1
|
Gong D, Prusky D, Long D, Bi Y, Zhang Y. Moldy odors in food - a review. Food Chem 2024; 458:140210. [PMID: 38943948 DOI: 10.1016/j.foodchem.2024.140210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Food products are susceptible to mold contamination, releasing moldy odors. These moldy odors not only affect the flavor of food, but also pose a risk to human health. Moldy odors are a mixture of volatile organic compounds (VOCs) released by the fungi themselves, which are the main source of moldy odors in moldy foods. These VOCs are secondary metabolites of fungi and are synthesized through various biosynthetic pathways. Both the fungi themselves and environmental factors affect the release of moldy odors. This review summarized the main components of musty odors in moldy foods and their producing fungi. In addition, this review focused on the functions of moldy volatile organic compounds (MVOCs) and the biosynthetic pathways of the major MVOCs, and summarized the factors affecting the release of MVOCs as well as the detection methods. It expected to provide a basis for ensuring food safety.
Collapse
Affiliation(s)
- Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Dov Prusky
- Department of Postharvest and Food Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Liu Y, Cadwallader DC, Drake M. Identification of predominant aroma components of dried pea protein concentrates and isolates. Food Chem 2023; 406:134998. [PMID: 36450193 DOI: 10.1016/j.foodchem.2022.134998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/26/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Pea protein is a growing plant-based protein ingredient. Pea proteins have characteristic undesirable flavors, leading to challenges in ingredient applications. The objective of this study was to characterize the flavor of pea proteins using descriptive sensory analysis and instrumental volatile compound analyses. Seven sensory attributes were identified in most pea proteins at variable intensities: cereal/grain, cardboard, green pea, beany/yellow pea, bitter, umami, and astringent. Other attributes, cheesy, doughy, sulfur, pyrazine, fecal, sweet aromatic and salty taste, were distinguishing flavors of some pea proteins (p < 0.05). The key aroma-active compounds in pea proteins were hexanal, heptanal, benzaldehyde, methional, 2-hexanone, 2-heptanone, 1-octen-3-one, 2-nonanone, 1-nonen-3-one, 1-pentanol, 2-pentyl furan, 2-isopropyl-3-methoxypyrazine, 2,5-dimethyl-3-(3-methylbutyl)-pyrazine and 2-methyl-isoborneol (present in all representative samples). Volatile compounds responsible for the majority of sample variation included 2-methyl butanal, (Z)-3-hexanal, (E,E)-2,4-decadienal, 1-octen-3-one, 2-decanone, 1-pentanol, 1-octen-3-ol, geosmin and 2,3-diethyl-5-methyl pyrazine (p < 0.05). This study can facilitate product development and flavor masking of various pea protein applications.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh 27695, United States
| | - Dylan C Cadwallader
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh 27695, United States
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh 27695, United States.
| |
Collapse
|
3
|
Cheli F, Ottoboni M, Fumagalli F, Mazzoleni S, Ferrari L, Pinotti L. E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology? Toxins (Basel) 2023; 15:146. [PMID: 36828460 PMCID: PMC9958648 DOI: 10.3390/toxins15020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Mycotoxin risk in the feed supply chain poses a concern to animal and human health, economy, and international trade of agri-food commodities. Mycotoxin contamination in feed and food is unavoidable and unpredictable. Therefore, monitoring and control are the critical points. Effective and rapid methods for mycotoxin detection, at the levels set by the regulations, are needed for an efficient mycotoxin management. This review provides an overview of the use of the electronic nose (e-nose) as an effective tool for rapid mycotoxin detection and management of the mycotoxin risk at feed business level. E-nose has a high discrimination accuracy between non-contaminated and single-mycotoxin-contaminated grain. However, the predictive accuracy of e-nose is still limited and unsuitable for in-field application, where mycotoxin co-contamination occurs. Further research needs to be focused on the sensor materials, data analysis, pattern recognition systems, and a better understanding of the needs of the feed industry for a safety and quality management of the feed supply chain. A universal e-nose for mycotoxin detection is not realistic; a unique e-nose must be designed for each specific application. Robust and suitable e-nose method and advancements in signal processing algorithms must be validated for specific needs.
