584 PMCID: PMC9862901 DOI: 10.3390/molecules28020525] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Epidemiological studies have shown that the consumption of green tea has beneficial effects against cancer. Basic studies have provided evidence that epigallocatechin gallate (EGCG) is a major contributor to these effects. Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases with the ability to degrade the extracellular matrix proteins and are involved in various diseases including cancer in which MMPs have a critical role in invasion and metastasis. In this review, we discuss the effects of EGCG on several types of MMPs in the context of its anticancer activity. In the promoter region, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and EGCG can downregulate these transcription factors through signaling pathways mediated by reactive oxygen species. EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and β-catenin levels, leading to suppression of MMPs' expression. Other mechanisms by which EGCG inhibits MMPs include direct binding to MMPs to prevent their activation and downregulation of NF-κB to suppress the production of inflammatory cytokines such as TNFα and IL-1β. Findings from studies on EGCG presented here may be useful in the development of more effective anti-MMP agents, which would give beneficial effects on cancer and other diseases.
Collapse
Affiliation(s)
- Hiroki Tanabe
- Faculty of Health and Welfare Science, Nayoro City University, Nayoro 096-8641, Hokkaido, Japan
- Correspondence: (H.T.); (T.O.)
| | - Takuji Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women’s College of Liberal Arts, Kyoto 602-0893, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu 410-0301, Shizuoka, Japan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa, Tokyo 141-0021, Japan
- Correspondence: (H.T.); (T.O.)
| | - Mamoru Isemura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiko Unno
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
3
|
Li XX, Liu C, Dong SL, Ou CS, Lu JL, Ye JH, Liang YR, Zheng XQ. Anticarcinogenic potentials of tea catechins. Front Nutr 2022; 9:1060783. [PMID: 36545470 PMCID: PMC9760998 DOI: 10.3389/fnut.2022.1060783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022] Open
Abstract
Catechins are a cluster of polyphenolic bioactive components in green tea. Anticarcinogenic effects of tea catechins have been reported since the 1980s, but it has been controversial. The present paper reviews the advances in studies on the anticarcinogenic activities of tea and catechins, including epidemiological evidence and anticarcinogenic mechanism. Tea catechins showed antagonistic effects on many cancers, such as gynecological cancers, digestive tract cancers, incident glioma, liver and gallbladder cancers, lung cancer, etc. The mechanism underlying the anticarcinogenic effects of catechins involves in inhibiting the proliferation and growth of cancer cells, scavenging free radicals, suppressing metastasis of cancer cells, improving immunity, interacting with other anticancer drugs, and regulating signaling pathways. The inconsistent results and their causes are also discussed in this paper.
Collapse
Affiliation(s)
- Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Chang Liu
- Tea Science Society of China, Hangzhou, China
| | - Shu-Ling Dong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Can-Song Ou
- Development Center of Liubao Tea Industry, Cangwu, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China,*Correspondence: Yue-Rong Liang,
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China,Xin-Qiang Zheng,
| |
Collapse
|
4
|
Sah DK, Khoi PN, Li S, Arjunan A, Jeong JU, Jung YD. (-)-Epigallocatechin-3-Gallate Prevents IL-1β-Induced uPAR Expression and Invasiveness via the Suppression of NF-κB and AP-1 in Human Bladder Cancer Cells. Int J Mol Sci 2022; 23:ijms232214008. [PMID: 36430487 PMCID: PMC9697952 DOI: 10.3390/ijms232214008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG), a primary green tea polyphenol, has powerful iron scavengers, belongs to the family of flavonoids with antioxidant properties, and can be used to prevent cancer. Urokinase-type plasminogen activator receptors (uPARs) are glycosylphosphatidylinositol (GPI)-anchored cell membrane receptors that have crucial roles in cell invasion and metastasis of several cancers including bladder cancer. The mechanism of action of EGCG on uPAR expression has not been reported clearly yet. In this study, we investigated the effect of EGCG on interleukin (IL)-1β-induced cell invasion and uPAR activity in T24 human bladder cancer cells. Interestingly, nuclear factor (NF)-κB and activator protein (AP)-1 transcription factors were critically required for IL-1β-induced high uPAR expression, and EGCG suppressed the transcriptional activity of both the ERK1/2 and JNK signaling pathways with the AP-1 subunit c-Jun. EGCG blocked the IL-1β-stimulated reactive oxygen species (ROS) production, in turn suppressing NF-κB signaling and anti-invasion effects by inhibiting uPAR expression. These results suggest that EGCG may exert at least part of its anticancer effect by controlling uPAR expression through the suppression of ERK1/2, JNK, AP-1, and NF-κB.
Collapse
Affiliation(s)
- Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Pham Ngoc Khoi
- Faculty of Basic Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 740500, Vietnam
| | - Shinan Li
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Jae-Uk Jeong
- Department of Radiation Oncology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Hung SW, Li Y, Chen X, Chu KO, Zhao Y, Liu Y, Guo X, Man GCW, Wang CC. Green Tea Epigallocatechin-3-Gallate Regulates Autophagy in Male and Female Reproductive Cancer. Front Pharmacol 2022; 13:906746. [PMID: 35860020 PMCID: PMC9289441 DOI: 10.3389/fphar.2022.906746] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
With a rich abundance of natural polyphenols, green tea has become one of the most popular and healthiest nonalcoholic beverages being consumed worldwide. Epigallocatechin-3-gallate (EGCG) is the predominant catechin found in green tea, which has been shown to promote numerous health benefits, including metabolic regulation, antioxidant, anti-inflammatory, and anticancer. Clinical studies have also shown the inhibitory effects of EGCG on cancers of the male and female reproductive system, including ovarian, cervical, endometrial, breast, testicular, and prostate cancers. Autophagy is a natural, self-degradation process that serves important functions in both tumor suppression and tumor cell survival. Naturally derived products have the potential to be an effective and safe alternative in balancing autophagy and maintaining homeostasis during tumor development. Although EGCG has been shown to play a critical role in the suppression of multiple cancers, its role as autophagy modulator in cancers of the male and female reproductive system remains to be fully discussed. Herein, we aim to provide an overview of the current knowledge of EGCG in targeting autophagy and its related signaling mechanism in reproductive cancers. Effects of EGCG on regulating autophagy toward reproductive cancers as a single therapy or cotreatment with other chemotherapies will be reviewed and compared. Additionally, the underlying mechanisms and crosstalk of EGCG between autophagy and other cellular processes, such as reactive oxidative stress, ER stress, angiogenesis, and apoptosis, will be summarized. The present review will help to shed light on the significance of green tea as a potential therapeutic treatment for reproductive cancers through regulating autophagy.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiran Li
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiwei Zhao
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingyu Liu
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Xi Guo
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gene Chi-Wai Man
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| |
Collapse
|
6
|
Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, Shaito A, Ghaddar T, Kobeissy F, Eid AH. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 2022; 146:112442. [PMID: 35062053 DOI: 10.1016/j.biopha.2021.112442] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality around the globe. Reactive oxygen species (ROS) play contradicting roles in cancer incidence and progression. Antioxidants have attracted attention as emerging therapeutic agents. Among these are flavonoids, which are natural polyphenols with established anticancer and antioxidant capacities. Increasing evidence shows that flavonoids can inhibit carcinogenesis via suppressing ROS levels. Surprisingly, flavonoids can also trigger excessive oxidative stress, but this can also induce death of malignant cells. In this review, we explore the inherent characteristics that contribute to the antioxidant capacity of flavonoids, and we dissect the scenarios in which they play the contrasting role as pro-oxidants. Furthermore, we elaborate on the pathways that link flavonoid-mediated modulation of ROS to the prevention and treatment of cancer. Special attention is given to the ROS-mediated anticancer functions that (-)-epigallocatechin gallate (EGCG), hesperetin, naringenin, quercetin, luteolin, and apigenin evoke in various cancers. We also delve into the structure-function relations that make flavonoids potent antioxidants. This review provides a detailed perspective that can be utilized in future experiments or trials that aim at utilizing flavonoids or verifying their efficacy for developing new pharmacologic agents. We support the argument that flavonoids are attractive candidates for cancer therapy.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| | - Gheyath Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Tarek Ghaddar
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
7
|
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 2020; 19:1997-2007. [PMID: 32104259 PMCID: PMC7027163 DOI: 10.3892/etm.2020.8454] [Citation(s) in RCA: 607] [Impact Index Per Article: 151.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are key signalling pathways that regulate a wide variety of cellular processes, including proliferation, differentiation, apoptosis and stress responses. The MAPK pathway includes three main kinases, MAPK kinase kinase, MAPK kinase and MAPK, which activate and phosphorylate downstream proteins. The extracellular signal-regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine-threonine kinases that regulate cellular signalling under both normal and pathological conditions. ERK expression is critical for development and their hyperactivation plays a major role in cancer development and progression. The Ras/Raf/MAPK (MEK)/ERK pathway is the most important signalling cascade among all MAPK signal transduction pathways, and plays a crucial role in the survival and development of tumour cells. The present review discusses recent studies on Ras and ERK pathway members. With respect to processes downstream of ERK activation, the role of ERK in tumour proliferation, invasion and metastasis is highlighted, and the role of the ERK/MAPK signalling pathway in tumour extracellular matrix degradation and tumour angiogenesis is emphasised.
