1
|
Dabbous‐Wach A, Majidi L, Lorenzetti J, Paolini J, Costa J. Quantification of α-Acids, β-Acids, and Phenolic Compounds in Corsican Hops Using LC-MS/MS and Metabolomic Approach Through Molecular Networks. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:438-457. [PMID: 39609247 PMCID: PMC11876718 DOI: 10.1002/pca.3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Determining the bittering profile of hops is a prerequisite for their use in beer making industry. To fully grasp the brewing potential of Corsican hops, it is therefore essential to perform a precise quantification of the molecules responsible for their bittering power. OBJECTIVE The aim of this study is highlighting of the bittering profile of Corsican hops. METHODOLOGY A method for the characterization and quantification of α-acids, β-acids, and phenolic compounds in Corsican hops using high performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has been developed. In addition to the six α- and β-acids commonly quantified in hops, seven others hop acids were identified using a new methodology based on the analysis of their fragmentation pattern in full-scan detection mode. The compounds were then quantified as humulone or lupulone equivalents. Subsequently, a metabolomic analysis of hop cones was conducted using the method of molecular networking. RESULTS A total of 28 compounds were quantified. The influence of both annual climate variations and transplantation on the chemical composition of hops extractives was highlighted. The molecular network elucidation led to the identification of 34 compounds. Among them, eight were previously undescribed in hops, including one previously unknown to the literature. CONCLUSION The methodologies developed in this study have shed light on the "bittering" potential of Corsican hops which represents a significant economic opportunity for the local brewing industry potentially establishing a new, sustainable, and profitable hops market. This work focuses extensively on the phenolic compounds and the bittering acids of Corsican hops, aiming to highlight their unique organoleptic characteristics and the influence of the Corsican terroir on their chemical composition and abundance.
Collapse
Affiliation(s)
| | - L. Majidi
- ChemistryUniversite Moulay IsmailMeknes CityMorocco
| | | | - J. Paolini
- SPEUniversity of Corsica Pasquale PaoliCorteFrance
| | - J. Costa
- SPEUniversity of Corsica Pasquale PaoliCorteFrance
| |
Collapse
|
2
|
Gómez-Zorita S, Proença C, Fernández-Quintela A, Moreno-Indias I, Portillo MP. Beneficial Effects of Xanthohumol on Metabolic Syndrome: Evidence from In Vitro and Animal Model Studies. Int J Mol Sci 2024; 25:12434. [PMID: 39596505 PMCID: PMC11594861 DOI: 10.3390/ijms252212434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic syndrome refers to the simultaneous occurrence of several disorders that have been associated with other co-morbidities, such as a pro-inflammatory state and non-alcoholic fatty liver disease. Nowadays, it is a growing public health problem that contributes to the development of non-communicable diseases, such as type 2 diabetes, cardiovascular disease, and cognitive deficits among others. Its incidence has been related to modifiable lifestyle factors, mainly dietary patterns and physical activity. In addition, numerous studies have observed the potential beneficial effects of polyphenols in the prevention and treatment of metabolic syndrome components in both animals and humans. In this line, the aim of this review is to present the scientific evidence available about the beneficial effects of the phenolic compound xanthohumol in the prevention and/or treatment of obesity, dyslipidemia, insulin resistance, and fatty liver, which are important components of metabolic syndrome. All the potential beneficial effects described in this manuscript have been observed in vitro and in animal models, there are no published clinical trials in this context yet.
Collapse
Affiliation(s)
- Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (A.F.-Q.); (M.P.P.)
- Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (A.F.-Q.); (M.P.P.)
- Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Isabel Moreno-Indias
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29590 Malaga, Spain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (A.F.-Q.); (M.P.P.)
- Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
3
|
Silva KFCE, Feltre G, Zandonadi FS, Rabelo RS, Sussulini A, Hubinger MD. Unlocking hot trub's potential: a simple method for extracting bitter acids and xanthohumol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5381-5390. [PMID: 38334323 DOI: 10.1002/jsfa.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Hot trub is a macronutrient- and micronutrient-rich by-product generated in the brewing industry, which is still underrated as a raw material for reprocessing purposes. In this context, this study aimed to investigate the extraction of bitter acids' and xanthohumol from hot trub as well as identify the significance of parameters for the process. The research assessed various extraction parameters, such as pH, ethanol concentration, temperature, and solid-to-liquid ratio, using a Plackett-Burman design. RESULTS Ethanol concentration and pH were the most significant parameters affecting extraction yield. β-acids were found to be the principal components of the bitter acids, with a maximum concentration near 16 mg g-1, followed by iso-α-acids and α-acids achieving 6 and 3.6 mg g-1, respectively. The highest yields of bitter acids were observed in the highest ethanol concentration, while pH was relevant to extraction process in treatments with low ethanol ratios. Concerning the xanthohumol extraction, the approach achieved maximum concentration (239 μg g-1) in treatments with ethanol concentration above 30%. Despite their variances, the phytochemicals exhibited comparable extraction patterns, indicating similar interactions with macromolecules. Moreover, the characterization of the solid residues demonstrated that the extraction process did not bring about any alterations to the chemical and total protein profiles. CONCLUSION Ethanol concentration was found to have the most significant impact on the extraction of bitter acids and xanthohumol, while temperature had no significant effect. The solid remains resulting from the extraction showed potential for use as a protein source. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Klycia Fidélis Cerqueira E Silva
- Department of Food Engineering and Technology (DETA), School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Feltre
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo (USP), Piracicaba, Brazil
| | - Flávia S Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Renata Santos Rabelo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Miriam Dupas Hubinger
- Department of Food Engineering and Technology (DETA), School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
4
|
Kasica N, Kaleczyc J. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus L.) exerts multidirectional pro-healing properties towards damaged zebrafish hair cells by regulating the innate immune response. Toxicol Appl Pharmacol 2024; 483:116809. [PMID: 38211931 DOI: 10.1016/j.taap.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Xanthohumol (XN) is a prominent prenylated flavonoid present in the hop plant (Humulus lupulus L.). Despite undoubted pro-healing properties of hop plant, there is still a need for clinical investigations confirming these effects as well as the underlying molecular mechanisms. The present study was designed to (1) establish the role of XN in non-invasive inflammation induced by chemical damage to zebrafish hair cells, (2) clarify if it influences cell injury severity, neutrophil migration, macrophage activation, cell regeneration, and (3) find out whether it modulates the gene expression profile of chosen immune and stress response markers. All experiments were performed on 3 dpf zebrafish larvae. After fertilization the embryos were transferred to appropriate XN solutions (0.1 μM, 0.3 μM and 0.5 μM). The 40 min 10 μM CuSO4 exposure evoked severe damage to posterior lateral line hair cells triggering a robust acute inflammatory response. Four readouts were selected as the indicators of XN role in the process of inflammation: 1) hair cell death, 2) neutrophil migration towards damaged hair cells, 3) macrophage activation and recruitment to damaged hair cells, 4) hair cell regeneration. The assessments involved in vivo confocal microscopy imaging and qPCR based molecular analysis. It was demonstrated that XN (1) influences death pathway of damaged hair cells by redirecting their severe necrotic phenotype into apoptotic one, (2) impacts the immune response via regulating neutrophil migration, macrophage recruitment and activation (3) modulates gene expression of immune system markers and (4) accelerates hair cell regeneration.
Collapse
Affiliation(s)
- Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
5
|
Pinto MBC, Vardanega R, Náthia-Neves G, de França PRL, Kurozawa LE, Meireles MAA, Schmidt FL. Novel Brazilian hop (Humulus lupulus L.) extracts through supercritical CO 2 extraction: Enhancing hop processing for greater sustainability. Food Res Int 2023; 172:113169. [PMID: 37689922 DOI: 10.1016/j.foodres.2023.113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 09/11/2023]
Abstract
Hop cultivation has been increasing in the past decade in Brazil, demanding a better understanding of how the processing influences the national hop varieties. Despite the hop process being well-established in the producer countries, there is still room for optimization to reduce energy consumption for a more sustainable process. This study's main purpose was to understand the influence of drying and supercritical CO2 extraction on the quality of hop extracts. The hop quality during drying was evaluated regarding color, bitter acids, xanthohumol, total essential oil content, and volatile profile. Supercritical CO2 extraction yields, and bitter acid recovery were assessed by HPLC in a range of different temperatures (40 or 60 °C) and pressure (15, 20, 25, or 30 MPa) conditions. Hop processing was optimized to produce a greater extract quality from a Brazilian hop variety, saving energy and solvent consumption, and consequently, reducing the process footprint. Furthermore, this study established supercritical CO2 extraction conditions for Brazilian hop extract production, offering the national beer industry an alternative to overpriced products.