Collapse
Affiliation(s)
- Federica Cheli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| | - Matteo Ottoboni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Francesca Fumagalli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Sharon Mazzoleni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luca Ferrari
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| |
Collapse
|
4
|
Ali Shah Z, Khan K, Iqbal Z, Masood T, Hemeg HA, Rauf A. Metabolic and pharmacological profiling of Penicillium claviforme by a combination of experimental and bioinformatic approaches. Ann Med 2022; 54:2102-2114. [PMID: 35942863 PMCID: PMC9367661 DOI: 10.1080/07853890.2022.2102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Penicillium produces a wide range of structurally diverse metabolites with significant pharmacological impacts in medicine and agriculture. For the first time, a complete metabolome of Penicillium claviforme (P. claviforme) (FBP-DNA-1205) was studied alongside pharmacological research in this study. METHODS The metabolic profile of P. claviforme fermented on Potato Dextrose Broth (PDB) was investigated in this work. The complete metabolomics studies of fungus were performed using GC-MS and LC-MS-QTOF techniques. An in vitro model was utilised to study the cytotoxic and antioxidant activities, while an in vivo model was employed to investigate the antinociceptive and acute toxicity activities. Molecular Operating Environment (MOE) software was used for molecular docking analysis. RESULTS GC-MS study showed the presence of alkanes, fatty acids, esters, azo and alcoholic compounds. Maculosin, obtain, phalluside, quinoline, 4,4'-diaminostilbene, funaltrexamine, amobarbital, and fraxetin were among the secondary metabolites identified using the LC-MS-QTOF technique. The n-hexane fraction of P. claviforme displayed significant cytotoxic activity in vitro, with an LD50 value of 92.22 µgml-1. The antinociceptive effects in vivo were dose-dependent significantly (p < .001). Interestingly, during the 72 h of investigation, no acute toxicity was demonstrated. In addition, a docking study of tentatively identified metabolites against the inflammatory enzyme (COX-2) supported the antinociceptive effect in an in silico model. CONCLUSION Metabolic profile of P. claviforme shows the presence of biologically relevant compounds in ethyl acetate extract. In addition, P. claviforme exhibits substantial antioxidant and cytotoxic activities in an in vitro model as well as antinociceptive activity in an in vivo model. The antinociceptive action is also supported by a molecular docking study. This research has opened up new possibilities in the disciplines of mycology, agriculture, and pharmaceutics. Key messagesThe first time explored complete metabolome through GC-MS and LC-MS-QTOF.Both in vivo & in vitro pharmacological investigation of P. claviforme.In silico molecular docking of LC-MS-QTOF metabolites.
Collapse
Affiliation(s)
- Zafar Ali Shah
- Department of Chemistry, Islamia College Peshawar, Peshawar, Pakistan.,Department of Agricultural Chemistry & Biochemistry, The University of Agriculture, Peshawar, Pakistan
| | - Khalid Khan
- Department of Chemistry, Islamia College Peshawar, Peshawar, Pakistan
| | - Zafar Iqbal
- Department of Agricultural Chemistry & Biochemistry, The University of Agriculture, Peshawar, Pakistan
| | - Tariq Masood
- Department of Agricultural Chemistry & Biochemistry, The University of Agriculture, Peshawar, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Anbar, Pakistan
| |
Collapse
|
5
|
Identification of Biomarker Volatile Organic Compounds Released by Three Stored-Grain Insect Pests in Wheat. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061963. [PMID: 35335327 PMCID: PMC8952281 DOI: 10.3390/molecules27061963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Monitoring and early detection of stored-grain insect infestation is essential to implement timely and effective pest management decisions to protect stored grains. We report a reliable analytical procedure based on headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS) to assess stored-grain infestation through the detection of volatile compounds emitted by insects. Four different fibre coatings were assessed; 85 µm CAR/PDMS had optimal efficiency in the extraction of analytes from wheat. The headspace profiles of volatile compounds produced by Tribolium castaneum (Herbst), Rhyzopertha dominica (Fabricius), and Sitophilus granarius (Linnaeus), either alone or with wheat, were compared with those of non-infested wheat grains. Qualitative analysis of chromatograms showed the presence of different volatile compound profiles in wheat with pest infestation compared with the wheat controls. Wheat-specific and insect-specific volatile compounds were identified, including the aggregation pheromones, dominicalure-1 and dominicalure-2, from R. dominica, and benzoquinones homologs from T. castaneum. For the first time, the presence of 3-hydroxy-2-butanone was reported from S. granarius, which might function as an alarm pheromone. These identified candidate biomarker compounds can be utilized in insect surveillance and monitoring in stored grain to safeguard our grain products in future.