Collapse
Affiliation(s)
- Yan-Jun Guo
- Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Wei-Wei Pan
- Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Sheng-Bing Liu
- Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhong-Fei Shen
- Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Ying Xu
- Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Ling-Ling Hu
- Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
8
|
Abstract
Matrix metalloproteinases (MMPs) are structurally related endopeptidases. They are also known as metzincins due to their interaction with zinc ion of the conserved methionine (Met) at the active site. MMPs play an important role in physiological and signaling processes of wound healing, bone resorption and angiogenesis. The structure of MMPs consists of signal peptide, propeptide, catalytic domain, hinge region and hemopexin-like domain. MMP-9 shares high structural and functional similarities with MMP-2, therefore designing selective MMP-9 inhibitors (MMPIs) is challenging. The selectivity can be achieved by targeting S2 subsite of MMP-9 that is having difference with MMP-2. Further, targeting its exosite and protein disulfide isomerase may also provide selective MMPIs. The review highlights the molecular features and basis of MMP-9 enzyme action. The MMPIs reported in the recent years have also been included.
Collapse
|
9
|
Biophysical evidence for differential gallated green tea catechins binding to membrane type-1 matrix metalloproteinase and its interactors. Biophys Chem 2018; 234:34-41. [PMID: 29407769 DOI: 10.1016/j.bpc.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a transmembrane MMP which triggers intracellular signaling and regulates extracellular matrix proteolysis, two functions that are critical for tumor-associated angiogenesis and inflammation. While green tea catechins, particularly epigallocatechin gallate (EGCG), are considered very effective in preventing MT1-MMP-mediated functions, lack of structure-function studies and evidence regarding their direct interaction with MT1-MMP-mediated biological activities remain. Here, we assessed the impact in both cellular and biophysical assays of four ungallated catechins along with their gallated counterparts on MT1-MMP-mediated functions and molecular binding partners. Concanavalin-A (ConA) was used to trigger MT1-MMP-mediated proMMP-2 activation, expression of MT1-MMP and of endoplasmic reticulum stress biomarker GRP78 in U87 glioblastoma cells. We found that ConA-mediated MT1-MMP induction was inhibited by EGCG and catechin gallate (CG), that GRP78 induction was inhibited by EGCG, CG, and gallocatechin gallate (GCG), whereas proMMP-2 activation was inhibited by EGCG and GCG. Surface plasmon resonance was used to assess direct interaction between catechins and MT1-MMP interactors. We found that gallated catechins interacted better than their ungallated analogs with MT1-MMP as well as with MT1-MMP binding partners MMP-2, TIMP-2, MTCBP-1 and LRP1-clusterIV. Overall, current structure-function evidence supports a role for the galloyl moiety in both direct and indirect interactions of green tea catechins with MT1-MMP-mediated oncogenic processes.
Collapse
|
10
|
Sheehy S, Annabi B. A Transcriptional Regulatory Role for the Membrane Type-1 Matrix Metalloproteinase in Carcinogen-Induced Inflammasome Gene Expression. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [PMID: 28634425 PMCID: PMC5467917 DOI: 10.1177/1177625017713996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signal-transducing functions driven by the cytoplasmic domain of membrane type-1 matrix metalloproteinase (MT1-MMP) are believed to regulate many inflammation-associated cancer cell functions including migration, proliferation, and survival. Aside from upregulation of the inflammation biomarker cyclooxygenase-2 (COX-2) expression, MT1-MMP’s role in relaying intracellular signals triggered by extracellular pro-inflammatory cues remains poorly understood. Here, we triggered inflammation in HT1080 fibrosarcoma cells with phorbol-12-myristate-13-acetate (PMA), an inducer of COX-2 and of MT1-MMP. To assess the global transcriptional regulatory role that MT1-MMP may exert on inflammation biomarkers, we combined gene array screens with a transient MT1-MMP gene silencing strategy. Expression of MT1-MMP was found to exert both stimulatory and repressive transcriptional control of several inflammasome-related biomarkers such as interleukin (IL)-1B, IL-6, IL-12A, and IL-33, as well as of transcription factors such as EGR1, ELK1, and ETS1/2 in PMA-treated cells. Among the signal-transducing pathways explored, the silencing of MT1-MMP prevented PMA from phosphorylating extracellular signal–regulated kinase, inhibitor of κB, and p105 nuclear factor κB (NF-κB) intermediates. We also found a signaling axis linking MT1-MMP to MMP-9 transcriptional regulation. Altogether, our data indicate a significant involvement of MT1-MMP in the transcriptional regulation of inflammatory biomarkers consolidating its contribution to signal transduction functions in addition to its classical hydrolytic activity.
Collapse
Affiliation(s)
- Samuel Sheehy
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, QC, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Chung HH, Chen MK, Chang YC, Yang SF, Lin CC, Lin CW. Inhibitory effects of Leucaena leucocephala on the metastasis and invasion of human oral cancer cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:1765-1774. [PMID: 28181379 DOI: 10.1002/tox.22399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Oral cancer is one of the most common cancers worldwide, and metastasis is recognized as a major factor causing its low survival rate. The inhibition of metastasis progress and the improvement of the survival rate for oral cancer are critical research objectives. Leucaena leucocephala from the mimosa branch Leucaena genus is native to Central and South America and has been used as a traditional remedy for treating various disorders. Previous studies have demonstrated antioxidant, anti-inflammatory as well as anticancer properties of L. leucocephala plant materials. However, the molecular mechanism underlying the anticancer effect induced by L. leucocephala remains unclear. In this study, we investigated the effect of L. leucocephala extract (LLE) on SCC-9 and SAS oral cancer cells and examined the potential inhibitory mechanisms involved. The results indicated that LLE attenuated the migration and invasion abilities of both SCC-9 and SAS cells by reducing the activity and protein expression of matrix metalloproteinases-2 (MMP-2). Regarding mitogen-activated protein kinase (MAPK) pathways, the phosphorylation of ERK1/2 and p38 exhibited a significant inhibitory effect in the presence of LLE. The application of ERK inhibitor and p38 inhibitor confirmed that both signalling transduction pathways were involved in the inhibition of cell metastasis. These data indicate that L. leucocephala could be a potent therapeutic agent for the prevention and treatment of oral cancer and a prominent plant source for anticancer research in the future.
Collapse
Affiliation(s)
- Hsiao-Hang Chung
- Department of Horticulture, National Ilan University, Yilan, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Chieh Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Seo Y, Kim MK, Choo H, Chong Y. Facile synthesis of 4″-O-alkyl-(–)-EGCG derivatives through regioselective deacetylative alkylation. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2016.1278233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yujin Seo
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Mi Kyoung Kim
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Hyunah Choo
- Center for Neuro-Medicine, Korea Institute of Science and Technology, Seoungbuk-gu, Seoul, South Korea
- Department of Biological Chemistry, Korea University of Science and Technology, Daejeon, South Korea
| | - Youhoon Chong
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Gwangjin-gu, Seoul, South Korea
| |
Collapse
|
13
|
Zhao X, Liu F, Jin H, Li R, Wang Y, Zhang W, Wang H, Chen W. Involvement of PKCα and ERK1/2 signaling pathways in EGCG's protection against stress-induced neural injuries in Wistar rats. Neuroscience 2017; 346:226-237. [PMID: 28131624 DOI: 10.1016/j.neuroscience.2017.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 02/08/2023]
Abstract
Stress-induced neural injuries are closely linked to the pathogenesis of various neuropsychiatric disorders and psychosomatic diseases. We and others have previously demonstrated certain protective effects of epigallocatechin-3-gallate (EGCG) in stress-induced cerebral impairments, but the underlying protective mechanisms still remain poorly elucidated. Here we provide evidence to support the possible involvement of PKCα and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways in EGCG-mediated protection against restraint stress-induced neural injuries in rats. In both open-field and step-through behavioral tests, the restraint stress-induced neuronal impairments were significantly ameliorated by administration of EGCG or green tea polyphenols (GTPs), which was associated with a partial restoration of normal plasma glucocorticoid, dopamine and serotonin levels. Furthermore, the stress-induced decrease of PKCα and ERK1/2 expression and phosphorylation was significantly attenuated by EGCG and to a less extent by GTP administration. Additionally, EGCG supplementation restored the production of adenosine triphosphate (ATP) and the expression of a key regulator of cellular energy metabolism, the peroxisome proliferators-activated receptor-γ coactivator-1α (PGC-1α), in stressed animals. In conclusion, PKCα and ERK1/2 signaling pathways as well as PGC-1α-mediated ATP production might be involved in EGCG-mediated protection against stress-induced neural injuries.