Collapse
Affiliation(s)
- Mariana Barreto Carvalhal Pinto
- Fruit, Vegetable and Confectionery Products Laboratory, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil.
| | - Renata Vardanega
- Laboratory of Supercritical Technology: Extraction Fractionation and Identification of Extracts, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil; Food Innovation & Technology Research Group, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Grazielle Náthia-Neves
- Laboratory of Supercritical Technology: Extraction Fractionation and Identification of Extracts, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil
| | - Pedro Renann Lopes de França
- Laboratory of Food Innovation, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil
| | - Louise Emy Kurozawa
- Laboratory of Food Innovation, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil
| | - Maria Angela A Meireles
- Laboratory of Supercritical Technology: Extraction Fractionation and Identification of Extracts, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil
| | - Flavio Luis Schmidt
- Fruit, Vegetable and Confectionery Products Laboratory, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Taiti C, Di Matteo G, Spano M, Vinciguerra V, Masi E, Mannina L, Garzoli S. Metabolomic Approach Based on Analytical Techniques for the Detection of Secondary Metabolites from Humulus lupulus L. Dried Leaves. Int J Mol Sci 2023; 24:13732. [PMID: 37762036 PMCID: PMC10531422 DOI: 10.3390/ijms241813732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, the leaves of the hop plant (Humulus lupulus L.) are an unexploited and still little-investigated agricultural by-product. In our study, with the aim of exploring the metabolome of dried hop leaves (Chinook cultivar), a metabolomic approach was applied using multiple analytical tools such as SPME/GC-MS, GC-MS, PTR-ToF-MS, and NMR to identify the secondary metabolites. The obtained results showed the presence of a high number of components belonging to different chemical classes. In fact, thanks to the multi-methodological approach, volatile organic compounds (VOCs) with low molecular weight, terpenic compounds, fatty acids, sugars, amino acids, organic acids, and alcohols have been detected and identified. Among the revealed terpenes in the untreated matrix, the sesquiterpenes α-humulene, β-caryophyllene, and α-copaene were the most abundant. Among the saturated and unsaturated fatty acids, palmitic and linolenic acids, respectively, were those with the highest relative percentages. Particularly relevant was the sugar content, where sucrose was the main exponent while glutamate and asparagine were the principal detected amino acids. Conversely, alcohols and organic acids were the least abundant compound classes, and xanthohumol was also identified in the methanolic extract.
Collapse
Affiliation(s)
- Cosimo Taiti
- Department of Agriculture, Food, Environmental and Forest, Università di Firenze, 50019 Firenze, Italy; (C.T.); (E.M.)
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drug, Sapienza University, 00185 Rome, Italy; (G.D.M.); (M.S.); (L.M.)
| | - Mattia Spano
- Department of Chemistry and Technology of Drug, Sapienza University, 00185 Rome, Italy; (G.D.M.); (M.S.); (L.M.)
| | - Vittorio Vinciguerra
- Department for Innovation in Biological Systems, Food and Forestry, University of Tuscia, 01100 Viterbo, Italy;
| | - Elisa Masi
- Department of Agriculture, Food, Environmental and Forest, Università di Firenze, 50019 Firenze, Italy; (C.T.); (E.M.)
| | - Luisa Mannina
- Department of Chemistry and Technology of Drug, Sapienza University, 00185 Rome, Italy; (G.D.M.); (M.S.); (L.M.)
| | - Stefania Garzoli
- Department of Chemistry and Technology of Drug, Sapienza University, 00185 Rome, Italy; (G.D.M.); (M.S.); (L.M.)
| |
Collapse
|
7
|
Addo PW, Poudineh Z, Shearer M, Taylor N, MacPherson S, Raghavan V, Orsat V, Lefsrud M. Relationship between Total Antioxidant Capacity, Cannabinoids and Terpenoids in Hops and Cannabis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1225. [PMID: 36986914 PMCID: PMC10056619 DOI: 10.3390/plants12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Efficient determination of antioxidant activity in medicinal plants may provide added value to extracts. The effects of postharvest pre-freezing and drying [microwave-assisted hot air (MAHD) and freeze drying] on hops and cannabis were evaluated to determine the relationship between antioxidant activity and secondary metabolites. The 2,2-diphenyl-1-picrylhydrazine (DPPH) reduction and ferric reducing ability of power (FRAP) assays were assessed for suitability in estimating the antioxidant activity of extracted hops and cannabis inflorescences and correlation with cannabinoid and terpene content. Antioxidant activity in extracts obtained from fresh, undried samples amounted to 3.6 Trolox equivalent antioxidant activity (TEAC) (M) dry matter-1 and 2.32 FRAP (M) dry matter-1 for hops, in addition to 2.29 TEAC (M) dry matter-1 and 0.25 FRAP (M) dry matter-1 for cannabis. Pre-freezing significantly increased antioxidant values by 13% (DPPH) and 29.9% (FRAP) for hops, and by 7.7% (DPPH) and 19.4% (FRAP) for cannabis. ANOVA analyses showed a significant (p < 0.05) increase in total THC (24.2) and THCA (27.2) concentrations (g 100 g dry matter-1) in pre-frozen, undried samples compared to fresh, undried samples. Freeze-drying and MAHD significantly (p < 0.05) reduced antioxidant activity in hops by 79% and 80.2% [DPPH], respectively and 70.1% and 70.4% [FRAP], respectively, when compared to antioxidant activity in extracts obtained from pre-frozen, undried hops. DPPH assay showed that both freeze-drying and MAHD significantly (p < 0.05) reduced the antioxidant activity of cannabis by 60.5% compared to the pre-frozen samples although, there was no significant (p < 0.05) reduction in the antioxidant activity using the FRAP method. Greater THC content was measured in MAHD-samples when compared to fresh, undried (64.7%) and pre-frozen, undried (57%), likely because of decarboxylation. Both drying systems showed a significant loss in total terpene concentration, yet freeze-drying has a higher metabolite retention compared to MAHD. These results may prove useful for future experiments investigating antioxidant activity and added value to cannabis and hops.
Collapse
Affiliation(s)
- Philip Wiredu Addo
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Zohreh Poudineh
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Michelle Shearer
- Bloom Labs, 173 Dr Bernie MacDonald Drive, Bible Hill, NS B6L 2H5, Canada
| | - Nichole Taylor
- Bloom Labs, 173 Dr Bernie MacDonald Drive, Bible Hill, NS B6L 2H5, Canada
| | - Sarah MacPherson
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Vijaya Raghavan
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Mark Lefsrud
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| |
Collapse
|
8
|
Santarelli V, Neri L, Carbone K, Macchioni V, Faieta M, Pittia P. Conventional and innovative extraction technologies to produce food-grade hop extracts: Influence on bitter acids content and volatile organic compounds profile. J Food Sci 2023; 88:1308-1324. [PMID: 36789873 DOI: 10.1111/1750-3841.16487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/29/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Hop extracts represent a natural alternative to synthetic food additives because of their high content of bitter acids and volatile organic compounds (VOCs) with bittering, flavoring, and antimicrobial properties. However, broader uses of hop extracts as natural techno-functional ingredients rely on the identification of sustainable and affordable extraction technologies allowing to diversify the processes and produce extracts characterized by different compositions and, consequently, qualitative properties. Thus, this study is aimed to evaluate and compare the effect of innovative and conventional extraction methods on the bitter acids content and VOCs pattern of food-grade ethanolic hop extracts for food applications. Innovative extractions were carried out by using two ultrasound systems (a laboratory bath [US] and a high-power ultrasound bath [HPUS]), and a high-pressure industrial process (high hydrostatic pressure [HHP]). Conventional extractions (CONV) were performed under dynamic maceration at 25 and 60°C; for ultrasound and conventional methods, the effect of the extraction time was also investigated. Among the extracts, the highest and lowest content of bitter acids was found in CONV 60°C extracts, and HHP and CONV 25°C extracts, respectively. Of the 34 VOCs identified in dry hops, ∼24 compounds were found in US, HPUS and CONV extracts, while only 18 were found in HHP. CONV extractions showed higher selectivity for sesquiterpenes, while US and HPUS showed higher selectivity for esters and monoterpenes. Hierarchical cluster analysis (HCA) and partial least squares-discriminant analysis (PLS-DA) allowed classifying hop extracts based on the extraction methods and also allowed highlighting the technological conditions to produce hop extracts with specific techno-functional and flavoring properties. PRACTICAL APPLICATION: The study showed that different extraction methods can lead to hop products with varying sensory and functional properties. By selecting the right extraction method, companies can produce hop extracts with specific compositions that meet their needs for clean label and sustainable food products, as well as new edible packaging or coatings.
