1
|
Hu X, Liu L, Peng M, Zheng D, Xia H, Zhou Y, Peng L, Peng X. One-Pot Preparation of Mixed-Mode Reversed-Phase Anion-Exchange Silica Sorbent and its Application in the Detection of Cyclopiazonic Acid in Feeds and Agricultural Products. Foods 2024; 13:1499. [PMID: 38790799 PMCID: PMC11119939 DOI: 10.3390/foods13101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
A novel co-bonded octyl and pyridine silica (OPS) sorbent was prepared and applied for the solid phase extraction (SPE) of cyclopiazonic acid (CPA, a type of mycotoxin) in feed and agricultural products for the first time. A simple mixed-ligand one-pot reaction strategy was employed for OPS sorbent preparation. Nitrogen adsorption-desorption measurements, elemental analysis (EI), thermal gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) analysis demonstrated the successful immobilization of octyl and quaternary ammonium groups onto the surface of silica gel. The large specific surface area, high-density functional groups, and mixed-mode anion-exchange characteristics of these silica particles made them the ideal material for the efficient extraction of CPA. Additionally, the OPS sorbents displayed excellent batch-to-batch reproducibility, satisfactory reusability, and low cost. The SPE parameters were optimized to explore the ionic and hydrophobic interactions between CPA and the functional groups, and the ultra-high performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC-MS/MS) parameters were optimized to obtain a desirable extraction efficiency and high sensitivity to CPA. Meanwhile, the OPS sorbent presented a satisfactory extraction selectivity and low matrix effect. Under the optimized conditions, our developed CPA detection method was used to determine CPA level in rice, wheat flour, corn flour, peanut, and feed samples, exhibiting a lower detection limit, better linearity, higher sensitivity, and satisfactory extraction recovery rate than previously reported methods. Therefore, our method can be preferentially used as a method for the detection of CPA in agricultural products and feeds.
Collapse
Affiliation(s)
- Xuan Hu
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| | - Li Liu
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| | - Maomin Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| | - Dan Zheng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| | - Hong Xia
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| | - Youxiang Zhou
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| | - Lijun Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (L.L.); (M.P.); (D.Z.); (H.X.); (Y.Z.)
| | - Xitian Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China
| |
Collapse
|
2
|
Molnár A, Knapp DG, Lovas M, Tóth G, Boldizsár I, Váczy KZ, Kovács GM. Untargeted metabolomic analyses support the main phylogenetic groups of the common plant-associated Alternaria fungi isolated from grapevine (Vitis vinifera). Sci Rep 2023; 13:19298. [PMID: 37935846 PMCID: PMC10630412 DOI: 10.1038/s41598-023-46020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Alternaria, a cosmopolitan fungal genus is a dominant member of the grapevine (Vitis vinifera) microbiome. Several Alternaria species are known to produce a variety of secondary metabolites, which are particularly relevant to plant protection and food safety in field crops. According to previous findings, the majority of Alternaria species inhabiting grapevine belong to Alternaria sect. Alternaria. However, the phylogenetic diversity and secondary metabolite production of the distinct Alternaria species has remained unclear. In this study, our aim was to examine the genetic and metabolic diversity of endophytic Alternaria isolates associated with the above-ground tissues of the grapevine. Altogether, 270 Alternaria isolates were collected from asymptomatic leaves and grape clusters of different grapevine varieties in the Eger wine region of Hungary. After analyses of the nuclear ribosomal DNA internal transcribed spacer (ITS) and RNA polymerase second largest subunit (rpb2) sequences, 170 isolates were chosen for further analyses. Sequences of the Alternaria major allergen gene (Alt a 1), endopolygalacturonase (endoPG), OPA10-2, and KOG1058 were also included in the phylogenetic analyses. Identification of secondary metabolites and metabolite profiling of the isolates were performed using high-performance liquid chromatography (HPLC)-high-resolution tandem mass spectrometry (HR-MS/MS). The multilocus phylogeny results revealed two distinct groups in grapevine, namely A. alternata and the A. arborescens species complex (AASC). Eight main metabolites were identified in all collected Alternaria isolates, regardless of their affiliation to the species and lineages. Multivariate analyses of untargeted metabolites found no clear separations; however, a partial least squares-discriminant analysis model was able to successfully discriminate between the metabolic datasets from isolates belonging to the AASC and A. alternata. By conducting univariate analysis based on the discriminant ability of the metabolites, we also identified several features exhibiting large and significant variation between A. alternata and the AASC. The separation of these groups may suggest functional differences, which may also play a role in the functioning of the plant microbiome.