Collapse
Affiliation(s)
- Xiaoling Zhao
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Fengqin Liu
- Weifang People's Hospital, Weifang, Shandong Province, China
| | - Haimin Jin
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China; Tianjin Medical University, Tianjin, China
| | - Renjia Li
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China; Tianjin Medical University, Tianjin, China
| | - Yonghui Wang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | | | - Haichao Wang
- The Feinstein Institute for Medical Research, Manhasset, NY, USA; Department of Emergency Medicine, North Shore University Hospital, Manhasset, NY, USA.
| | - Weiqiang Chen
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China; The Feinstein Institute for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
14
|
Hayakawa S, Saito K, Miyoshi N, Ohishi T, Oishi Y, Miyoshi M, Nakamura Y. Anti-Cancer Effects of Green Tea by Either Anti- or Pro- Oxidative Mechanisms. Asian Pac J Cancer Prev 2017; 17:1649-54. [PMID: 27221834 DOI: 10.7314/apjcp.2016.17.4.1649] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Tea derived from the leaves and buds of Camellia sinensis (Theaceae) is consumed worldwide. Green tea contains various components with specific health-promoting effects, and is believed to exert protective effects against diseases including cancer, diabetes and hepatitis, as well as obesity. Of the various tea components, the polyphenol catechins have been the subject of extensive investigation and among the catechins, (-)-epigallocatechin gallate has the strongest bioactivity in most cases. Our research group has postulated that hepatocyte nuclear factor-4α, sterol regulatory element-binding proteins, and tumor necrosis factor-α are targets of green tea constituents including (-)-epigallocatechin gallate for their anti-diabetes, anti-obesity, and anti-hepatitis effects, respectively. Published papers were reviewed to determine whether the observed changes in these factors can be correlated with anti-cancer effects of green tea. Two major action mechanisms of (-)-epigallocatechin gallate have been proposed; one associated with its anti-oxidative properties and the other with its pro-oxidative activity. When reactive oxygen species are assumed to be involved, our findings that (-)-epigallocatechin gallate down- regulated hepatocyte nuclear factor-4α, sterol regulatory element-binding proteins, and tumor necrosis factor-α may explain the anti-cancer effect of green tea as well. However, further studies are required to elucidate which determinant directs (-)-epigallocatechin gallate action as an anti-oxidant or a pro-oxidant for favorable activity.
Collapse
Affiliation(s)
- Sumio Hayakawa
- Department of Cellular and Molecular Medicine, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan E-mail : hayakawa.
| | | | | | | | | | | | | |
Collapse
|
15
|
Direct inhibition of matrix metalloproteinase-2 (MMP-2) by (−)-epigallocatechin-3-gallate: A possible role for the fibronectin type II repeats. Gene 2016; 593:126-130. [DOI: 10.1016/j.gene.2016.07.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/15/2016] [Accepted: 07/25/2016] [Indexed: 11/22/2022]
|
16
|
Chakrawarti L, Agrawal R, Dang S, Gupta S, Gabrani R. Therapeutic effects of EGCG: a patent review. Expert Opin Ther Pat 2016; 26:907-16. [DOI: 10.1080/13543776.2016.1203419] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Leewanshi Chakrawarti
- Department of Biotechnology, Jaypee Institute of Information technology, Noida, India
| | - Rishab Agrawal
- Department of Biotechnology, Jaypee Institute of Information technology, Noida, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information technology, Noida, India
| | - Sanjay Gupta
- Department of Biotechnology, Jaypee Institute of Information technology, Noida, India
| | - Reema Gabrani
- Department of Biotechnology, Jaypee Institute of Information technology, Noida, India
| |
Collapse
|
17
|
Liu S, Xu ZL, Sun L, Liu Y, Li CC, Li HM, Zhang W, Li CJ, Qin W. (‑)‑Epigallocatechin‑3‑gallate induces apoptosis in human pancreatic cancer cells via PTEN. Mol Med Rep 2016; 14:599-605. [PMID: 27176210 DOI: 10.3892/mmr.2016.5277] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/06/2016] [Indexed: 01/30/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a cancer suppressor gene and an important negative regulator in the phosphatidylinositide 3‑kinase (PI3K)/protein kinase B (Akt)/ mechanistic target of rapamycin (mTOR) signaling pathway. The PI3K/Akt/mTOR pathway can promote cancer cell survival, proliferation and progression. In the present study, the effects of (‑)‑epigallocatechin‑3‑gallate (EGCG) on PI3K/Akt/mTOR signaling in pancreatic cancer cells and PTEN knockdown cells were measured, in addition to assessing its therapeutic potential in pancreatic cancer. The apoptosis and proliferation of the cancer cells were examined by flow cytometry and Cell Counting kit‑8 assay, respectively. The expression of genes and proteins in the PI3K/Akt/mTOR signaling pathway were investigated by reverse transcription‑polymerase chain reaction and western blotting, respectively. The results suggested that the EGCG‑induced apoptosis, proliferation inhibition and downregulated expression of phosphorylated (p)‑Akt and p‑mTOR were partially attenuated in PTEN‑knockdown cells. In conclusion, the results indicated that EGCG is able to reduce proliferation and induce the apoptosis of pancreatic cancer cells associated with the expression of PTEN. Additionally, EGCG can suppress the expression of p‑Akt and p‑mTOR via PTEN to regulate the PI3K/Akt/mTOR pathway. The results suggest that EGCG may represent a potential treatment for pancreatic cancer, based on PTEN activation.
Collapse
Affiliation(s)
- Shi Liu
- Department of General Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Zhong-Ling Xu
- Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Li Sun
- Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Ying Liu
- Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Cheng-Chong Li
- Department of Pharmaceutical Science, Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Hong-Mei Li
- Department of Pharmaceutical Science, Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Wei Zhang
- Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Cheng-Jun Li
- Department of Pharmaceutical Science, Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Wei Qin
- Department of Pharmaceutical Science, Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| |
Collapse
|
18
|
Syntheses of methylated catechins and theaflavins using 2-nitrobenzenesulfonyl group to protect and deactivate phenol. J Antibiot (Tokyo) 2016; 69:299-312. [PMID: 26905756 DOI: 10.1038/ja.2016.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/08/2022]
Abstract
An efficient and versatile synthetic method for labile polyphenols was established using 2-nitrobenzenesulfonate (Ns) as a protecting group for phenol. This methodology provides regio- and stereoselective access to a range of methylated catechins, such as methylated epigallocatechin gallates, that are not readily available from natural sources. In addition, biomimetic synthesis of theaflavins from catechins was accomplished using Ns protection to minimize undesired side reactions of electron-rich aromatic rings during oxidation, enabling construction of the complex benzotropolone core in a single-step oxidative coupling reaction. Availability of these compounds will aid detailed structure-biological activity relationship studies of catechins.
Collapse
|
19
|
Zarella BL, Buzalaf MAR, Kato MT, Hannas AR, Salo T, Tjäderhane L, Prakki A. Cytotoxicity and effect on protease activity of copolymer extracts containing catechin. Arch Oral Biol 2016; 65:66-71. [PMID: 26867224 DOI: 10.1016/j.archoralbio.2016.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/05/2015] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate cytotoxicity and effect on protease activity of epigallocatechin-gallate extracted from experimental restorative dental copolymers in comparison to the control compound chlorhexidine. METHODS Copolymer disks were prepared from bis-GMA/TEGDMA (70/30 mol%) containing no compound (control) or 1% w/w of either epigallocatechin-gallate or chlorhexidine. MDPC-23 odontoblast-like cells were seeded with the copolymer extracts leached out into deionized water. Cell metabolic activity was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay at 24, 48, 72 h. Inhibition of protease activity by resin extracts was measured by a collagenolytic/genatinolytic enzyme activity assay and gelatin zymography. Data for MTT and protease inhibition were analyzed using two-way ANOVA followed by Tukey or Bonferroni post hoc tests (α=0.05). RESULTS The MTT revealed that at 72 h, extracts from control (16.7%) and chlorhexidine (22.3%) copolymers induced significant reduction in cell metabolism (p<0.05). All copolymer extracts caused enzymatic inhibition in a dose dependent manner (p<0.01). Even when highly diluted, epigallocatechin-gallate extract had a significant antiproteolytic activity (p<0.05). Zymograms showed that all extracts reduced activity of MMP-2 and MMP-9 (pro- and active forms), with MMP-9 exhibiting the highest percentage inhibition revealed by densitometry. CONCLUSIONS Epigallocatechin-gallate and chlorhexidine extracts did not exert cytotoxicity on evaluated cells when compared to control extracts. Both compounds retained antiproteolytic activity after extraction from a dental copolymer. CLINICAL SIGNIFICANCE Once extracted from a dental copolymer, epigallocatechin-gallate is not cytotoxic and retains antiproteolytic activity. These results may allow incorporation of epigallocatechin-gallate as a natural-safe alternative to chlorhexidine in functionalized restorative materials.