Collapse
Affiliation(s)
- Veronica Santarelli
- Faculty of Bioscience and Technologies for Food, Agriculture, and Environment, University of Teramo, Teramo, Italy
| | - Lilia Neri
- Faculty of Bioscience and Technologies for Food, Agriculture, and Environment, University of Teramo, Teramo, Italy
| | - Katya Carbone
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | | | - Marco Faieta
- Faculty of Bioscience and Technologies for Food, Agriculture, and Environment, University of Teramo, Teramo, Italy
| | - Paola Pittia
- Faculty of Bioscience and Technologies for Food, Agriculture, and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
9
|
Cerqueira e Silva KF, Rabelo RS, Feltre G, Hubinger M. Bitter substances recovery from hot trub: A study of polymeric membranes performance in a sequential mode with fouling investigation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Féchir M, Weaver G, Roy C, Shellhammer TH. Exploring the Regional Identity of Cascade and Mosaic® Hops Grown at Different Locations in Oregon and Washington. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2089010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Curtis Roy
- Yakima Chief Hops, Yakima, WA, 98902, U.S.A
| | | |
Collapse
|
11
|
Hops Germplasm: Phytochemical Characterization of Wild Humulus lupulus of Central and Northern Italy. PLANTS 2022; 11:plants11121564. [PMID: 35736715 PMCID: PMC9231044 DOI: 10.3390/plants11121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/21/2022] [Accepted: 06/11/2022] [Indexed: 11/24/2022]
Abstract
Hops are widespread as a wild plant in almost all Northern and Central Italy, and the characterization of wild populations is attracting considerable interest in verifying their potential use. The development of hops as agricultural crop can be an interesting opportunity, both for farms that would have available a new crop to be included in the crop system and for craft breweries interested in characterizing beers with local raw materials. In the present work, 14 wild hop accessions coming from various Italian locations were characterized and compared with 2 commercial varieties (Cascade and Hallertau Taurus) grown in the same environments. The cones were analyzed to measure the content of α- and β-acids, polyphenols, flavonoids, and the anti-radical power. The α-acid content of wild hops was generally low, while the β-acid content was very variable and quite high in some samples. The content in polyphenols and flavonoids and the antiradical power were high and generally similar to those of the commercial varieties. Therefore, the analyzed genotypes are not very suitable for use as bitter hops in beer production, while further analysis may indicate a possible use as aroma hops, or for herbal and pharmaceutical purposes, thanks to their antioxidant content.
Collapse
|
12
|
Eriksen RL, Padgitt-Cobb LK, Randazzo AM, Hendrix DA, Henning JA. Gene Expression of Agronomically Important Secondary Metabolites in cv. ‘USDA Cascade’ Hop (Humulus lupulus L.) Cones during Critical Developmental Stages. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1973328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Renée L. Eriksen
- Forage Seed and Cereal Research Unit, USDA Agricultural Research Service, Corvallis, OR, U.S.A
| | | | - Angela M. Randazzo
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, U.S.A
| | - David A. Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, U.S.A
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, U.S.A
| | - John A. Henning
- Forage Seed and Cereal Research Unit, USDA Agricultural Research Service, Corvallis, OR, U.S.A
| |
Collapse
|
13
|
Kang S, Jo H, Kim MR. Safety Assessment of Endocrine Disruption by Menopausal Health Functional Ingredients. Healthcare (Basel) 2021; 9:healthcare9101376. [PMID: 34683056 PMCID: PMC8544397 DOI: 10.3390/healthcare9101376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/23/2022] Open
Abstract
During menopause, women experience various symptoms including hot flashes, mood changes, insomnia, and sweating. Hormone replacement therapy (HRT) has been used as the main treatment for menopausal symptoms; however, other options are required for women with medical contraindications or without preference for HRT. Functional health foods are easily available options for relieving menopausal symptoms. There are growing concerns regarding menopausal functional health foods because the majority of them include phytoestrogens which have the effect of endocrine disruption. Phytoestrogens may cause not only hormonal imbalance or disruption of the normal biological function of the organ systems, but also uterine cancer or breast cancer if absorbed and accumulated in the body for a long period of time, depending on the estrogen receptor binding capacity. Therefore, we aimed to determine the effects and safety of menopausal functional health ingredients and medicines on the human body as endocrine disruptors under review in the literature and the OECD guidelines.
Collapse
Affiliation(s)
- Soyeon Kang
- St. Vincent’s Hospital, Division of Gynecologic Endocrinology, Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Hagyeong Jo
- Seoul St. Mary’s Hospital, Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Mee-Ran Kim
- Seoul St. Mary’s Hospital, Division of Gynecologic Endocrinology, Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6170
| |
Collapse
|
14
|
Hong K, Wang L, Johnpaul A, Lv C, Ma C. Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications. Int J Mol Sci 2021; 22:9373. [PMID: 34502286 PMCID: PMC8430942 DOI: 10.3390/ijms22179373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops' phytochemical composition are herein critically summarized. Hops' phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol derivatives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydrogenase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), and O-methyltransferase (OMT1). Furthermore, research advancements of each enzyme in terms of reaction conditions, substrate recognition, enzyme structures, and use in engineered microbes are described in depth. Hence, an extensive review of the key enzymes involved in the phytochemical compounds of hops will provide fundamentals for their applications in beer production.
Collapse
Affiliation(s)
| | | | | | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; (K.H.); (L.W.); (A.J.)
| | - Changwei Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; (K.H.); (L.W.); (A.J.)
| |
Collapse
|
15
|
Morcol TB, Matthews PD, Kennelly EJ. Differences in Leaf Chemistry and Glandular Trichome Density between Wild Southwestern American Hop ( Humulus neomexicanus) and Commercial Hop Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7798-7814. [PMID: 34181402 DOI: 10.1021/acs.jafc.1c02710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The female flowers ("cones") of the hop plant (Humulus L.) produce compounds that contribute to the flavor and other properties of beer. Hop leaves and cones produce many of the same compounds, which also confer agronomic traits such as insect and disease resistance. Targeted and untargeted ultraperformance liquid chromatography-quadrupole time-of-flight-mass spectrometry with Waters MSE technology (UPLC-QTof-MSE) metabolomics were used to compare leaf phytochemical compositions of greenhouse-grown southwestern American wild Humulus neomexicanus (A. Nelson and Cockerell) Rydb. against a group of commercial hop cultivars consisting of both pure European Humulus lupulus L. and European-North American hybrids. Principal component analysis showed a clear distinction in chemical profiles between the two groups. H. neomexicanus leaves had a significantly higher content of total α acids (p = 4.4 × 10-9), total bitter acids (p = 2.6 × 10-6), cohumulone (p = 1.0 × 10-13), humulone + adhumulone (p = 9.1 × 10-4), and the prenylflavonoids xanthohumol (p = 0.013) and desmethylxanthohumol (p = 0.029) as well as significantly higher densities of glandular trichomes (p = 1.3 × 10-6), the biosynthetic site of those compounds. Most flavonol glycosides measured were also significantly more abundant in H. neomexicanus (p = 1.5 × 10-22 to 0.0027), whereas phenolic acids were consistently, but generally nonsignificantly (p > 0.05), more abundant in the cultivars. The higher bitter acid, prenylflavonoid, and flavonol glycoside content of H. neomexicanus leaves may help to confer more favorable insect and disease-resistance properties.