Collapse
|
6
|
Conrady MW, Bauer M, Jo KD, Cropek DM, Busby RR. Solid-phase microextraction (SPME) for determination of geosmin and 2-methylisoborneol in volatile emissions from soil disturbance. CHEMOSPHERE 2021; 284:131333. [PMID: 34225125 DOI: 10.1016/j.chemosphere.2021.131333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
A method is described here for the concentration and determination of geosmin and 2-methylisoborneol (2-MIB) from the gaseous phase, with translation to field collection and quantification from soil disturbances in situ. The method is based on the use of solid-phase microextraction (SPME) fibers for adsorption of volatile chemicals from the vapor phase, followed by desorption into a gas chromatograph-mass spectrometer (GC-MS) for analysis. The use of a SPME fiber allows simple introduction to the GC-MS without further sample preparation. Several fiber sorbent types were studied and the 50/30 μm DVB/CAR/PDMS was the best performer to maximize the detected peak areas of both analytes combined. Factors such as extraction temperature and time along with desorption temperature and time were explored with respect to analyte recovery. An extraction temperature of 30 °C for 10 min, with a desorption temperature of 230 °C for 4 min was best for the simultaneous analysis of both geosmin and 2-MIB without complete loss of either one. The developed method was used successfully to measure geosmin and 2-MIB emission from just above disturbed and undisturbed soils, indicating that this method detects both compounds readily from atmospheric samples. Both geosmin and 2-MIB were present as background concentrations in the open air, while disturbed soils emitted much higher concentrations of both compounds. Surprisingly, 2-MIB was always detected at higher concentrations than geosmin, indicating that a focus on its detection may be more useful for soil emission monitoring and more sensitive to low levels of soil disturbance.
Collapse
Affiliation(s)
- Morgan W Conrady
- U.S. Army Construction Engineering Research Laboratory, Champaign, IL, USA
| | - Markus Bauer
- Education Center of the German Armed Forces, Mannheim, DE, USA
| | - Kyoo D Jo
- U.S. Army Construction Engineering Research Laboratory, Champaign, IL, USA
| | - Donald M Cropek
- U.S. Army Construction Engineering Research Laboratory, Champaign, IL, USA
| | - Ryan R Busby
- U.S. Army Construction Engineering Research Laboratory, Champaign, IL, USA.
| |
Collapse
|
7
|
Volatile Organic Compound Profiles Associated with Microbial Development in Feedlot Pellets Inoculated with Bacillus amyloliquefaciens H57 Probiotic. Animals (Basel) 2021; 11:ani11113227. [PMID: 34827959 PMCID: PMC8614277 DOI: 10.3390/ani11113227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Our study aimed to confirm that the probiotic, Bacillus amyloliquefaciens strain H57 (H57), manufactured into grain-rich stockfeed pellets, would help maintain the various types of odours of the pellets during an extended storage. Pellets treated with (H57) or without (control, C) were stored either at room temperature or at 5 °C over 3 months. The odours were identified in the pellets, stored at 0, 1, 2 and 3 months, by a gas analysis technique. The change of odour types was greatest in the C pellets stored for 3 months at room temperature (CA3) than all other pellet treatments. The odour types of the H57 pellets aged 2 or 3 months at room temperature were similar to that of C pellets aged 1 or 2 months. Nine odour types of microbial origin were related to the change observed in CA3. These odour types have been previously identified in grains spoiled by mould and thus deserve further evaluation as indicators of the types of mould against which H57 protects as a feed inoculum. These results suggest that H57 can help to maintain the odour of stockfeed pellets, by reducing the rate of microbial spoilage during storage. Abstract Mould and bacterial contamination releases microbial volatile organic compounds (mVOCs), causing changes in the odour profile of a feed. Bacillus amyloliquefaciens strain H57 (H57) has the potential ability to inhibit microbial growth in animal feeds. This study tested the hypothesis that H57 influences the odour profile of stored feedlot pellets by impeding the production of mVOCs. The emission of volatile organic compounds (VOCs) of un-inoculated pellets and those inoculated with H57, stored either at ambient temperature (mean 22 °C) or at 5 °C, was monitored at 0, 1, 2, and 3 months by gas chromatography–mass spectrometry. Forty VOCs were identified in all the pellet samples analysed, 24 of which were potentially of microbial and 16 of non-microbial origin. A score plot of the principal component analysis (PCA) showed that the VOC profiles of the pellets stored at ambient temperature changed more rapidly over the 3 months than those stored at 5 °C, and that change was greater in the un-inoculated pellets when compared to the inoculated ones. The bi-plot and correlation loading plots of the PCA indicated that the separation of the un-inoculated pellets from the other treatments over the 3 months was primarily due to nine mVOCs. These mVOCs have been previously identified in grains spoiled by fungi, and could be considered potential markers of the types of fungi that H57 can protect pellets against. These data indicate the ability of H57 to maintain the odour profile and freshness of concentrated feed pellets. This protective influence can be detected as early as 3 months into ambient temperature storage.