Collapse
Affiliation(s)
- Bruno Lara Zarella
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP 17012-901, Brazil.
| | | | - Melissa Thiemi Kato
- Department of Dentistry, University of Sagrado Coração, Bauru, SP 17011-160, Brazil.
| | - Angelica Reis Hannas
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP 17012-901, Brazil.
| | - Tuula Salo
- Institute of Dentistry, University of Oulu, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu FI-90014, Finland; Department of Oral and Maxillofacial Diseases, University of Helsinki, and Helsinki University Hospital, Helsinki FI-00014, Finland.
| | - Leo Tjäderhane
- Institute of Dentistry, University of Oulu, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu FI-90014, Finland; Department of Oral and Maxillofacial Diseases, University of Helsinki, and Helsinki University Hospital, Helsinki FI-00014, Finland.
| | - Anuradha Prakki
- Department of Clinical Sciences-Restorative, Faculty of Dentistry, University of Toronto, Toronto, ON M5G1G6, Canada.
| |
Collapse
|
20
|
Razali N, Abdul Aziz A, Lim CY, Mat Junit S. Investigation into the effects of antioxidant-rich extract of Tamarindus indica leaf on antioxidant enzyme activities, oxidative stress and gene expression profiles in HepG2 cells. PeerJ 2015; 3:e1292. [PMID: 26557426 PMCID: PMC4636403 DOI: 10.7717/peerj.1292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022] Open
Abstract
The leaf extract of Tamarindus indica L. (T. indica) had been reported to possess high phenolic content and showed high antioxidant activities. In this study, the effects of the antioxidant-rich leaf extract of the T. indica on lipid peroxidation, antioxidant enzyme activities, H2O2-induced ROS production and gene expression patterns were investigated in liver HepG2 cells. Lipid peroxidation and ROS production were inhibited and the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase was enhanced when the cells were treated with the antioxidant-rich leaf extract. cDNA microarray analysis revealed that 207 genes were significantly regulated by at least 1.5-fold (p < 0.05) in cells treated with the antioxidant-rich leaf extract. The expression of KNG1, SERPINC1, SERPIND1, SERPINE1, FGG, FGA, MVK, DHCR24, CYP24A1, ALDH6A1, EPHX1 and LEAP2 were amongst the highly regulated. When the significantly regulated genes were analyzed using Ingenuity Pathway Analysis software, “Lipid Metabolism, Small Molecule Biochemistry, Hematological Disease” was the top biological network affected by the leaf extract, with a score of 36. The top predicted canonical pathway affected by the leaf extract was the coagulation system (P < 2.80 × 10−6) followed by the superpathway of cholesterol biosynthesis (P < 2.17 × 10−4), intrinsic prothrombin pathway (P < 2.92 × 10−4), Immune Protection/Antimicrobial Response (P < 2.28 × 10−3) and xenobiotic metabolism signaling (P < 2.41 × 10−3). The antioxidant-rich leaf extract of T. indica also altered the expression of proteins that are involved in the Coagulation System and the Intrinsic Prothrombin Activation Pathway (KNG1, SERPINE1, FGG), Superpathway of Cholesterol Biosynthesis (MVK), Immune protection/antimicrobial response (IFNGR1, LEAP2, ANXA3 and MX1) and Xenobiotic Metabolism Signaling (ALDH6A1, ADH6). In conclusion, the antioxidant-rich leaf extract of T. indica inhibited lipid peroxidation and ROS production, enhanced antioxidant enzyme activities and significantly regulated the expression of genes and proteins involved with consequential impact on the coagulation system, cholesterol biosynthesis, xenobiotic metabolism signaling and antimicrobial response.
Collapse
Affiliation(s)
- Nurhanani Razali
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Azlina Abdul Aziz
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Chor Yin Lim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Sarni Mat Junit
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
21
|
Non-Nutrient, Naturally Occurring Phenolic Compounds with Antioxidant Activity for the Prevention and Treatment of Periodontal Diseases. Antioxidants (Basel) 2015; 4:447-81. [PMID: 26783837 PMCID: PMC4665427 DOI: 10.3390/antiox4030447] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/27/2023] Open
Abstract
One of the main factors able to explain the pathophysiological mechanism of inflammatory conditions that occur in periodontal disease is oxidative stress. Given the emerging understanding of this relationship, host-modulatory therapies using antioxidants could be interesting to prevent or slow the breakdown of soft and hard periodontal tissues. In this context, non-nutrient phenolic compounds of various foods and plants have received considerable attention in the last decade. Here, studies focusing on the relationship between different compounds of this type with periodontal disease have been collected. Among them, thymoquinone, coenzyme Q (CoQ), mangiferin, resveratrol, verbascoside and some flavonoids have shown to prevent or ameliorate periodontal tissues damage in animal models. However evidence regarding this effect in humans is poor and only limited to topical treatments with CoQ and catechins. Along with animal experiments, in vitro studies indicate that possible mechanisms by which these compounds might exert their protective effects include antioxidative properties, oxygen and nitrogen scavenging abilities, and also inhibitory effects on cell signaling cascades related to inflammatory processes which have an effect on RNS or ROS production as well as on antioxidant defense systems.
Collapse
|
22
|
Singh BN, Singh HB, Singh A, Naqvi AH, Singh BR. Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade: phytoblockers of metastasis cascade. Cancer Metastasis Rev 2015; 33:41-85. [PMID: 24390421 DOI: 10.1007/s10555-013-9457-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer metastasis is a multistep process in which a cancer cell spreads from the site of the primary lesion, passes through the circulatory system, and establishes a secondary tumor at a new nonadjacent organ or part. Inhibition of cancer progression by dietary phytochemicals (DPs) offers significant promise for reducing the incidence and mortality of cancer. Consumption of DPs in the diet has been linked to a decrease in the rate of metastatic cancer in a number of preclinical animal models and human epidemiological studies. DPs have been reported to modulate the numerous biological events including epigenetic events (noncoding micro-RNAs, histone modification, and DNA methylation) and multiple signaling transduction pathways (Wnt/β-catenin, Notch, Sonic hedgehog, COX-2, EGFR, MAPK-ERK, JAK-STAT, Akt/PI3K/mTOR, NF-κB, AP-1, etc.), which can play a key role in regulation of metastasis cascade. Extensive studies have also been performed to determine the molecular mechanisms underlying antimetastatic activity of DPs, with results indicating that these DPs have significant inhibitory activity at nearly every step of the metastatic cascade. DPs have anticancer effects by inducing apoptosis and by inhibiting cell growth, migration, invasion, and angiogenesis. Growing evidence has also shown that these natural agents potentiate the efficacy of chemotherapy and radiotherapy through the regulation of multiple signaling pathways. In this review, we discuss the variety of molecular mechanisms by which DPs regulate metastatic cascade and highlight the potentials of these DPs as promising therapeutic inhibitors of cancer.
Collapse
Affiliation(s)
- B N Singh
- Research and Development Division, Sowbhagya Biotech Private Limited, Cherlapally, Hyderabad, 500051, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
23
|
Ramadass SK, Anantharaman NV, Subramanian S, Sivasubramanian S, Madhan B. Paclitaxel/epigallocatechin gallate coloaded liposome: a synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells. Colloids Surf B Biointerfaces 2014; 125:65-72. [PMID: 25437065 DOI: 10.1016/j.colsurfb.2014.11.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/18/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
Matrix metalloproteinases (MMPs) have been investigated as a potential target for treating invasive breast cancers. The chemotherapy for breast cancer is often prescribed as a combination of drugs. The present study investigates a novel strategy of combining a MMP inhibitor, Epigallocatechin gallate (EGCG), along with an anticancer drug, Paclitaxel (PTX), in the form of a liposomal co-delivery system. The developed PTX/EGCG co-loaded liposomes showed an entrapment of 77.11±2.30% and 59.11±3.51% for PTX and EGCG, respectively. The in vitro efficacy of the liposomes was assessed by their ability to promote apoptosis and curtail cell invasion. On all parameters, namely cytotoxicity and caspase-3 activity that are indicators of apoptosis, and MMP-2 and - 9 inhibition and invasion assays that are indicators of cell invasion, the PTX/EGCG co-loaded liposomes showed better results than each of the individual drug loaded liposomes. These findings demonstrate the synergistic outcome of PTX/EGCG combination and indicate the suitability of PTX/EGCG co-loaded liposomes for the treatment of invasive breast cancer.
Collapse
Affiliation(s)
- Satiesh Kumar Ramadass
- Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai, Tamil Nadu, India
| | | | | | | | - Balaraman Madhan
- Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai, Tamil Nadu, India.
| |
Collapse
|
24
|
Harakeh S, Abou-Khouzam R, Damanhouri GA, Al-Hejin A, Kumosani T, Niedzwiecki A, Rath M, Barbour E, Diab-Assaf M, Azar R. Effects of nutrients on matrix metalloproteinases in human T-lymphotropic virus type 1 positive and negative malignant T-lymphocytes. Int J Oncol 2014; 45:2159-66. [PMID: 25189759 DOI: 10.3892/ijo.2014.2638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/08/2014] [Indexed: 11/05/2022] Open
Abstract
Experimental and clinical studies have revealed the effectiveness of a specific nutrient synergy (SNS) mixture composed of ascorbic acid (AA), lysine, proline, arginine, epigallocatechin gallate (EGCG) and other micronutrients in targeting crucial physiological mechanisms involved in cancer progression and metastasis. HTLV-1 causes adult T-cell leukemia (ATL). The spread and metastases of ATL as well as other tumors has been associated with matrix metalloproteinases, especially the gelatinases MMP-2 and MMP-9. The objective of this study was to investigate whether SNS, AA and EGCG affects the gelatinolytic activity of MMP-2 and its transcriptional and translational levels in HTLV-1-positive and -negative malignant T-cells. The results indicated that SNS and EGCG caused a dose-dependent decline in the activity, transcription and translation of MMP-2 after treatment with SNS and EGCG, while AA was only able to inhibit the activity at maximum doses tested and to some extent, the protein expression levels of MMP-2, without affecting their transcriptional levels. The highest activity was noted in the case of SNS which is likely to be due to a synergistic effect of the different constituents in the formulation. These results point towards the potential integration of SNS in the anti-invasive treatment of ATL and related diseases.