Collapse
Affiliation(s)
- Taylan B Morcol
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Paul D Matthews
- Department of Research and Development, Hopsteiner, S.S. Steiner, Inc., 1 West Washington Avenue, Yakima, Washington 98903, United States
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
16
|
Zhang G, Zhang N, Yang A, Huang J, Ren X, Xian M, Zou H. Hop bitter acids: resources, biosynthesis, and applications. Appl Microbiol Biotechnol 2021; 105:4343-4356. [PMID: 34021813 DOI: 10.1007/s00253-021-11329-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023]
Abstract
Diversified members of hop bitter acids (α- and β-acids) have been found in hop (Humulus lupulus). Mixtures of hop bitter acids have been traditionally applied in brewing and food industries as bitterness flavors or food additives. Recent studies have discovered novel applications of hop bitter acids and their derivatives in medicinal and pharmaceutical fields. The increasing demands of purified hop bitter acid promoted biosynthesis efforts for the heterologous biosynthesis of objective hop bitter acids by engineered microbial factories. In this study, the updated information of hop bitter acids and their representative application in brewing, food, and medicine fields are reviewed. We also speculate future trends on the development of robust microbial cell factories and biotechnologies for the biosynthesis of hop bitter acids. KEY POINTS: • Structures and applications of hop bitter acids are summarized in this study. • Biosynthesis of hop bitter acids remains challenging. • We discuss potential strategies in the microbial production of hop bitter acids.
Collapse
Affiliation(s)
- Guoqing Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Nan Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Anran Yang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jingling Huang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xueni Ren
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huibin Zou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. .,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
17
|
Gernet M, Gribkova I, Zakharov M, Kobelev K. Research of hop polyphenols impact on malt hopped wort aroma formation model experiments. POTRAVINARSTVO 2021. [DOI: 10.5219/1518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, a lot of research is being done on the flavoring compounds of hops. However, much less attention has been paid to the aroma formation considering the hop polyphenol different groups by various methods at the wort hopping stage. Therefore, the main goal of the research is an impact of hopping conditions on the polyphenolic compounds, when the hop is extracted variously into both wort and water to better understand extraction conditions, mechanisms, and factors as well as aroma formation considering various groups of polyphenols. As shown the hop variety, boiling time, and treatment type affect the hop polyphenols amount extracted into the wort. Aromatics varied upon a hop variety and wort boiling time accompanying a positive softening effect regarding aroma formated from malt wort compounds comparing to hopped aqueous extracts. The research proved the most noticeable pH (7 and above) impact on aroma formation caused by the polyphenol conversion. As also shown the first time, a temperature and acidic pH doubled the rutin amount, as well as the best extraction of the prenylflavanoid isoxanthohumol, was achieved by boiling at an alkaline medium pH. The results obtained indicate that various hydrophilic amino acids containing in the wort can stabilize polyphenols affecting the quality indicators of beer produced from different grain raw materials.
Collapse
|
18
|
Arruda TR, Pinheiro PF, Silva PI, Bernardes PC. A new perspective of a well-recognized raw material: Phenolic content, antioxidant and antimicrobial activities and α- and β-acids profile of Brazilian hop (Humulus lupulus L.) extracts. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110905] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Toxicological and Epigenetic Studies of Two Types of Ale Beer, Tyrosol and Iso-Alpha Humulone. Processes (Basel) 2021. [DOI: 10.3390/pr9030485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although many benefits drawn from beer consumption are claimed, the epidemiological records are contradictory with respect to cancer prevention. The purpose of this study was to investigate the possible health-related activities involving genome safety and the ageing processes of two types of lyophilised ale beers (blond and stout), as well as two of their bioactive compounds (tyrosol and iso-alpha humulone). A multipurpose trial set of in vivo toxicity, antitoxicity, mutagenicity, antimutagenicity, lifespan and healthspan assays using Drosophila melanogaster were used. In parallel, several in vitro assays were designed using the cancer cell line HL-60 in order to establish the possible chemopreventive activity of the selected substances, where epigenetic modulation of DNA methylation changes, clastogenic activity and tumour cell inhibition growth were evaluated. The safety of the four substances was confirmed: lyophilised blond ale beer (LBAB), lyophilised stout ale beer (LSAB), tyrosol and iso-alpha humulone were neither toxic nor genotoxic. Moreover, all substances, except tyrosol, revealed the ability to protect individual genomes against oxidative radicals and to exert antimutagenic activity against the genotoxin hydrogen peroxide. With respect to the degenerative process indicators of lifespan and healthspan, tyrosol was the only compound that did not exert any influence on the life extension of Drosophila; LBAB induced a significant lifespan extension in D. melanogaster; LSAB and its distinctive compound iso-alpha humulone induced a reduction in longevity. The in vitro assays showed the cytotoxic activity of LBAB, LSAB and tyrosol against HL-60 cells. Moreover, proapoptotic DNA fragmentation or DNA strand breakage was observed for both types of beers and iso-alpha humulone at different concentrations. Furthermore, the lyophilised ale beers and tyrosol exhibited an increasing genome-wide methylation status, while iso-alpha humulone exhibited a demethylation status in repetitive cancer cell sequences. Although the biological activities assigned to beer consumption cannot be linked to any specific molecule/element due to the complexity of the phenolic profile, as well as the multifactor brewing process, the results obtained let us propose lyophilised ale beers as safe potential nutraceutical beverages when consumed in moderate amounts. The prevention of toxicity and genetic oxidative damage, as well as the induction of tumor cell death and modulation of the methylation status, are the key activities of beer that were shown in the present research.
Collapse
|
20
|
Eriksen RL, Padgitt-Cobb LK, Townsend MS, Henning JA. Gene expression for secondary metabolite biosynthesis in hop (Humulus lupulus L.) leaf lupulin glands exposed to heat and low-water stress. Sci Rep 2021; 11:5138. [PMID: 33664420 PMCID: PMC7970847 DOI: 10.1038/s41598-021-84691-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Hops are valued for their secondary metabolites, including bitter acids, flavonoids, oils, and polyphenols, that impart flavor in beer. Previous studies have shown that hop yield and bitter acid content decline with increased temperatures and low-water stress. We looked at physiological traits and differential gene expression in leaf, stem, and root tissue from hop (Humulus lupulus) cv. USDA Cascade in plants exposed to high temperature stress, low-water stress, and a compound treatment of both high temperature and low-water stress for six weeks. The stress conditions imposed in these experiments caused substantial changes to the transcriptome, with significant reductions in the expression of numerous genes involved in secondary metabolite biosynthesis. Of the genes involved in bitter acid production, the critical gene valerophenone synthase (VPS) experienced significant reductions in expression levels across stress treatments, suggesting stress-induced lability in this gene and/or its regulatory elements may be at least partially responsible for previously reported declines in bitter acid content. We also identified a number of transcripts with homology to genes shown to affect abiotic stress tolerance in other plants that may be useful as markers for breeding improved abiotic stress tolerance in hop. Lastly, we provide the first transcriptome from hop root tissue.
Collapse
Affiliation(s)
- Renée L. Eriksen
- grid.512836.b0000 0001 2205 063XUSDA Agricultural Research Service, Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97331 USA
| | - Lillian K. Padgitt-Cobb
- grid.4391.f0000 0001 2112 1969Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331 USA
| | - M. Shaun Townsend
- grid.4391.f0000 0001 2112 1969Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331 USA
| | - John A. Henning
- grid.512836.b0000 0001 2205 063XUSDA Agricultural Research Service, Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97331 USA
| |
Collapse
|
21
|
Padgitt-Cobb LK, Kingan SB, Wells J, Elser J, Kronmiller B, Moore D, Concepcion G, Peluso P, Rank D, Jaiswal P, Henning J, Hendrix DA. A draft phased assembly of the diploid Cascade hop (Humulus lupulus) genome. THE PLANT GENOME 2021; 14:e20072. [PMID: 33605092 DOI: 10.1002/tpg2.20072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/03/2020] [Indexed: 05/25/2023]
Abstract
Hop (Humulus lupulus L. var Lupulus) is a diploid, dioecious plant with a history of cultivation spanning more than one thousand years. Hop cones are valued for their use in brewing and contain compounds of therapeutic interest including xanthohumol. Efforts to determine how biochemical pathways responsible for desirable traits are regulated have been challenged by the large (2.8 Gb), repetitive, and heterozygous genome of hop. We present a draft haplotype-phased assembly of the Cascade cultivar genome. Our draft assembly and annotation of the Cascade genome is the most extensive representation of the hop genome to date. PacBio long-read sequences from hop were assembled with FALCON and partially phased with FALCON-Unzip. Comparative analysis of haplotype sequences provides insight into selective pressures that have driven evolution in hop. We discovered genes with greater sequence divergence enriched for stress-response, growth, and flowering functions in the draft phased assembly. With improved resolution of long terminal retrotransposons (LTRs) due to long-read sequencing, we found that hop is over 70% repetitive. We identified a homolog of cannabidiolic acid synthase (CBDAS) that is expressed in multiple tissues. The approaches we developed to analyze the draft phased assembly serve to deepen our understanding of the genomic landscape of hop and may have broader applicability to the study of other large, complex genomes.