Collapse
|
8
|
Wu J, Liu Y, Zhao H, Huang M, Sun Y, Zhang J, Sun B. Recent advances in the understanding of off-flavors in alcoholic beverages: Generation, regulation, and challenges. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Porcelli C, Neiens SD, Steinhaus M. Molecular Background of a Moldy-Musty Off-Flavor in Cocoa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4501-4508. [PMID: 33844919 DOI: 10.1021/acs.jafc.1c00564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The parallel application of aroma extract dilution analysis to the volatiles isolated from a sample of fermented cocoa seeds with a pronounced moldy-musty off-flavor and to the volatiles isolated from a flawless reference sample revealed (-)-geosmin, 4-methoxy-2,5-dimethylfuran-3(2H)-one, 1H-indole, and 3-methyl-1H-indole as potential off-flavor compounds on the basis of their odor quality and higher flavor dilution factors in off-flavor cocoa than in the reference sample. Quantitation of the four compounds in nine off-flavor cocoa samples and calculation of odor activity values (ratio of the concentrations to the odor threshold values) suggested the crucial roles of (-)-geosmin and 3-methyl-1H-indole for the off-flavor. In the chocolate industry, their quantitation can be used to objectively assess the off-flavor at the level of incoming goods inspection. Because both compounds are inhomogeneously distributed between the testa and the embryo, separate quantitation in the two parts of the seeds is required.
Collapse
Affiliation(s)
- Caterina Porcelli
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Silva D Neiens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Martin Steinhaus
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
10
|
Park SJ, Seo SE, Kim KH, Lee SH, Kim J, Ha S, Song HS, Lee SH, Kwon OS. Real-time monitoring of geosmin based on an aptamer-conjugated graphene field-effect transistor. Biosens Bioelectron 2021; 174:112804. [PMID: 33257183 DOI: 10.1016/j.bios.2020.112804] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022]
Abstract
In this paper, we propose a novel field-effect transistor (FET) using graphene, which is a two-dimensional (2D) nanomaterial, capable of evaluating water quality, and immobilizing the surface of a graphene micropatterned transistor with a highly responsive bioprobe for a water contamination indicator, geosmin, with high selectivity. A high-quality bioprobe-immobilized graphene FET (GFET) was fabricated for the real-time monitoring of geosmin using a liquid-gate measurement configuration. Immobilization was confirmed by measuring the change in the electrical characteristics of the platform (slope of the current-voltage (I-V) curve) and fluorescence images. In addition, a selectivity test showed remarkable implementation of the highly sensitive sensing platform with an insignificant signal when a nontarget was added. Using the fabricated device, the linear range for geosmin detection was determined to be from 0.01 nM - 1 μM with a detection limit of 0.01 nM. In addition, geosmin concentrations as low as 10 nM could be determined from river water samples with the sensor platform. This sensor can be utilized to immediately determine the presence of odorous substances by analyzing a water supply source without additional pretreatment. Another advantage is that the sensor device is a promising tool that does not have special equipment that requirs careful maintenance. In addition, the device provides a new platform for detecting harmful substances in various water sources by varying the bioprobes that are empolyed.