Collapse
Affiliation(s)
- Steve Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Kingdom of Saudi Arabia
| | - Raefa Abou-Khouzam
- Molecular Tumor-genesis and Anticancer Pharmacology, EDST, Lebanese University, Hadath, Lebanon
| | - Ghazi A Damanhouri
- Department of Hematology, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ahmed Al-Hejin
- Department of Biological Sciences, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Taha Kumosani
- Department of Biochemistry, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | - Mathias Rath
- Dr. Rath Research Institute, Santa Clara, CA, USA
| | - Elie Barbour
- Department of Animal and Veterinary Sciences, American University of Beirut (AUB), Beirut 11-0236, Lebanon
| | - Mona Diab-Assaf
- Molecular Tumor-genesis and Anticancer Pharmacology, EDST, Lebanese University, Hadath, Lebanon
| | - Rania Azar
- Molecular Tumor-genesis and Anticancer Pharmacology, EDST, Lebanese University, Hadath, Lebanon
| |
Collapse
|
25
|
Min KJ, Kwon TK. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr Med Res 2013; 3:16-24. [PMID: 28664074 PMCID: PMC5481703 DOI: 10.1016/j.imr.2013.12.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a type of catechin found in green tea. EGCG exhibits a variety of activities, including anti-inflammatory, antidiabetes, antiobesity, and antitumor. In this review, we focus on the antitumor effects of EGCG. EGCG inhibits carcinogen activity, tumorigenesis, proliferation, and angiogenesis, and induces cell death. These effects are associated with modulation of reactive oxygen species (ROS) production. Although EGCG has a dual function of antioxidant and pro-oxidant potential, EGCG-mediated modulation of ROS production is reported to be responsible for its anticancer effects. The EGCG-mediated inhibition of nuclear factor-κB signaling is also associated with inhibition of migration, angiogenesis, and cell viability. Activation of mitogen-activated protein kinases activity upregulates the anticancer effect of EGCG on migration, invasion, and apoptosis. In addition, EGCG could also induce epigenetic modification by inhibition of DNA methyltransferase activity and regulation of acetylation on histone, leading to an upregulation of apoptosis. Although EGCG promotes strong anticancer effects by multiple mechanisms, further studies are needed to define the use of EGCG in clinical treatment.
Collapse
Affiliation(s)
- Kyoung-jin Min
- Corresponding authors. Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeol-daero, Dalseo-gu, Daegu 704-701, Korea.
| | - Taeg Kyu Kwon
- Corresponding authors. Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeol-daero, Dalseo-gu, Daegu 704-701, Korea.
| |
Collapse
|
26
|
Sharma C, Nusri QEA, Begum S, Javed E, Rizvi TA, Hussain A. (-)-Epigallocatechin-3-gallate induces apoptosis and inhibits invasion and migration of human cervical cancer cells. Asian Pac J Cancer Prev 2013; 13:4815-22. [PMID: 23167425 DOI: 10.7314/apjcp.2012.13.9.4815] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Invasion and metastasis are the major causes of cancer-related death. Pharmacological or therapeutic interventions such as chemoprevention of the progression stages of neoplastic development could result in substantial reduction in the incidence of cancer mortality. (-)-Epigallocatechin-3-gallate (EGCG), a promising chemopreventive agent, has attracted extensive interest for cancer therapy utilizing its antioxidant, anti- proliferative and inhibitory effects on angiogenesis and tumor cell invasion. In this study, we assessed the influence of EGCG on the proliferative potential of HeLa cells by cell viability assay and authenticated the results by nuclear morphological examination, DNA laddering assay and cell cycle analysis. Further we analyzed the anti-invasive properties of EGCG by wound migration assay and gene expression of MMP-9 and TIMP-1 in HeLa cells. Our results indicated that EGCG induced growth inhibition of HeLa cells in a dose- and time- dependent manner. It was observed that cell death mediated by EGCG was through apoptosis. Interestingly, EGCG effectively inhibited invasion and migration of HeLa cells and modulated the expression of related genes (MMP-9 and TIMP-1) . These results indicate that EGCG may effectively suppress promotion and progression stages of cervical cancer development.
Collapse
Affiliation(s)
- Chhavi Sharma
- Department of Biotechnology, Manipal University, Dubai, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
27
|
Oh SJ, Jung SP, Han J, Kim S, Kim JS, Nam SJ, Lee JE, Kim JH. Silibinin inhibits TPA-induced cell migration and MMP-9 expression in thyroid and breast cancer cells. Oncol Rep 2013; 29:1343-8. [PMID: 23353996 DOI: 10.3892/or.2013.2252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/03/2012] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinases (MMPs) play an important role in cancer metastasis, cell migration and invasion. Herein, we investigated the effects of silibinin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell migration and MMP-9 expression in thyroid and breast cancer cells. Our results revealed that the levels of MMP-9 mRNA and protein expression were significantly increased by TPA but not MMP-2 in TPC-1 and MCF7 cells. To verify the regulatory mechanism of TPA-induced MMP-9 expression, we treated TPC-1 and MCF7 cells with the MEK1/2 inhibitor, UO126, and TPA-induced MMP-9 expression was significantly decreased. We also found that TPA-induced cell migration and MMP-9 expression was significantly decreased by silibinin. In addition, TPA-induced phosphorylation of MEK and ERK was also inhibited by silibinin. Taken together, we suggest that silibinin suppresses TPA-induced cell migration and MMP-9 expression through the MEK/ERK-dependent pathway in thyroid and breast cancer cells.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tabrez S, Priyadarshini M, Urooj M, Shakil S, Ashraf GM, Khan MS, Kamal MA, Alam Q, Jabir NR, Abuzenadah AM, Chaudhary AGA, Damanhouri GA. Cancer chemoprevention by polyphenols and their potential application as nanomedicine. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2013; 31:67-98. [PMID: 23534395 DOI: 10.1080/10590501.2013.763577] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Today cancer is a leading cause of death among the developed countries. Its highly complex nature makes it difficult to understand as it entails multiple cellular physiological systems such as cell signaling and apoptosis. The biggest challenges faced by cancer chemoprevention/chemotherapy is maintaining drug circulation and avoiding multidrug resistance. Overall there is modest evidence regarding the protective effects of nutrients from supplements against a number of cancers. Numerous scientific literatures available advocate the use of polyphenols for chemoprevention. Some groups have also suggested use of combination of nutrients in cancer prevention. However, we have yet to obtain the desired results in the line of cancer chemotherapy research. Nanotechnology can play a pivotal role in cancer treatment and prevention. Moreover, nanoparticles can be modified in various ways to prolong circulation, enhance drug localization, increase drug efficacy, and potentially decrease the chances of multidrug resistance. In this communication, we will cover the use of various polyphenols and nutrients in cancer chemoprevention. The application of nanotechnology in this regard will also be included. In view of available reports on the potential of nanoparticles, we suggest their usage along with different combination of nutrients as cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu S, Wang XJ, Liu Y, Cui YF. PI3K/AKT/mTOR signaling is involved in (-)-epigallocatechin-3-gallate-induced apoptosis of human pancreatic carcinoma cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:629-42. [PMID: 23711146 DOI: 10.1142/s0192415x13500444] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PI3K/AKT/mTOR signaling promotes cell survival, proliferation and progression in cancer cells. Targeting this pathway may lead to the development of novel therapeutic approaches for human cancers. Here, we examined the effects of (-)-epigallocatechin-3-gallate (EGCG) on the PI3K/AKT/mTOR pathway in pancreatic cancer cells, and assessed its therapeutic potential. In this study, the proliferation and apoptosis of PANC-1 cells were examined by MTT assay and flow cytometry, respectively. The expression of genes and proteins involved in the PI3K/AKT/mTOR pathway were measured by RT-PCR and western blotting, respectively. Our results revealed that EGCG dramatically inhibited the proliferation of PANC-1 cells and induced apoptosis simultaneously. Furthermore, it upregulated PTEN mRNA and protein expression levels, as well as downregulating the expression of phospho-AKT and phospho-mTOR. In conclusion, these results suggest that EGCG can suppress proliferation and induce apoptosis of PANC-1 cells in a time- and dose-dependent manner; moreover, EGCG also can upregulate PTEN expression and downregulate the expression of pAKT and p-mTOR to modulate the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Shi Liu
- The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | |
Collapse
|
30
|
Toyama T, Todoki K, Takahashi Y, Watanabe K, Takahashi SS, Sugiyama S, Lee MCI, Hamada N. Inhibitory effects of Jixueteng on P. gingivalis-induced bone loss and osteoclast differentiation. Arch Oral Biol 2012; 57:1529-36. [DOI: 10.1016/j.archoralbio.2012.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 11/17/2022]
|
31
|
Maeda-Yamamoto M, Saito T, Nesumi A, Tokuda Y, Ema K, Honma D, Ogino A, Monobe M, Murakami A, Murakami A, Tachibana H. Chemical analysis and acetylcholinesterase inhibitory effect of anthocyanin-rich red leaf tea (cv. Sunrouge). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:2379-86. [PMID: 22419270 DOI: 10.1002/jsfa.5644] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the effects of leaf order or crop season on anthocyanins and other chemicals in the anthocyanin-rich tea cultivar 'Sunrouge' (Camellia sinensis x C. taliensis) by using high-performance liquid chromatography, and to study the effect of 'Sunrouge' extract on acetylcholinesterase (AChE) activity in human neuroblastoma SK-N-SH cells. RESULTS The total anthocyanin content was higher in the third (3.09 mg g⁻¹) than in the second (2.24 mg g⁻¹) or first crop season (1.79 mg g⁻¹). The amount of anthocyanins contained in the stem was high (1.61 mg g⁻¹). In the third crop season, the concentrations of delphinidin-3-O-β-D-(6-(E)-p-coumaroyl)galactopyranoside (DCGa), cyanidin-3-O-β-D-(6-(E)-p-coumaroyl)galactopyranoside, delphinidin-3-O-β-D-galactopyranoside, delphinidin-3-O-β-D-(6-O-(Z)-p-coumaroyl)galactopyranoside, cyanidin-3-O-β-D-galactoside, and delphinidin-3-O-β-D-glucoside were 1.57 mg g⁻¹, 0.52 mg g⁻¹, 0.40 mg g⁻¹, 0.22 mg g⁻¹, 0.14 mg g⁻¹, and 0.11 mg g⁻¹, respectively. DCGa accounted for about 50% of the anthocyanins present. The suppressive effect of 'Sunrouge' water extract on AChE activity in human neuroblastoma SK-N-SH cells was the strongest among the three tea cultivars ('Sunrouge', 'Yabukita' and 'Benifuuki'). CONCLUSION These results suggested that 'Sunrouge' might protect humans from humans from AChE-related diseases by suppressing AChE activity. To obtain sufficient amounts of anthocyanins, catechins and/or caffeine for a functional food material, 'Sunrouge' from the third crop season should be used.