Collapse
Affiliation(s)
- Lillian K Padgitt-Cobb
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Sarah B Kingan
- Pacific Biosciences of California, Menlo Park, CA, 94025, USA
| | - Jackson Wells
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Brent Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | | | | | - Paul Peluso
- Pacific Biosciences of California, Menlo Park, CA, 94025, USA
| | - David Rank
- Pacific Biosciences of California, Menlo Park, CA, 94025, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | | | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
22
|
Recent patents on therapeutic activities of xanthohumol: a prenylated chalconoid from hops ( Humulus lupulus L.). Pharm Pat Anal 2021; 10:37-49. [PMID: 33445965 DOI: 10.4155/ppa-2020-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is expanding proof that specific natural compounds found in plants have additional conventional medicinal properties. One such compound is xanthohumol (XN), which is being explored as an antimicrobial, anticarcinogenic, antidiabetic and anti-inflammatory agent - aside from its utilization in dealing with conditions like autism, bone and skin improvement and microbial infections, lipid-related illnesses, and so on. XN is reported to suppress the uncontrolled production of inflammatory mediators responsible for diseases including cardiovascular disease, neurodegeneration and tumors. Further, it is accounted to limit adipogenesis and control obesity by focusing on principal adipocyte marker proteins. It is most generally utilized in the brewing industry as an additive and flavoring agent to add bitterness and aroma to beer. Present investigation sum up the patents filed in most recent 2 years on development of different pharmaceutical mixes and strategies dependent on various therapeutic potentials of XN.
Collapse
|
23
|
Buckett L, Schinko S, Urmann C, Riepl H, Rychlik M. Stable Isotope Dilution Analysis of the Major Prenylated Flavonoids Found in Beer, Hop Tea, and Hops. Front Nutr 2021; 7:619921. [PMID: 33385009 PMCID: PMC7770140 DOI: 10.3389/fnut.2020.619921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Prenylated flavonoids from hops (Humulus lupulus) have become of interest in recent years due to a range of bioactivities. The potential health benefits of prenylated flavonoids include anti-cancerous activities and treatment of the metabolic syndrome among others. Since prenylated flavonoids from hops have shown pharmaceutical potential in clinical trials, robust analytical methods to determine their concentrations in food, supplements, and beverages are required. One such, the gold standard of analytical methods, is stable isotope dilution analysis due to its ability to compensate matrix effects and losses during sample work-up. As no commercial standards were available, the synthesis of seven different prenylated flavonoid isotopes utilizing various strategies (microwave assistance, acid base catalyst in the presence of deuterated substance and lastly, the use of Strykers catalyst) is described. The produced prenylated flavonoid isotopes were then applied in the first stable isotope dilution analysis method that quantified six natural prenylated flavonoids (Isoxanthohumol, Isoxanthohumol-C, 8-Prenylnaringenin, 6- Prenylnaringenin, Xanthohumol, and Xanthohumol-C) in beer, hop tea and hops to prove its applicability. The SIDA-LC-MS/MS method was validated resulting in LODs and LOQs for all analytes between 0.04 and 3.2 μg/L. Moreover, due to the simple clean-up the developed method allows the prospect for measuring clinical samples in the future.
Collapse
Affiliation(s)
- Lance Buckett
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Simone Schinko
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Corinna Urmann
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany.,Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Herbert Riepl
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany.,Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
24
|
Feiner A, Pitra N, Matthews P, Pillen K, Wessjohann LA, Riewe D. Downy mildew resistance is genetically mediated by prophylactic production of phenylpropanoids in hop. PLANT, CELL & ENVIRONMENT 2021; 44:323-338. [PMID: 33037636 DOI: 10.1111/pce.13906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 10/01/2020] [Indexed: 05/25/2023]
Abstract
Downy mildew in hop (Humulus lupulus L.) is caused by Pseudoperonospora humuli and generates significant losses in quality and yield. To identify the biochemical processes that confer natural downy mildew resistance (DMR), a metabolome- and genome-wide association study was performed. Inoculation of a high density genotyped F1 hop population (n = 192) with the obligate biotrophic oomycete P. humuli led to variation in both the levels of thousands of specialized metabolites and DMR. We observed that metabolites of almost all major phytochemical classes were induced 48 hr after inoculation. But only a small number of metabolites were found to be correlated with DMR and these were enriched with phenylpropanoids. These metabolites were also correlated with DMR when measured from the non-infected control set. A genome-wide association study revealed co-localization of the major DMR loci and the phenylpropanoid pathway markers indicating that the major contribution to resistance is mediated by these metabolites in a heritable manner. The application of three putative prophylactic phenylpropanoids led to a reduced degree of leaf infection in susceptible genotypes, confirming their protective activity either directly or as precursors of active compounds.
Collapse
Affiliation(s)
- Alexander Feiner
- Plant Science and Breeding, Simon H. Steiner, Hopfen GmbH, Mainburg, Germany
- Deptartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Halle/Saale, Germany
| | - Nicholi Pitra
- Research and Development, S.S. Steiner, Inc., New York, USA
| | - Paul Matthews
- Research and Development, S.S. Steiner, Inc., New York, USA
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther University (MLU), Halle/Saale, Germany
| | - Ludger A Wessjohann
- Deptartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Halle/Saale, Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Berlin, Germany
| |
Collapse
|
25
|
Iniguez AB, Zhu MJ. Hop bioactive compounds in prevention of nutrition-related noncommunicable diseases. Crit Rev Food Sci Nutr 2020; 61:1900-1913. [PMID: 32462886 DOI: 10.1080/10408398.2020.1767537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nutrition-related noncommunicable diseases (NR-NCDs) such as cardiovascular disease and type 2 diabetes both negatively impact the quality of life of many individuals and generate a substantial burden on society, demonstrating a need for intervention. Phytochemicals are investigated as a potential approach for combating NR-NCDs, and those found in hops have gained increased attention in recent decades. Hops, the strobile of the plant Humulus lupulus, are grown primarily for the brewing industry as they confer taste and increased shelf-life. The bitter acids represent the main compounds of interest for improving beer quality. Additionally, bitter acids as well as the prenylated chalcone xanthohumol, exhibit a wide range of health beneficial properties. This review summarizes those beneficial effects of bitter acids and xanthohumol on NR-NCDs, including inflammatory and immune diseases, obesity and metabolic disorders, as well as cancer prevention.
Collapse
Affiliation(s)
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
26
|
Khatib N, Varidi MJ, Mohebbi M, Varidi M, Hosseini SMH. Replacement of nitrite with lupulon-xanthohumol loaded nanoliposome in cooked beef-sausage: experimental and model based study. Journal of Food Science and Technology 2020; 57:2629-2639. [PMID: 32549613 DOI: 10.1007/s13197-020-04299-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/25/2020] [Accepted: 02/16/2020] [Indexed: 01/30/2023]
Abstract
Replacement of nitrite with hop components in cooked beef-sausage (CBS) was studied. For this purpose, lupulon-xanthohumol loaded nanoliposome (L-X-NL) was produced using sonication at optimized condition (time = 10.8 min, power = 72.7 W, lecithin concentration = 140 mg/mL). The release of lupulon and xanthohumol to liquid meat extract followed the Rigter-Peppus model. Samples of CBS (60% meat) supplemented by different ratios of nitrite/L-X-NL were produced. Microbial analysis and lipid oxidation measurement were carried out to evaluate the safety of CBS samples. The formulation consisted 30 ppm of nitrite and 150 ppm of L-X-NL remained microbiologically safe during 30-d storage at 4 °C. It was observed that L-X-NL could postpone the oxidation. Addition of L-X-NL has not impaired the sensory properties of final product, while the presence of nitrite for inducing the demanding color of CBS was important. Considering the results, partial removal of nitrite in formulation of CBS (up to 50%) and replacing with L-X-NL as a new promising preservative is recommended.