Collapse
Affiliation(s)
- Seon Joo Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Department of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon, 34158, South Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Siyoung Ha
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Seung Hwan Lee
- Department of Bionano Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| |
Collapse
|
11
|
Combining E-Nose and Lateral Flow Immunoassays (LFIAs) for Rapid Occurrence/Co-Occurrence Aflatoxin and Fumonisin Detection in Maize. Toxins (Basel) 2018; 10:toxins10100416. [PMID: 30332757 PMCID: PMC6215256 DOI: 10.3390/toxins10100416] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the potential use of an e-nose in combination with lateral flow immunoassays for rapid aflatoxin and fumonisin occurrence/co-occurrence detection in maize samples. For this purpose, 161 samples of corn have been used. Below the regulatory limits, single-contaminated, and co-contaminated samples were classified according to the detection ranges established for commercial lateral flow immunoassays (LFIAs) for mycotoxin determination. Correspondence between methods was evaluated by discriminant function analysis (DFA) procedures using IBM SPSS Statistics 22. Stepwise variable selection was done to select the e-nose sensors for classifying samples by DFA. The overall leave-out-one cross-validated percentage of samples correctly classified by the eight-variate DFA model for aflatoxin was 81%. The overall leave-out-one cross-validated percentage of samples correctly classified by the seven-variate DFA model for fumonisin was 85%. The overall leave-out-one cross-validated percentage of samples correctly classified by the nine-variate DFA model for the three classes of contamination (below the regulatory limits, single-contaminated, co-contaminated) was 65%. Therefore, even though an exhaustive evaluation will require a larger dataset to perform a validation procedure, an electronic nose (e-nose) seems to be a promising rapid/screening method to detect contamination by aflatoxin, fumonisin, or both in maize kernel stocks.
Collapse
|
12
|
Affiliation(s)
- Taehyun Ji
- U.S. Department of Agriculture–Agricultural Research Service, Soft Wheat Quality Laboratory, 1680 Madison Avenue, Wooster, OH 44691, U.S.A
| | - Moonseok Kang
- U.S. Department of Agriculture–Agricultural Research Service, Soft Wheat Quality Laboratory, 1680 Madison Avenue, Wooster, OH 44691, U.S.A
- Present address: Rural Development Administration–National Institute of Crop Science, Jeon-Ju, South Korea
| | - Byung-Kee Baik
- U.S. Department of Agriculture–Agricultural Research Service, Soft Wheat Quality Laboratory, 1680 Madison Avenue, Wooster, OH 44691, U.S.A
| |
Collapse
|
13
|
Mattiolo E, Licciardello F, Lombardo GM, Muratore G, Anastasi U. Volatile profiling of durum wheat kernels by HS–SPME/GC–MS. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2731-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Lasekan O, Hosnas R, Ng S, Lin M, Azeez S, Teoh L, Gholivand S, Shittu R. Identification of aromatic compounds and their sensory characteristics in cassava flakes and “garri” ( Manihot esculentaCrantz). CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2015.1074944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Fotiou T, Triantis TM, Kaloudis T, Papaconstantinou E, Hiskia A. Photocatalytic degradation of water taste and odour compounds in the presence of polyoxometalates and TiO2: Intermediates and degradation pathways. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Du H, Xu Y. Determination of the microbial origin of geosmin in Chinese liquor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2288-2292. [PMID: 22324746 DOI: 10.1021/jf204648e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Geosmin is the major cause of the common earthy off-flavor in light-aroma type Chinese liquor and, thus, highly detrimental to the aromatic quality. To find out its origin, the evolving process of geosmin in light-aroma type liquor making was monitored, and microbial analysis of Daqu containing geosmin was carried out. The results showed that geosmin appeared in all the fermented sorghums at different fermentation periods. About 57% geosmin in the fermented sorghums was distilled into liquor. During the distillation process, the peak of geosmin concentration appeared when alcohol content was 50-60% vol. More importantly, high geosmin content was observed during the Daqu-making process. Furthermore, five Streptomyces strains were isolated from different types of Daqu used for the fermentation of light-aroma type liquor. All of them produced only geosmin as the main volatile metabolite but no 2-methylisoborneol (2-MIB). It appears that microorganisms developing in Daqu are responsible for the presence of geosmin in liquor. Because of the relatively low detection threshold estimated at 110 ng/L in 46 vol % hydroalcoholic solution, the presence of geosmin in Daqu may pose a risk for Chinese liquor producers.