Collapse
Affiliation(s)
- Mari Maeda-Yamamoto
- NARO Institute of Vegetable and Tea Science, Shizuoka, Makurazaki, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mechanical properties and characteristics of developmental copolymers incorporating catechin or chlorhexidine. Dent Mater 2012; 28:687-94. [DOI: 10.1016/j.dental.2012.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 12/01/2011] [Accepted: 03/04/2012] [Indexed: 11/24/2022]
|
33
|
Korean Red Ginseng Suppresses Metastasis of Human Hepatoma SK-Hep1 Cells by Inhibiting Matrix Metalloproteinase-2/-9 and Urokinase Plasminogen Activator. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:965846. [PMID: 22570673 PMCID: PMC3337628 DOI: 10.1155/2012/965846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/06/2012] [Indexed: 01/01/2023]
Abstract
Korean red ginseng and ginsenosides have been claimed to possess wide spectrum of medicinal effects, of which anticancer effect is one. The present study was undertaken to investigate the antimetastatic effect of Korean red ginseng on human hepatoma as well as possible mechanisms. The inhibitory effect of the water extract of Korean red ginseng (WKRG) on the invasion and motility of SK-Hep1 cells was evaluated by the Boyden chamber assay in vitro. Without causing cytotoxicity, WKRG exerted a dose-dependent inhibitory effect on the invasion and motility, but not adhesion, of highly metastatic SK-Hep1 cells. Zymography analyses revealed significant downregulating effects on MMP-2, MMP-9, and uPA activities in SK-Hep1 cells. Western blot analyses also showed that WKRG treatment caused dose-dependent decreases in MMP-2 and MMP-9 protein expressions. Moreover, WKRG increased the levels of TIMP-1, TIMP-2, and PAI-1. The present study not only demonstrated that invasion and motility of cancer cells were inhibited by WKRG, but also indicated that such effects were likely associated with the decrease in MMP-2/-9 and uPA expressions of SK-Hep1 cells.
Collapse
|
34
|
Weng CJ, Yen GC. Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev 2012; 31:323-51. [DOI: 10.1007/s10555-012-9347-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Kanwar J, Taskeen M, Mohammad I, Huo C, Chan TH, Dou QP. Recent advances on tea polyphenols. Front Biosci (Elite Ed) 2012; 4:111-31. [PMID: 22201858 DOI: 10.2741/363] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the past decade many scientific and medical studies have focused on green tea for its long-purported health benefits. There is convincing evidence that tea is a cup of life. It has multiple preventive and therapeutic effects. This review thus focuses on the recent advances of tea polyphenols and their applications in the prevention and treatment of human cancers. Of the various polyphenols in tea, (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant, and active compound studied in tea research. EGCG inhibits several molecular targets to inhibit cancer initiation and modulates several essential survival pathways to block cancer progression. Herein, we describe the various mechanisms of action of EGCG and also discuss previous and current ongoing clinical trials of EGCG and green tea polyphenols in different cancer types.
Collapse
Affiliation(s)
- Jyoti Kanwar
- The Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, and Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
36
|
SUZUKI Y, MIYOSHI N, ISEMURA M. Health-promoting effects of green tea. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:88-101. [PMID: 22450537 PMCID: PMC3365247 DOI: 10.2183/pjab.88.88] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Green tea is manufactured from the leaves of the plant Camellia sinensis Theaceae and has been regarded to possess anti-cancer, anti-obesity, anti-atherosclerotic, anti-diabetic, anti-bacterial, and anti-viral effects. Many of the beneficial effects of green tea are related to the activities of (-)-epigallocatechin gallate (EGCG), a major component of green tea catechins. For about 20 years, we have engaged in studies to reveal the biological activities and action mechanisms of green tea and EGCG. This review summarizes several lines of evidence to indicate the health-promoting properties of green tea mainly based on our own experimental findings.
Collapse
Affiliation(s)
- Yasuo SUZUKI
- Faculty of Human Life Sciences, Nagoya Keizai University, Inuyama, Japan
| | - Noriyuki MIYOSHI
- Graduate School of Nutritional and Environmental Sciences and Global COE Program, University of Shizuoka, Shizuoka, Japan
| | - Mamoru ISEMURA
- Graduate School of Nutritional and Environmental Sciences and Global COE Program, University of Shizuoka, Shizuoka, Japan
- Correspondence should be addressed: M. Isemura, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan (e-mail: )
| |
Collapse
|
37
|
Lee MH, Han DW, Hyon SH, Park JC. Apoptosis of human fibrosarcoma HT-1080 cells by epigallocatechin-3-O-gallate via induction of p53 and caspases as well as suppression of Bcl-2 and phosphorylated nuclear factor-κB. Apoptosis 2011; 16:75-85. [PMID: 20963498 DOI: 10.1007/s10495-010-0548-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Animal tumor bioassays and in vitro cell culture systems have demonstrated that epigallocatechin-3-O-gallate (EGCG), the predominant catechin in green tea, possesses anti-proliferative and pro-apoptotic effects on various cancer cells and tumors. In this study, we investigated the effects of EGCG on cell growth, cell cycle progression, and apoptosis in human fibrosarcoma HT-1080 cells. The involvement of p53, Bcl-2, Bax, caspases, and nuclear factor-κB (NF-κB) was examined as a mechanism for the anti-cancer activity of EGCG. Time-dependent intracellular trafficking of EGCG was also determined using fluorescein isothiocyanate (FITC)-conjugated EGCG (FITC-EGCG). Our data show that EGCG treatment caused dose-dependent cell growth inhibition, cell cycle arrest at the G(0)/G(1) phase, and DNA fragmentation suggesting the induction of apoptosis in HT-1080 cells. Immunoblot analysis revealed that the expression of p53, caspase-7 and -9 as well as the ratio of Bax/Bcl-2 protein increased significantly with higher EGCG concentrations and longer incubation times. Moreover, expression of phosphorylated NF-κB/p65 in HT-1080 cells was inhibited by EGCG treatment in a dose-dependent manner, while that of unphosphorylated NF-κB/p65 remained unaffected. Here we also reveal time-dependent internalization of FITC-EGCG into the cytosol of HT-1080 cells and its subsequent nuclear translocation. These results suggest that EGCG may interrupt exogenous signals directed towards genes involved in proliferation and cell cycle progression. Taken together, our data indicate that HT-1080 apoptosis may be mediated through the induction of p53 and caspases by the pro-oxidant activity of internalized EGCG, as well as suppression of Bcl-2 and phosphorylated NF-κB by the antioxidant activity of EGCG.
Collapse
Affiliation(s)
- Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea
| | | | | | | |
Collapse
|
38
|
Chen PN, Chu SC, Kuo WH, Chou MY, Lin JK, Hsieh YS. Epigallocatechin-3 gallate inhibits invasion, epithelial-mesenchymal transition, and tumor growth in oral cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:3836-3844. [PMID: 21388137 DOI: 10.1021/jf1049408] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is critical for the progression, invasion, and metastasis of epithelial tumorgenesis. Here, we provided molecular evidence associated with the antimetastatic effect of green tea polyphenol epigallocatechin-3 gallate (EGCG) in an oral squamous cell culture system by showing a nearly complete inhibition on the invasion (P < 0.001) of squamous cell carcinoma-9 (SCC-9) cells via a reduced expression of matrix metalloproteinase-2 (P < 0.001) and urokinasetype plasminogen activator (P < 0.001). EGCG exerted an inhibitory effect on cell migration (P < 0.001), motility (P < 0.001), spread, and adhesion (P < 0.001). We performed Western blot to find that EGCG inhibited p-focal adhesion kinase (p-FAK), p-Src, snail-1, and vimentin, indicating the anti-EMT effect of EGCG in oral squamous cell carcinoma. EGCG was also sufficient to inhibit phorbol-12-myristate-13-acetate-induced cell invasion and matrix metalloproteinase-9 expression, as evidenced by its inhibition on the tumor growth of SCC-9 cells in vivo via cancer cell xenografted nude mice mode. These results suggested that EGCG could reduce the invasion and cell growth of tumor cells, and such a characteristic may be of great value in developing a potential cancer therapy.