Collapse
Affiliation(s)
- Neda Khatib
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Javad Varidi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohebbat Mohebbi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
27
|
McCallum JL, Nabuurs MH, Gallant ST, Kirby CW, Mills AAS. Phytochemical Characterization of Wild Hops ( Humulus lupulus ssp. lupuloides) Germplasm Resources From the Maritimes Region of Canada. FRONTIERS IN PLANT SCIENCE 2019; 10:1438. [PMID: 31921222 PMCID: PMC6917649 DOI: 10.3389/fpls.2019.01438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/16/2019] [Indexed: 05/06/2023]
Abstract
A survey was conducted in the Maritimes region of eastern Canada to measure the phytochemical diversity of prenylchalcone, soft resins (alpha & beta acids), and flavonol constituents from 30 unique wild-growing populations of hops (Humulus lupulus L.). Based on cone chemometrics, the majority of accessions (63.3%) are native Humulus lupulus ssp. lupoloides, with cones containing both xanthogalenol and 4'-O-methyl xanthohumol as chemotaxonomic indicator molecules. Interestingly, the leaves of all verified Humulus lupulus ssp. lupulus accessions accumulated high proportions (>0.20 total flavonols) of two acylated flavonol derivatives (kaempferol-3-O-(6''-O-malonyl)-β-D-glucopyranoside; quercetin-3-O-(6''-O-malonyl)-β-D-glucopyranoside), both previously unreported from hops leaves. The native lupuloides accessions examined possess only trace amounts of this compound in their leaves (<0.10 total flavonols), suggesting its potential utility as a novel, leaf-derived chemotaxonomic marker for subspecies identification purposes. A leaf-derived taxonomic marker is useful for identifying wild-growing accessions, as leaves are present throughout the entire growing season, whereas cones are only produced late in summer. Additionally, the collection of cones from 10-meter tall wild plants in overgrown riparian habitats is often difficult. The total levels of alpha acids, beta acids, and prenylchalcones in wild-collected Maritimes lupuloides cones are markedly higher than those previously reported for lupuloides individuals in the westernmost extent of its native range and show potentially valuable traits for future cultivar development, while some may be worthy of immediate commercial release. The accessions will be maintained as a core germplasm resource for future cultivar development.
Collapse
Affiliation(s)
- Jason L. McCallum
- Agriculture and Agri-Food Canada, Charlottetown Research and Development Centre, Charlottetown, Canada
| | | | | | | | | |
Collapse
|
28
|
Osorio-Paz I, Brunauer R, Alavez S. Beer and its non-alcoholic compounds in health and disease. Crit Rev Food Sci Nutr 2019; 60:3492-3505. [PMID: 31782326 DOI: 10.1080/10408398.2019.1696278] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Moderate alcohol consumption has been associated with beneficial effects on human health. Specifically, consumption of red wine and beer has shown a J-shape relation with many important diseases. While a role of ethanol cannot be excluded, the high content of polyphenols in both beverages has been proposed to contribute to these effects, with beer having the advantage over wine that it is lower in alcohol. In addition to ethanol, beer contains a wide variety of compounds with known medicinal potential such as kaempferol, quercetin, tyrosol and phenolic acids, and it is the main dietary source for the flavones xanthohumol and 8-prenylnaringenin, and bitter acids such as humulones and lupulones. Clinical and pre-clinical evidence for the protective effects of moderate beer consumption against cardiovascular disease and other diseases has been accumulating since the 1990s, and the non-alcoholic compounds of beer likely exert most of the observed beneficial effects. In this review, we summarize and discuss the effects of beer consumption in health and disease as well as the clinical potential of its non-alcoholic compounds which may be promising candidates for new therapies against common chronic diseases.
Collapse
Affiliation(s)
- Ixchel Osorio-Paz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, México
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Silvestre Alavez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, México
| |
Collapse
|
29
|
Salviati E, Ciaglia E, Sommella E, Montella F, Bertamino A, Ostacolo C, Parrino B, Rubino R, Vecchione C, Puca A, Novellino E, Campiglia P. Immunomodulatory activity of Humulus lupulus bitter acids fraction: Enhancement of natural killer cells function by NKp44 activating receptor stimulation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Schulz C, Chiheb C, Pischetsrieder M. Quantification of co-, n-, and ad-lupulone in hop-based dietary supplements and phytopharmaceuticals and modulation of their contents by the extraction method. J Pharm Biomed Anal 2019; 168:124-132. [PMID: 30807916 DOI: 10.1016/j.jpba.2019.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
Abstract
Hop β-bitter acids (lupulones) are health-beneficial components of Humulus lupulus L. showing, for example, antidepressant-like effects in vitro. Despite of the widespread use of hops for medicinal purposes, the concentrations of lupulones in hop-based drugs have not been reported yet. The present study developed, validated, and applied a method with external calibration, which allows for the first time separate quantification of co-, n-, and ad-lupulone in hop-based drugs by UHPLC‒DAD. Concentrations between 'not detectable' and 2.7 mg/mL co-lupulone, 2.2 mg/mL nlupulone, or 0.7 mg/mL ad-lupulone were measured in nine different commercial dietary supplements and phytopharmaceuticals. Only one hop tincture contained sufficient lupulone to possibly exert potential antidepressant effects. Aiming for products with increased lupulone content, the extraction efficiency of different solvents was investigated. Complete extraction of lupulones from raw hops was achieved by organic solvents including methanol and ethanol, whereas aqueous mixtures resulted in low recovery. These results indicate that adapted extraction conditions may result in more effective hops products.
Collapse
Affiliation(s)
- Carolin Schulz
- Food Chemistry, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Chafia Chiheb
- Food Chemistry, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany.
| |
Collapse
|
31
|
Knez Hrnčič M, Španinger E, Košir IJ, Knez Ž, Bren U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019; 11:E257. [PMID: 30678345 PMCID: PMC6412513 DOI: 10.3390/nu11020257] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
Hop plants comprise a variety of natural compounds greatly differing in their structure and properties. A wide range of methods have been developed for their isolation and chemical analysis, as well as for determining their antioxidative, antimicrobial, and antigenotoxic potentials. This contribution provides an overview of extraction and fractionation techniques of the most important hop compounds known for their health-promoting features. Although hops remain the principal ingredient for providing the taste, stability, and antimicrobial protection of beer, they have found applications in the pharmaceutical and other food industries as well. This review focuses on numerous health-promoting effects of hops raging from antioxidative, sedative, and anti-inflammatory potentials, over anticarcinogenic features to estrogenic activity. Therefore, hops should be exploited for the prevention and even healing of several prevalent diseases like cardiovascular disorders and various cancer types. New ideas for future studies on hops are finally presented: computational investigations of chemical reactivities of hop compounds, nanoencapsulation, and synergistic effects leading to a higher bioavailability of biologically active substances as well as the application of waste hop biomass from breweries for the production of high-added-value products in accordance with the biorefinery concept.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Eva Španinger
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Iztok Jože Košir
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia.