Collapse
Affiliation(s)
- Hai Du
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | | |
Collapse
|
17
|
|
18
|
Du H, Fan W, Xu Y. Characterization of geosmin as source of earthy odor in different aroma type Chinese liquors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8331-8337. [PMID: 21662241 DOI: 10.1021/jf201171b] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Earthy odor is one of the most frequent and serious causes for the aroma deterioration in Chinese liquor, which causes a dirty and dusty impression. The odor in Chinese liquor is similar to that of rice husk, one kind of auxiliary material widely used as a filler in the distillation process. So it is experientially hypothesized that such odor may derive from rice husk. In this paper, the gas chromatography-olfactometry (GC-O) technique and gas chromatography-mass spectrometry (GC-MS) were used to discover and identify the characteristic odoriferous zone of Chinese liquor marked by earthy odor. Geosmin was found to be responsible for this odor. The levels of the compound in ten bottled liquors and thirty liquors aging for different years belonging to four different aroma types were determined by the optimized headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method. Quantitative analysis of bottled liquor revealed the presence of geosmin in all aroma type liquors with concentrations ranging from 1.10 μg/L to 9.90 μg/L, except for strong-aroma type liquor. Meanwhile in the aged liquors belonging to the same aroma type, geosmin was detected with significant concentrations and high odor activity values (OAVs) during different years of aging. However, geosmin was not detected in steamed rice husk nor in nonsteamed rice husk, which suggests that rice husk is not the origin of earthy odor in Chinese liquor, and there may be another origin of it during the brewing process.
Collapse
Affiliation(s)
- Hai Du
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | | | | |
Collapse
|
19
|
Use of the electronic nose as a screening tool for the recognition of durum wheat naturally contaminated by deoxynivalenol: a preliminary approach. SENSORS 2011; 11:4899-916. [PMID: 22163882 PMCID: PMC3231355 DOI: 10.3390/s110504899] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/25/2011] [Accepted: 04/28/2011] [Indexed: 11/25/2022]
Abstract
Fungal contamination and the presence of related toxins is a widespread problem. Mycotoxin contamination has prompted many countries to establish appropriate tolerance levels. For instance, with the Commission Regulation (EC) N. 1881/2006, the European Commission fixed the limits for the main mycotoxins (and other contaminants) in food. Although valid analytical methods are being developed for regulatory purposes, a need exists for alternative screening methods that can detect mould and mycotoxin contamination of cereal grains with high sample throughput. In this study, a commercial electronic nose (EN) equipped with metal-oxide-semiconductor (MOS) sensors was used in combination with a trap and the thermal desorption technique, with the adoption of Tenax TA as an adsorbent material to discriminate between durum wheat whole-grain samples naturally contaminated with deoxynivalenol (DON) and non-contaminated samples. Each wheat sample was analysed with the EN at four different desorption temperatures (i.e., 180 °C, 200 °C, 220 °C, and 240 °C) and without a desorption pre-treatment. A 20-sample and a 122-sample dataset were processed by means of principal component analysis (PCA) and classified via classification and regression trees (CART). Results, validated with two different methods, showed that it was possible to classify wheat samples into three clusters based on the DON content proposed by the European legislation: (a) non-contaminated; (b) contaminated below the limit (DON < 1,750 μg/kg); (c) contaminated above the limit (DON > 1,750 μg/kg), with a classification error rate in prediction of 0% (for the 20-sample dataset) and 3.28% (for the 122-sample dataset).
Collapse
|
20
|
Fujise D, Tsuji K, Fukushima N, Kawai K, Harada KI. Analytical aspects of cyanobacterial volatile organic compounds for investigation of their production behavior. J Chromatogr A 2010; 1217:6122-5. [DOI: 10.1016/j.chroma.2010.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/26/2010] [Accepted: 07/01/2010] [Indexed: 11/16/2022]
|
21
|
Solid-Phase Microextraction (SPME) Techniques for Quality Characterization of Food Products: A Review. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-009-0299-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
|
23
|
Abstract
Microbial volatile organic compounds (MVOCs) are a variety of compounds formed in the metabolism of fungi and bacteria. Of more than 200 compounds identified as MVOCs in laboratory experiments, none can be regarded as exclusively of microbial origin or as specific for certain microbial species. Thus, the recognition of microbially contaminated areas by MVOC measurements is not successful with current methods. In this review, the basic physical and chemical properties of 96 typical MVOCs have been summarised. Of these, toxicological and exposure data were gathered for the 15 MVOCs most often analysed and reported in buildings with moisture and microbial damage. The most obvious health effect of MVOC exposure is eye and upper-airway irritation. However, in human experimental exposure studies, symptoms of irritation have appeared at MVOC concentrations several orders of magnitude higher than those measured indoors (single MVOC levels in indoor environments have ranged from a few ng/m(3) up to 1 mg/m(3)). This is also supported by dose-dependent sensory-irritation response, as determined by the American Society for Testing and Materials mouse bioassay. On the other hand, the toxicological database is poor even for the 15 examined MVOCs. There may be more potent compounds and other endpoints not yet evaluated.