Collapse
Affiliation(s)
- Pei-Ni Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
Maeda-Yamamoto M, Ema K, Tokuda Y, Monobe M, Tachibana H, Sameshima Y, Kuriyama S. Effect of green tea powder (Camellia sinensis L. cv. Benifuuki) particle size on O-methylated EGCG absorption in rats; The Kakegawa Study. Cytotechnology 2011; 63:171-9. [PMID: 21207145 DOI: 10.1007/s10616-010-9331-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/17/2010] [Indexed: 11/27/2022] Open
Abstract
Tea polyphenols, e.g., (-)-epigallocatechin-3-O-(3-O-methyl gallate (EGCG3"Me), (-)-epigallocatechin-3-O-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin-3-O-gallate (ECG), and (-)-epicatechin (EC), are believed to be responsible for the beneficial effects of tea. 'Benifuuki', a tea (Camellia sinensis L.) cultivar grown in Japan, is rich in the anti-allergic molecule epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3"Me). Pulverized Benifuuki green tea powder (BGP) is more widely distributed than leaf tea in Japan. Japanese people mix their pulverized tea with water directly, whereas it is common to drink leaf tea after extraction. However, few studies of the effects of BGP particle size on polyphenol bioavailability have been performed. This study was conducted to investigate the absorption of catechins in rats after the intragastric administration of Benifuuki green tea. Therefore, we assessed the plasma concentrations of catechins following the ingestion of BGP with different mean particle sizes (2.86, 18.6, and 76.1 μm) or Benifuuki green tea infusion (BGI) as a control in rats. The bioavailabilities of EGCG3"Me, EGCG, ECG, EGC, and EC were analyzed after the oral administration of a single dose of Benifuuki green tea (125 mg/rat) to rats. The plasma concentrations of tea catechins were determined by HPLC analysis combined with of electrochemical detection (ECD) using a coulometric array. The AUC (area under the drug concentration versus time curve; min μg/mL) of ester-type catechins (EGCG3"Me, EGCG, and ECG) for the BGP 2.86 μm were significantly higher than those in the infusion and 18.6 and 76.1 μm BGP groups, but the AUC of free-type catechins (EGC and EC) showed no differences between these groups. Regarding the peak plasma level of EGCG3"Me adjusted for intake, BGP 2.86 μm and BGI showed higher values than the BGP 18.6 and 76.1 μm groups, and the peak plasma levels of the other catechins displayed the same tendency. The present study demonstrates that the bioavailability of ester-type catechins (EGCG and ECG) can be improved by reducing the particle size of green tea, but the plasma level of EGCG3"Me in the BGI group was similar to that in the BGP 2.86 μm group. This result suggests that drinking Benifuuki green tea with a particle size of around 2 μm would deliver the anti-allergic EGCG3"Me and the anti-oxidant EGCG efficiently.
Collapse
Affiliation(s)
- Mari Maeda-Yamamoto
- National Institute of Vegetable and Tea Sciences, National Agriculture and Food Research Organization, 2769 Kanaya-Shishidoi, Shimada, Shizuoka, 428-8501, Japan,
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Metastasis is the most deadly aspect of cancer and results from several interconnected processes including cell proliferation, angiogenesis, cell adhesion, migration, and invasion into the surrounding tissue. The appearance of metastases in organs distant from the primary tumor is the most destructive feature of cancer. Metastasis remains the principal cause of the deaths of cancer patients despite decades of research aimed at restricting tumor growth. Therefore, inhibition of metastasis is one of the most important issues in cancer research. Several in vitro, in vivo, and epidemiological studies have reported that the consumption of green tea may decrease cancer risk. (-)-Epigallocatechin-3-gallate, major component of green tea, has been shown to inhibit tumor invasion and angiogenesis which are essential for tumor growth and metastasis. This article summarizes the effect of green tea and its major polyphenolic compounds on cancer and metastasis against most commonly diagnosed cancer sites.
Collapse
|
41
|
Huang GJ, Yang CM, Chang YS, Amagaya S, Wang HC, Hou WC, Huang SS, Hu ML. Hispolon suppresses SK-Hep1 human hepatoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen activator through the PI3K/Akt and ERK signaling pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:9468-75. [PMID: 20698552 DOI: 10.1021/jf101508r] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cancer metastasis is a primary cause of cancer death. Hispolon is an active phenolic compound of Phellinus linteus, a mushroom that has recently been shown to have antioxidant and anticancer activities. In this study, we first observed that hispolon exerted a dose-dependent inhibitory effect on invasion and motility, but not on adhesion, of the highly metastatic SK-Hep1 cells in the absence of cytotoxicity. Mechanistically, hispolon decreased the expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and urokinase-plasminogen activator (uPA) in a concentration-dependent manner. Hispolon also inhibited phosphorylation of extracellular signaling-regulating kinase1/2 (ERK1/2), phosphatidylinositol-3-kinase/serine/threonine protein kinase (or protein kinase B (PI3K/Akt), and focal adhesion kinase (FAK). Furthermore, treatment of SK-Hep1 cells with an inhibitor specific for ERK1/2 (PD98256) decreased the expression of MMP-2, and MMP-9. These results demonstrate that hispolon can inhibit the metastasis of SK-Hep1 cells by reduced expression of MMP-2, MMP-9, and uPA through the suppression of the FAK signaling pathway and of the activity of PI3K/Akt and Ras homologue gene family, member A (RhoA). These findings suggest that hispolon may be used as an antimetastatic agent.
Collapse
Affiliation(s)
- Guan-Jhong Huang
- Institute of Chinese Pharmaceutical Sciences, College of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung City 404, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Melgarejo E, Medina MA, Sánchez-Jiménez F, Urdiales JL. Targeting of histamine producing cells by EGCG: a green dart against inflammation? J Physiol Biochem 2010; 66:265-70. [PMID: 20652470 DOI: 10.1007/s13105-010-0033-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 06/30/2010] [Indexed: 12/13/2022]
Abstract
The human body is made of some 250 different cell types. From them, only a small subset of cell types is able to produce histamine. They include some neurons, enterochromaffin-like cells, gastrin-containing cells, mast cells, basophils, and monocytes/macrophages, among others. In spite of the reduced number of these histamine-producing cell types, they are involved in very different physiological processes. Their deregulation is related with many highly prevalent, as well as emergent and rare diseases, mainly those described as inflammation-dependent pathologies, including mastocytosis, basophilic leukemia, gastric ulcer, Crohn disease, and other inflammatory bowel diseases. Furthermore, oncogenic transformation switches some non-histamine-producing cells to a histamine producing phenotype. This is the case of melanoma, small cell lung carcinoma, and several types of neuroendocrine tumors. The bioactive compound epigallocatechin-3-gallate (EGCG), a major component of green tea, has been shown to target histamine-producing cells producing great alterations in their behavior, with relevant effects on their proliferative potential, as well as their adhesion, migration, and invasion potentials. In fact, EGCG has been shown to have potent anti-inflammatory, anti-tumoral, and anti-angiogenic effects and to be a potent inhibitor of the histamine-producing enzyme, histidine decarboxylase. Herein, we review the many specific effects of EGCG on concrete molecular targets of histamine-producing cells and discuss the relevance of these data to support the potential therapeutic interest of this compound to treat inflammation-dependent diseases.
Collapse
Affiliation(s)
- Esther Melgarejo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga and CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| | | | | | | |
Collapse
|
44
|
Epigallocatechin-3-gallate (EGCG) downregulates gelatinase-B (MMP-9) by involvement of FAK/ERK/NFkappaB and AP-1 in the human breast cancer cell line MDA-MB-231. Anticancer Drugs 2010; 21:632-44. [PMID: 20527725 DOI: 10.1097/cad.0b013e32833a4385] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is effective against the initiation, progression, and invasion of carcinogenesis.Matrix-metalloproteinases (MMPs) are a family of endopeptidases that hydrolyze the majority of extracellular proteins. MMP-9 is one of the most important members of the family and we observed the effect of EGCG on MMP-9 in the human breast cancer cell line, MDA-MB-231.The effect of EGCG on MMP-9 was studied by gelatin zymography, western blot, quantitative and semiquantitative real-time RT-PCR, immunoflourescence, cell adhesion assay, enzyme-linked immunosorbent assay,and electrophoretic mobility shift assay. EGCG treatment reduced the activity, protein, and mRNA expression ofMMP-9 and enhanced the expression of the tissue inhibitor of MMP 1 (TIMP-1). EGCG downregulated the activation of focal adhesion kinase (FAK) and extracellular regulated kinase (ERK), reduced the adhesion of MDA-MB-231 cells to fibronectin and vitronectin, and reduced the mRNA expression of the integrin receptors alpha5beta1 and alphavbeta3. The expression of the nuclear factor kappa B (NFjB), and the DNA binding activity of NFjB and activator protein 1 (AP1)to MMP-9 promoter were noticeably reduced on EGCG treatment. Upregulation of TIMP-1 and disruption of the functional status of integrin receptors may indicate decreased MMP-9 activation; inhibition of FAK andERK activation might indicate disruption in the FAK/ERK-induced MMP-9 secretion and induction. Decreased DNA binding activity of NFjB and AP1 to MMP-9 promoter might indicate transcriptional deregulation of MMP-9 gene on EGCG treatment. We propose EGCG as a potential inhibitor of the expression and activity of MMP-9 by a process involving FAK/ERK and transcription factorsin MDA-MB-231.