| | - Željko Knez
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|
32
|
|
33
|
Mishra AK, Duraisamy GS, Khare M, Kocábek T, Jakse J, Bříza J, Patzak J, Sano T, Matoušek J. Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus L.) constitutively overexpressing HlWRKY1 and HlWDR1 transcription factors. BMC Genomics 2018; 19:739. [PMID: 30305019 PMCID: PMC6180420 DOI: 10.1186/s12864-018-5125-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/27/2018] [Indexed: 01/04/2023] Open
Abstract
Background The hop plant (Humulus lupulus L.) is a valuable source of several secondary metabolites, such as flavonoids, bitter acids, and essential oils. These compounds are widely implicated in the beer brewing industry and are having potential biomedical applications. Several independent breeding programs around the world have been initiated to develop new cultivars with enriched lupulin and secondary metabolite contents but met with limited success due to several constraints. In the present work, a pioneering attempt has been made to overexpress master regulator binary transcription factor complex formed by HlWRKY1 and HlWDR1 using a plant expression vector to enhance the level of prenylflavonoid and bitter acid content in the hop. Subsequently, we performed transcriptional profiling using high-throughput RNA-Seq technology in leaves of resultant transformants and wild-type hop to gain in-depth information about the genome-wide functional changes induced by HlWRKY1 and HlWDR1 overexpression. Results The transgenic WW-lines exhibited an elevated expression of structural and regulatory genes involved in prenylflavonoid and bitter acid biosynthesis pathways. In addition, the comparative transcriptome analysis revealed a total of 522 transcripts involved in 30 pathways, including lipids and amino acids biosynthesis, primary carbon metabolism, phytohormone signaling and stress responses were differentially expressed in WW-transformants. It was apparent from the whole transcriptome sequencing that modulation of primary carbon metabolism and other pathways by HlWRKY1 and HlWDR1 overexpression resulted in enhanced substrate flux towards secondary metabolites pathway. The detailed analyses suggested that none of the pathways or genes, which have a detrimental effect on physiology, growth and development processes, were induced on a genome-wide scale in WW-transgenic lines. Conclusions Taken together, our results suggest that HlWRKY1 and HlWDR1 simultaneous overexpression positively regulates the prenylflavonoid and bitter acid biosynthesis pathways in the hop and thus these transgenes are presented as prospective candidates for achieving enhanced secondary metabolite content in the hop. Electronic supplementary material The online version of this article (10.1186/s12864-018-5125-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Ganesh Selvaraj Duraisamy
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Mudra Khare
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Jindřich Bříza
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 43846, Žatec, Czech Republic
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Department of Applied Biosciences, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
34
|
Kocábek T, Mishra AK, Matoušek J, Patzak J, Lomnická A, Khare M, Krofta K. The R2R3 transcription factor HlMYB8 and its role in flavonoid biosynthesis in hop (Humulus lupulus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:32-46. [PMID: 29606215 DOI: 10.1016/j.plantsci.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 05/25/2023]
Abstract
Hop is an important source of medicinally valuable secondary metabolites including bioactive prenylated chalcones. To gain in-depth knowledge of the regulatory mechanisms of hop flavonoids biosynthesis, full-length cDNA of HlMyb8 transcription factor gene was isolated from lupulin glands. The deduced amino acid sequence of HlMyb8 showed high similarity to a flavonol-specific regulator of phenylpropanoid biosynthesis AtMYB12 from Arabidopsis thaliana. Transient expression studies and qRT-PCR analysis of transgenic hop plants overexpressing HlMyb8 revealed that HlMYB8 activates expression of chalcone synthase HlCHS_H1 as well as other structural genes from the flavonoid pathway branch leading to the production of flavonols (F3H, F'3H, FLS) but not prenylflavonoids (PT1, OMT1) or bitter acids (VPS, PT1). HlMyb8 could cross-activate Arabidopsis flavonol-specific genes but to a much lesser extent than AtMyb12. Reciprocally, AtMyb12 could cross-activate hop flavonol-specific genes. Transcriptome sequence analysis of hop leaf tissue overexpressing HlMyb8 confirmed the modulation of several other genes related to flavonoid biosynthesis pathways (PAL, 4CL, ANR, DFR, LDOX). Analysis of metabolites in hop female cones confirmed that overexpression of HlMyb8 does not increase prenylflavonoid or bitter acids content in lupulin glands. It follows from our results that HlMYB8 plays role in a competition between flavonol and prenylflavonoid or bitter acid pathways by diverting the flux of CHS_H1 gene product and thus, may influence the level of these metabolites in hop lupulin.
Collapse
Affiliation(s)
- Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute Co. Ltd., Kadaňská 2525, 438 46 Žatec, Czech Republic
| | - Anna Lomnická
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Mudra Khare
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Karel Krofta
- Hop Research Institute Co. Ltd., Kadaňská 2525, 438 46 Žatec, Czech Republic
| |
Collapse
|
35
|
Sus N, Schlienz J, Calvo-Castro LA, Burkard M, Venturelli S, Busch C, Frank J. Validation of a rapid and sensitive reversed-phase liquid chromatographic method for the quantification of prenylated chalcones and flavanones in plasma and urine. NFS JOURNAL 2018. [DOI: 10.1016/j.nfs.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
De Keukeleire D. A Happy, Hoppy Odyssey: From a Flavorsome Hobby to a Dream Job. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2017-4795-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Bertelli D, Brighenti V, Marchetti L, Reik A, Pellati F. Nuclear magnetic resonance and high-performance liquid chromatography techniques for the characterization of bioactive compounds from Humulus lupulus L. (hop). Anal Bioanal Chem 2018; 410:3521-3531. [DOI: 10.1007/s00216-018-0851-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/06/2017] [Accepted: 01/03/2018] [Indexed: 12/29/2022]
|
38
|
An Overview of the Antimicrobial Properties of Hop. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2018. [DOI: 10.1007/978-3-319-67045-4_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Schick D, Schwack W. Detection of estrogen active compounds in hops by planar yeast estrogen screen. J Chromatogr A 2018; 1532:191-197. [DOI: 10.1016/j.chroma.2017.11.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 11/29/2022]
|
40
|
Champagne A, Boutry M. A comprehensive proteome map of glandular trichomes of hop (Humulus lupulus
L.) female cones: Identification of biosynthetic pathways of the major terpenoid-related compounds and possible transport proteins. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600411] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Antoine Champagne
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Marc Boutry
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|
41
|
Maliar T, Nemeček P, Ürgeová E, Maliarová M, Nesvadba V, Krofta K, Vulganová K, Krošlák E, Kraic J. Secondary metabolites, antioxidant and anti-proteinase activities of methanolic extracts from cones of hop (Humulus lupulus L.) cultivars. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0034-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Matsui H, Inui T, Oka K, Fukui N. The influence of pruning and harvest timing on hop aroma, cone appearance, and yield. Food Chem 2016; 202:15-22. [DOI: 10.1016/j.foodchem.2016.01.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/14/2022]
|
43
|
Lempereur M, Majewska C, Brunquers A, Wongpramud S, Valet B, Janssens P, Dillemans M, Van Nedervelde L, Gallo D. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells. Int J Endocrinol 2016; 2016:9747863. [PMID: 27190515 PMCID: PMC4844874 DOI: 10.1155/2016/9747863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022] Open
Abstract
Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif.