Collapse
Affiliation(s)
- Anne Korpi
- University of Kuopio, Department of Environmental Science, Kuopio, Finland.
| | | | | |
Collapse
|
24
|
Saito K, Okamura K, Kataoka H. Determination of musty odorants, 2-methylisoborneol and geosmin, in environmental water by headspace solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr A 2008; 1186:434-7. [DOI: 10.1016/j.chroma.2007.12.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/22/2007] [Accepted: 12/28/2007] [Indexed: 10/22/2022]
|
25
|
Xie Y, He J, Huang J, Zhang J, Yu Z. Determination of 2-methylisoborneol and geosmin produced by Streptomyces sp. and Anabaena PCC7120. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:6823-8. [PMID: 17663564 DOI: 10.1021/jf070125o] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A new sample preparation and enrichment technique, headspace liquid-phase microextraction (HS-LPME) linked to gas chromatography-mass spectrometry (GC-MS), was developed for the determination of the off-flavor odorants, 2-methylisoborneol and geosmin, produced by Streptomyces sp. and Anabaena PCC7120. Some of the factors that influence the extraction efficiency of HS-LPME, such as the type of extraction solvent, ionic strength of sample solution, and sample agitation rate, were studied and optimized by a single factor test. Other factors, including extraction temperature, extraction time, microdrop volume, and headspace volume were optimized by orthogonal array design. Extraction of 2-methylisoborneol and geosmin was conducted by exposing 2.5 microL of 1-hexanol for 9 min at 50 degrees C in the headspace of a 20 mL vial with a 10 mL of sample solution saturated by NaCl and stirred at 800 rpm. The developed protocol demonstrated good repeatability (relative standard deviations (RSDs) < 5%), wide linear ranges (10-5000 ng/L, r2 > 0.999), and low limits of detection (LODs) for 2-methylisoborneol and geosmin (0.05 ng/L for both analytes). Subsequently, the method was successfully applied to extract the analytes in bacterial cultures with high recoveries (from 94% to 98%). Compared with headspace solid-phase microextraction (HS-SPME), HS-LPME demonstrates better linearity, precision, and recovery. Importantly, the sensitivity is about 1 order of magnitude higher than that of most HS-SPME. The results showed that HS-LPME coupled with GC-MS is a simple, convenient, rapid, sensitive, and effective method for the qualitative and quantitative analysis of 2-methylisoborneol and geosmin.
Collapse
Affiliation(s)
- Yuqun Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China.
| | | | | | | | | |
Collapse
|
26
|
Setkova L, Risticevic S, Pawliszyn J. Rapid headspace solid-phase microextraction–gas chromatographic–time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction. J Chromatogr A 2007; 1147:213-23. [PMID: 17359985 DOI: 10.1016/j.chroma.2007.02.058] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/06/2007] [Accepted: 02/15/2007] [Indexed: 10/23/2022]
Abstract
An analytical method for the determination of volatile and semi-volatile compounds representing various chemical groups in ice wines was developed and optimized in the presented study. A combination of the fully automated solid-phase microextraction (SPME) sample preparation technique and gas chromatographic-mass spectrometric (GC-MS) system to perform the final chromatographic separation and identification of the analytes of interest was utilized. A time-of-flight mass spectrometric (TOF-MS) analyzer provided very rapid analysis of this relatively complex matrix. Full spectral information in the range of m/z 35-450 was collected across the short GC run (less than 5 min). Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) 50/30 microm fiber performed best during the optimization experiments and it was used in the headspace SPME mode to isolate compounds from ice wine samples, consisting of 3 mL wine with 1g salt addition. After the sample incubation and extraction (both 5 min at 45 degrees C), analytes were thermally desorbed in the GC injector for 2 min (injector maintained at 260 degrees C) and transferred into the column. The MS data acquisition rate of 50 spectra/s was selected as optimal. The optimized analytical method did not exceed 20 min per sample, including both the isolation and pre-concentration of the analytes of interest, the final GC-TOF-MS analysis and the fiber bake-out. Both a linear temperature-programmed retention index (LTPRI) method using C(8)-C(20) alkanes loaded onto the fiber and a mass spectral library search were employed to identify the target compounds. The repeatability of the developed and optimized HS-SPME-GC-TOF-MS method for ice wine analysis, expressed as relative standard deviation (RSD, %, n=7), ranged from 3.2 to 9.0%.