Collapse
|
45
|
Kim WJ, Lee MY, Kim JH, Suk K, Lee WH. Decursinol angelate blocks transmigration and inflammatory activation of cancer cells through inhibition of PI3K, ERK and NF-kappaB activation. Cancer Lett 2010; 296:35-42. [PMID: 20381234 DOI: 10.1016/j.canlet.2010.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 12/31/2022]
Abstract
Inflammation is known to be closely associated with the development of cancer. Decursinol angelate (DA), a coumarin compound isolated from Angelica gigas and related compounds have been shown to possess potent anti-inflammatory activities. However, little is known about their effects on the inflammatory processes associated with cancer. In this study, the anti-inflammatory effect of DA was evaluated in cancer cell lines with respect to cellular invasion through the extracellular matrix (ECM) and the expression of pro-inflammatory mediators such as cytokine, cell adhesion molecules and matrix metalloproteinase (MMP)-9. DA inhibited the invasion of fibrosarcoma cell line, HT1080 and breast cancer cell line, MDA-MB-231 in the Matrigel invasion assay. DA-mediated suppression of cancer cell invasion was accomplished by suppression of PI3K activity known to be associated with cytoskeletal rearrangement related to cellular migration. DA also suppressed the adhesion of cancer cells to ECM mediated by down-regulation of beta(1)-integrin expression levels. Furthermore, DA inhibited the expression of pro-inflammatory cytokines and MMP-9 through suppression of PI3K, ERK and NF-kappaB activation. These results demonstrate that DA suppresses invasion and inflammatory activation of cancer cells through modulation of PI3K/AKT, ERK and NF-kappaB. These anti-inflammatory activities of DA may contribute to its anti-cancer activity.
Collapse
Affiliation(s)
- Won-Jung Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | |
Collapse
|
46
|
Honma D, Tagashira M, Kanda T, Maeda-Yamamoto M. Identifications of inhibitors of IgE production by human lymphocytes isolated from 'Cha Chuukanbohon Nou 6' tea leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:168-174. [PMID: 20355027 DOI: 10.1002/jsfa.3807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Tea (Camellia sinensis L.) is consumed all over the world and in especially large quantities in Japan and China, where it has been used not only as a daily beverage but also for medicinal purposes for thousands of years. Tea has been found to exhibit various bioregulatory activities, including antiallergic, anticarcinogenic, antimetastatic, antioxidative, antihypertensive, antihypercholesterolemic, anti-dental caries and antibacterial effects, and to influence intestinal flora. RESULTS Cha Chuukanbohon Nou 6 is a tea cultivar improved by the National Institute of Vegetable and Tea Science (NIVTS) in Japan. On comparing chemical constituents of 11 varieties of tea leaves by high-performance liquid chromatography, we found two new major compounds in Cha Chuukanbohon Nou 6. Nuclear magnetic resonance spectroscopy revealed these compounds to be theogallin and 1,2-di-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-beta-D-glucopyranose. The two were similar in chemical structure to strictinin, an inhibitor of immunoglobulin (Ig) production. Thus their effects on the production of Igs by peripheral blood lymphocytes were tested. Both compounds, like strictinin, inhibited IgE production. CONCLUSION The results suggest Cha Chuukanbohon Nou 6 to be the basis of an antiallergic beverage.
Collapse
Affiliation(s)
- Daiki Honma
- Research Laboratory for Health and Gustatory Science, Asahi Breweries Ltd, Ibaraki 302-0106, Japan.
| | | | | | | |
Collapse
|
47
|
Sarkar FH, Li Y, Wang Z, Kong D. Cellular signaling perturbation by natural products. Cell Signal 2009; 21:1541-7. [PMID: 19298854 PMCID: PMC2756420 DOI: 10.1016/j.cellsig.2009.03.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 12/15/2022]
Abstract
Cancer cells are known to have alterations in multiple cellular signaling pathways and because of the complexities in the communication between multiple signaling networks, the treatment and the cure for most human malignancies is still an open question. Perhaps, this is the reason why specific inhibitors that target only one pathway have been typically failed in cancer treatment. However, the in vitro and in vivo studies have demonstrated that some natural products such as isoflavones, indole-3-carbinol (I3C), 3,3'-diindolylmethane (DIM), curcumin, (-)-epigallocatechin-3-gallate (EGCG), resveratrol, lycopene, etc, have inhibitory effects on human and animal cancers through targeting multiple cellular signaling pathways and thus these "natural agents" could be classified as multi-targeted agents. This is also consistent with the epidemiological studies showing that the consumption of fruits, soybean and vegetables is associated with reduced risk of several types of cancers. By regulating multiple important cellular signaling pathways including NF-kappaB, Akt, MAPK, Wnt, Notch, p53, AR, ER, etc, these natural products are known to activate cell death signals and induce apoptosis in pre-cancerous or cancer cells without affecting normal cells. Therefore, non-toxic "natural agents" harvested from the bounties of nature could be useful either alone or in combination with conventional therapeutics for the prevention of tumor progression and/or treatment of human malignancies.
Collapse
Affiliation(s)
- Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, 4100 John R, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
48
|
Regioselective synthesis of methylated epigallocatechin gallate via nitrobenzenesulfonyl (Ns) protecting group. Bioorg Med Chem Lett 2009; 19:4171-4. [DOI: 10.1016/j.bmcl.2009.05.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 11/30/2022]
|
49
|
Sen T, Moulik S, Dutta A, Choudhury PR, Banerji A, Das S, Roy M, Chatterjee A. Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7. Life Sci 2008; 84:194-204. [PMID: 19105967 DOI: 10.1016/j.lfs.2008.11.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/09/2008] [Accepted: 11/24/2008] [Indexed: 01/17/2023]
Abstract
AIMS The tumor inhibiting property of green tea polyphenol epigallocatechin-3-gallate (EGCG) is well documented. Studies reveal that matrix-metalloproteinases (MMPs) play pivotal roles in tumor invasion through degradation of basement membranes and extracellular matrix (ECM). We studied the effect of EGCG on matrixmetalloproteinases-2 (MMP-2), the factors involved in activation, secretion and signaling molecules that might be involved in the regulation of MMP-2 in human breast cancer cell line, MCF-7. MAIN METHODS MCF-7 was treated with EGCG (20 muM, 24 h), the effect of EGCG on MMP-2 expression, activity and its regulatory molecules were studied by gelatin zymography, Western blot, quantitative and semi-quantitative real time RT-PCR, immunoflourescence and cell adhesion assay. KEY FINDINGS EGCG treatment reduced the activity, protein expression and mRNA expression level of MMP-2. EGCG treatment reduced the expression of focal adhesion kinase (FAK), membrane type-1-matrix metalloproteinase (MT1-MMP), nuclear factor-kappa B (NF-kB), vascular endothelial growth factor (VEGF) and reduced the adhesion of MCF-7 cells to ECM, fibronectin and vitronectin. Real time RT-PCR revealed a reduced expression of integrin receptors alpha5, beta1, alphav and beta3 due to EGCG treatment. SIGNIFICANCE Down regulation of expression of MT1-MMP, NF-kB, VEGF and disruption of functional status of integrin receptors may indicate decreased MMP-2 activation; low levels of FAK expression might indicate disruption in FAK-induced MMP-2 secretion and decrease in activation of phosphatidyl-inositol-3-kinase (PI-3K), extracellular regulated kinase (ERK) indicates probable hindrance in MMP-2 regulation and induction. We propose EGCG as potential inhibitor of expression and activity of pro-MMP-2 by a process involving multiple regulatory molecules in MCF-7.
Collapse
Affiliation(s)
- Triparna Sen
- Department of Receptor Biology & Tumor Metastasis, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026, India
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ramos S. Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 2008; 52:507-26. [PMID: 18435439 DOI: 10.1002/mnfr.200700326] [Citation(s) in RCA: 456] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prevention of cancer through dietary intervention recently has received an increasing interest, and dietary polyphenols have become not only important potential chemopreventive, but also therapeutic, natural agents. Polyphenols have been reported to interfere at the initiation, promotion and progression of cancer. They might lead to the modulation of proteins in diverse pathways and require the integration of different signals for the final chemopreventive or therapeutic effect. Polyphenols have been demonstrated to act on multiple key elements in signal transduction pathways related to cellular proliferation, differentiation, apoptosis, inflammation, angiogenesis and metastasis; however, these molecular mechanisms of action are not completely characterized and many features remain to be elucidated. The aim of this review is to provide insights into the molecular basis of potential chemopreventive and therapeutic activities of dietary polyphenols with emphasis in their ability to control intracellular signalling cascades considered as relevant targets in a cancer preventive approach.
Collapse
Affiliation(s)
- Sonia Ramos
- Department of Metabolism and Nutrition, Instituto del Frío, Consejo Superior de Investigaciones Científicas(CSIC), Ciudad Universitaria, Madrid, Spain.
| |
Collapse
|