Collapse
Affiliation(s)
- Anna Molnár
- Centre for Research and Development, Eszterházy Károly Catholic University, Leányka utca 6, Eger, 3300, Hungary.
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| | - Dániel G Knapp
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Miklós Lovas
- Centre for Research and Development, Eszterházy Károly Catholic University, Leányka utca 6, Eger, 3300, Hungary
- Hevesy György PhD School of Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Gergő Tóth
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre U. 9, Budapest, 1092, Hungary
| | - Imre Boldizsár
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Kálmán Zoltán Váczy
- Centre for Research and Development, Eszterházy Károly Catholic University, Leányka utca 6, Eger, 3300, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Budapest, 1525, Hungary
| |
Collapse
|
3
|
Rovetto EI, Luz C, La Spada F, Meca G, Riolo M, Cacciola SO. Diversity of Mycotoxins and Other Secondary Metabolites Recovered from Blood Oranges Infected by Colletotrichum, Alternaria, and Penicillium Species. Toxins (Basel) 2023; 15:407. [PMID: 37505676 PMCID: PMC10467077 DOI: 10.3390/toxins15070407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
This study identified secondary metabolites produced by Alternaria alternata, Colletotrichum gloeosporioides, and Penicillium digitatum in fruits of two blood orange cultivars before harvest. Analysis was performed by UHPLC-Q-TOF-MS. Three types of fruits were selected, asymptomatic, symptomatic showing necrotic lesions caused by hail, and mummified. Extracts from peel and juice were analyzed separately. Penicillium digitatum was the prevalent species recovered from mummified and hail-injured fruits. Among 47 secondary metabolites identified, 16, 18, and 13 were of A. alternata, C. gloeosporioides, and P. digitatum, respectively. Consistently with isolations, indicating the presence of these fungi also in asymptomatic fruits, the metabolic profiles of the peel of hail-injured and asymptomatic fruits did not differ substantially. Major differences were found in the profiles of juice from hail-injured and mummified fruits, such as a significant higher presence of 5,4-dihydroxy-3,7,8-trimethoxy-6C-methylflavone and Atrovenetin, particularly in the juice of mummified fruits of the Tarocco Lempso cultivar. Moreover, the mycotoxins patulin and Rubratoxin B were detected exclusively in mummified fruits. Patulin was detected in both the juice and peel, with a higher relative abundance in the juice, while Rubratoxin B was detected only in the juice. These findings provide basic information for evaluating and preventing the risk of contamination by mycotoxins in the citrus fresh fruit supply chain and juice industry.
Collapse
Affiliation(s)
- Ermes Ivan Rovetto
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
| | - Carlos Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 460100 València, Spain; (C.L.); (G.M.)
| | - Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 460100 València, Spain; (C.L.); (G.M.)