Collapse
Affiliation(s)
- Lucie Setkova
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | | | |
Collapse
|
27
|
La Guerche S, Dauphin B, Pons M, Blancard D, Darriet P. Characterization of some mushroom and earthy off-odors microbially induced by the development of rot on grapes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:9193-200. [PMID: 17117809 DOI: 10.1021/jf0615294] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Grape rot is one of the major causes of degradation of many grape components and, thus, of deterioration in wine quality. In particular, the association of Botrytis cinerea with other, less visible, fungi frequently leads to the development of organoleptic defects in grapes and sometimes in wines. This study examines the nature of the volatile compounds responsible for mushroom, mossy, or earthy odors detected by gas chromatography-olfactometry in organic extracts of rotten grapes and musts. 2-Methylisoborneol, (-)-geosmin, 1-octen-3-one, 1-octen-3-ol, 2-octen-1-ol, and 2-heptanol were identified or tentatively identified. Their concentrations in musts were determined, and the impact of alcoholic fermentation by the yeast Saccharomyces cerevisiae was studied. The ability of fungi isolated from rotten grapes (Botrytis cinerea; Penicillium species including P. brevicompactum, P. expansum, P. miczynskii, P. pinophilum, P. purpurogenum, and P. thomii; Aspergillus section nigri; Rhizopus nigricans; and Coniothyrium sp.) to produce some of the identified compounds was evidenced.
Collapse
Affiliation(s)
- Stephane La Guerche
- Faculté d'Oenologie, UMR Oenologie, Université Victor Segalen Bordeaux 2, INRA, ISVV, 351 Cours de la Libération, 33405 Talence Cedex, France.
| | | | | | | | | |
Collapse
|
28
|
Abstract
This review covers the structures and biological activities of eudesmane-type sesquiterpenoids from the plants of the Asteraceae family. Biosynthetic studies or chemical syntheses leading to the revision of structures or stereochemistries have also been included, and 593 references are cited.
Collapse
Affiliation(s)
- Quan-Xiang Wu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | | | | |
Collapse
|
29
|
Scotter JM, Langford VS, Wilson PF, McEwan MJ, Chambers ST. Real-time detection of common microbial volatile organic compounds from medically important fungi by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). J Microbiol Methods 2005; 63:127-34. [PMID: 15893831 DOI: 10.1016/j.mimet.2005.02.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 02/22/2005] [Accepted: 02/25/2005] [Indexed: 11/23/2022]
Abstract
We describe a new method, Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS) for the rapid and sensitive real-time detection and quantification of volatile organic compounds from medically important fungi, grown on a range of laboratory media. SIFT-MS utilises the chemical ionisation reactions of mass-selected ions to characterise volatile organic compounds (VOCs) that are produced as metabolites from fungi. This technique has the distinct advantage over others in that it readily detects low molecular weight, reactive volatiles, and allows for real-time, quantitative monitoring. The fungi examined in this study were Aspergillus flavus, Aspergillus fumigatus, Candida albicans, Mucor racemosus, Fusarium solani, and Cryptococcus neoformans grown on or in malt extract agar, Columbia agar, Sabouraud's dextrose agar, blood agar, and brain-heart infusion broth. Common metabolites (ethanol, methanol, acetone, acetaldehyde, methanethiol, and crotonaldehyde) were detected and quantified. We found the fingerprint of volatiles, in terms of presence and quantity of volatiles to be strongly dependent on the culture medium, both in terms of variety and quantity of volatiles produced, but may form the basis for species specific identification of medically important fungi.
Collapse
Affiliation(s)
- Jennifer M Scotter
- Department of Pathology, Christchurch School of Medicine, University of Otago, Christchurch, New Zealand
| | | | | | | | | |
Collapse
|