Collapse
Affiliation(s)
| | - Claire Majewska
- Institut Meurice, 1 avenue Emile Gryzon, 1070 Brussels, Belgium
| | | | | | - Bénédicte Valet
- Institut Meurice, 1 avenue Emile Gryzon, 1070 Brussels, Belgium
| | - Philippe Janssens
- Yakima Chief-Hopunion LLC, 10 avenue A. Fleming, 1348 Louvain-La-Neuve, Belgium
| | - Monique Dillemans
- Institut Meurice, 1 avenue Emile Gryzon, 1070 Brussels, Belgium
- Commission Communautaire Française (Cocof), Service des Industries Biochimiques, Belgium
| | - Laurence Van Nedervelde
- Institut Meurice, 1 avenue Emile Gryzon, 1070 Brussels, Belgium
- Commission Communautaire Française (Cocof), Service des Industries Biochimiques, Belgium
| | - Dominique Gallo
- Institut Meurice, 1 avenue Emile Gryzon, 1070 Brussels, Belgium
- Commission Communautaire Française (Cocof), Département des Substances Naturelles et de Biochimie, Belgium
- *Dominique Gallo:
| |
Collapse
|
44
|
Patzak J, Krofta K, Henychová A, Nesvadba V. Number and size of lupulin glands, glandular trichomes of hop (Humulus lupulusL.), play a key role in contents of bitter acids and polyphenols in hop cone. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12825] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Josef Patzak
- Hop Research Institute Co. Ltd.; Kadaňská 2525 Žatec 43846 Czech Republic
| | - Karel Krofta
- Hop Research Institute Co. Ltd.; Kadaňská 2525 Žatec 43846 Czech Republic
| | - Alena Henychová
- Hop Research Institute Co. Ltd.; Kadaňská 2525 Žatec 43846 Czech Republic
| | - Vladimír Nesvadba
- Hop Research Institute Co. Ltd.; Kadaňská 2525 Žatec 43846 Czech Republic
| |
Collapse
|
45
|
|
46
|
Humulus lupulus- a story that begs to be told. A review. JOURNAL OF THE INSTITUTE OF BREWING 2014. [DOI: 10.1002/jib.160] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Development of a new high-performance liquid chromatography method with diode array and electrospray ionization-mass spectrometry detection for the metabolite fingerprinting of bioactive compounds in Humulus lupulus L. J Chromatogr A 2014; 1349:50-9. [DOI: 10.1016/j.chroma.2014.04.097] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/14/2014] [Accepted: 04/30/2014] [Indexed: 11/20/2022]
|
48
|
Tanaka Y, Yanagida A, Komeya S, Kawana M, Honma D, Tagashira M, Kanda T, Shibusawa Y. Comprehensive separation and structural analyses of polyphenols and related compounds from bracts of hops (Humulus lupulus L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2198-206. [PMID: 24547976 DOI: 10.1021/jf405544n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel sequential chromatographic technique was applied to the comprehensive separation of polyphenols and related compounds from a hop bract extract. Over 100 types of constituents were effectively isolated from only 25 g of extract in high yields by high-speed countercurrent chromatography followed by hydrophilic interaction chromatography and reversed-phase high performance liquid chromatography. Among the materials isolated, the structures of 39 compounds were elucidated on the basis of their spectroscopic data including electrospray ionization time-of-flight mass spectrometry and one-dimensional/two-dimensional nuclear magnetic resonance. Three new compounds, 1 known compound identified for the first time in plants, and 20 known compounds that have not been reported in hops, were found. The hop bract extract also contained an abundance of highly oligomeric proanthocyanidins, which consisted of B-type procyanidin structures.
Collapse
Affiliation(s)
- Yoshihisa Tanaka
- Research Laboratories for Fundamental Technology of Food, Asahi Group Holdings, Limited, 1-21, Midori 1-chome, Moriya-shi, Ibaraki 302-0106, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
McAdam EL, Freeman JS, Whittock SP, Buck EJ, Jakse J, Cerenak A, Javornik B, Kilian A, Wang CH, Andersen D, Vaillancourt RE, Carling J, Beatson R, Graham L, Graham D, Darby P, Koutoulis A. Quantitative trait loci in hop (Humulus lupulus L.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry. BMC Genomics 2013; 14:360. [PMID: 23718194 PMCID: PMC3680207 DOI: 10.1186/1471-2164-14-360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hop (Humulus lupulus L.) is cultivated for its cones, the secondary metabolites of which contribute bitterness, flavour and aroma to beer. Molecular breeding methods, such as marker assisted selection (MAS), have great potential for improving the efficiency of hop breeding. The success of MAS is reliant on the identification of reliable marker-trait associations. This study used quantitative trait loci (QTL) analysis to identify marker-trait associations for hop, focusing on traits related to expediting plant sex identification, increasing yield capacity and improving bittering, flavour and aroma chemistry. RESULTS QTL analysis was performed on two new linkage maps incorporating transferable Diversity Arrays Technology (DArT) markers. Sixty-three QTL were identified, influencing 36 of the 50 traits examined. A putative sex-linked marker was validated in a different pedigree, confirming the potential of this marker as a screening tool in hop breeding programs. An ontogenetically stable QTL was identified for the yield trait dry cone weight; and a QTL was identified for essential oil content, which verified the genetic basis for variation in secondary metabolite accumulation in hop cones. A total of 60 QTL were identified for 33 secondary metabolite traits. Of these, 51 were pleiotropic/linked, affecting a substantial number of secondary metabolites; nine were specific to individual secondary metabolites. CONCLUSIONS Pleiotropy and linkage, found for the first time to influence multiple hop secondary metabolites, have important implications for molecular selection methods. The selection of particular secondary metabolite profiles using pleiotropic/linked QTL will be challenging because of the difficulty of selecting for specific traits without adversely changing others. QTL specific to individual secondary metabolites, however, offer unequalled value to selection programs. In addition to their potential for selection, the QTL identified in this study advance our understanding of the genetic control of traits of current economic and breeding significance in hop and demonstrate the complex genetic architecture underlying variation in these traits. The linkage information obtained in this study, based on transferable markers, can be used to facilitate the validation of QTL, crucial to the success of MAS.
Collapse
Affiliation(s)
- Erin L McAdam
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart TAS 7001, Australia
| | - Jules S Freeman
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart TAS 7001, Australia
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore 4558 QLD, Australia
| | - Simon P Whittock
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart TAS 7001, Australia
- Hop Products Australia, 26 Cambridge Road, Bellerive 7018 TAS, Australia
| | - Emily J Buck
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11 600, Palmerston North 4442, New Zealand
| | - Jernej Jakse
- Agronomy Department, Centre for Plant Biotechnology and Breeding, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana 1000, Slovenia
| | - Andreja Cerenak
- Slovenian Institute of Hop Research and Brewing, Cesta Zalskega Tabora 2, Zalec 3310, Slovenia
| | - Branka Javornik
- Agronomy Department, Centre for Plant Biotechnology and Breeding, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana 1000, Slovenia
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, PO Box 7141, Yarralumla 2600ACT, Australia
| | - Cai-Hong Wang
- Department of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Dave Andersen
- The New Zealand Institute for Plant & Food Research Limited, Old Mill Road, Motueka 7120, New Zealand
| | - René E Vaillancourt
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart TAS 7001, Australia
| | - Jason Carling
- Diversity Arrays Technology Pty Ltd, PO Box 7141, Yarralumla 2600ACT, Australia
| | - Ron Beatson
- The New Zealand Institute for Plant & Food Research Limited, Old Mill Road, Motueka 7120, New Zealand
| | - Lawrence Graham
- The New Zealand Institute for Plant & Food Research Limited, Old Mill Road, Motueka 7120, New Zealand
| | - Donna Graham
- The New Zealand Institute for Plant & Food Research Limited, Old Mill Road, Motueka 7120, New Zealand
| | - Peter Darby
- Wye Hops Ltd., China Farm, Upper Harbledown, Canterbury, Kent CT2 9AR, UK
| | - Anthony Koutoulis
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart TAS 7001, Australia
| |
Collapse
|
50
|
Füssy Z, Patzak J, Stehlík J, Matoušek J. Imbalance in expression of hop (Humulus lupulus) chalcone synthase H1 and its regulators during hop stunt viroid pathogenesis. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:688-695. [PMID: 23395540 DOI: 10.1016/j.jplph.2012.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/08/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
Viroid-derived small RNAs generated during hop stunt viroid (HSVd) pathogenesis may induce the symptoms found in the hop cultivar "Admiral", including observed shifts in phenylpropanoid metabolites and changes in petiole coloration. Using quantitative RT-PCR, we examined hop lupulin gland-specific genes that have been shown to be involved in phenylpropanoid metabolism, for altered expression in response to infection with two HSVd isolates, HSVd-g and CPFVd. Most notably, the expression of a gene encoding a key enzyme for phenylpropanoid synthesis, naringenin-chalcone synthase H1 (chs_H1), decreased up to 40-fold in infected samples. In addition, a marked decrease in the expression of HlbHLH2 and an increase in the expression of HlMyb3 were observed. These two genes encode transcription factors that form a ternary complex with HlWDR1 for chs_H1 promoter activation. In a transient expression assay, a decrease in the ternary complex potential to activate the chs_H1 promoter was observed upon the decrease of HlbHLH2 expression. In addition, targeting of the chs_H1 transcript by vd-sRNAs may contribute to these expression changes. Our data show that HSVd infection causes a significant imbalance in the expression of phenylpropanoid metabolite-affecting genes via a complex mechanism, possibly involving regulatory disorders and direct targeting by vd-sRNA.
Collapse
Affiliation(s)
- Zoltán Füssy
- University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | | | | | | |
Collapse
|