| | - Mario Riolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 460100 València, Spain; (C.L.); (G.M.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
| |
Collapse
|
4
|
Pradanas-González F, Peltomaa R, Lahtinen S, Luque-Uría Á, Más V, Barderas R, Maragos CM, Canales Á, Soukka T, Benito-Peña E, Moreno-Bondi MC. Homogeneous immunoassay for cyclopiazonic acid based upon mimotopes and upconversion-resonance energy transfer. Biosens Bioelectron 2023; 233:115339. [PMID: 37126866 DOI: 10.1016/j.bios.2023.115339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Strains of Penicillium spp. are used for fungi-ripened cheeses and Aspergillus spp. routinely contaminate maize and other crops. Some of these strains can produce toxic secondary metabolites (mycotoxins), including the neurotoxin α-cyclopiazonic acid (CPA). In this work, we developed a homogeneous upconversion-resonance energy transfer (UC-RET) immunoassay for the detection of CPA using a novel epitope mimicking peptide, or mimotope, selected by phage display. CPA-specific antibody was used to isolate mimotopes from a cyclic 7-mer peptide library in consecutive selection rounds. Enrichment of antibody binding phages was achieved, and the analysis of individual phage clones revealed four different mimotope peptide sequences. The mimotope sequence, ACNWWDLTLC, performed best in phage-based immunoassays, surface plasmon resonance binding analyses, and UC-RET-based immunoassays. To develop a homogeneous assay, upconversion nanoparticles (UCNP, type NaYF4:Yb3+, Er3+) were used as energy donors and coated with streptavidin to anchor the synthetic biotinylated mimotope. Alexa Fluor 555, used as an energy acceptor, was conjugated to the anti-CPA antibody fragment. The homogeneous single-step immunoassay could detect CPA in just 5 min and enabled a limit of detection (LOD) of 30 pg mL-1 (1.5 μg kg-1) and an IC50 value of 0.36 ng mL-1. No significant cross-reactivity was observed with other co-produced mycotoxins. Finally, we applied the novel method for the detection of CPA in spiked maize samples using high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD) as a reference method.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Riikka Peltomaa
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Álvaro Luque-Uría
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Vicente Más
- Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, 28220, Madrid, Spain
| | - Rodrigo Barderas
- Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, 28220, Madrid, Spain
| | - Chris M Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N University, Peoria, IL, 61604, USA
| | - Ángeles Canales
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
5
|
Deepika C, Hariprasanna K, Das IK, Jacob J, Ronanki S, Ratnavathi CV, Bellundagi A, Sooganna D, Tonapi VA. 'Kodo poisoning': cause, science and management. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2517-2526. [PMID: 35734115 PMCID: PMC9206982 DOI: 10.1007/s13197-021-05141-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/03/2021] [Accepted: 05/12/2021] [Indexed: 06/15/2023]
Abstract
Many mycotoxigenic fungi infect the food crops and affect the quality of the produce due to production of mycotoxins. Kodo millet is one of the important minor millets cultivated in India, mostly confined to marginal lands and tribal regions but has high yield potential under good management. The grains are nutritious and have anti-oxidant properties besides having many medicinal properties. However, the consumption is often hindered by the condition called 'kodo poisoning' resulting from fungal contamination producing cyclopiazonic acid, a toxic fungal secondary metabolite. An attempt has been made here to review the limited information available on kodo poisoning, its causes and effects, and proposed management practices by which the contamination can be checked. Further research efforts are essential for identifying sources of natural resistance to fungal metabolite, induction of host resistance through antimicrobial compounds or microbial antagonism to the pathogens to achieve cleaner grains from this crop even under high humid and rainy conditions. By effective adoption of both pre- and post-harvest management the kodo millet grains can be made safe for human consumption and can be popularized as a nutritious grain.
Collapse
Affiliation(s)
- C. Deepika
- ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030 India
| | - K. Hariprasanna
- ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030 India
| | - I. K. Das
- ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030 India
| | - Jinu Jacob
- ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030 India
| | - Swarna Ronanki
- ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030 India
| | - C. V. Ratnavathi
- ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030 India
| | - Amasiddha Bellundagi
- ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030 India
| | - D. Sooganna
- ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030 India
| | - Vilas A. Tonapi
- ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030 India
| |
Collapse
|
6
|
Zhang K. Comparison of Flow Injection-MS/MS and LC-MS/MS for the Determination of Ochratoxin A. Toxins (Basel) 2021; 13:toxins13080547. [PMID: 34437418 PMCID: PMC8402343 DOI: 10.3390/toxins13080547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
Two methods for measuring ochratoxin A in corn, oat, and grape juice were developed and compared. Flow injection (FI) and on-line liquid chromatography (LC) performances were evaluated separately, with both methods using a triple quadrupole tandem mass spectrometer (MS/MS) for quantitation. Samples were fortified with 13C uniformly labeled ochratoxin A as the internal standard (13C-IS) and prepared by dilution and filtration, followed by FI- and LC-MS/MS analysis. For the LC-MS/MS method, which had a 10 min run time/sample, recoveries of ochratoxin A fortified at 1, 5, 20, and 100 ppb in corn, oat, red grape juice, and white grape juice ranged from 100% to 117% with RSDs < 9%. The analysis time of the FI-MS/MS method was <60 s/sample, however, the method could not detect ochratoxin A at the lowest fortification concentration, 1 ppb, in all tested matrix sources. At 5, 20, and 100 ppb, recoveries by FI-MS/MS ranged from 79 to 117% with RSDs < 15%. The FI-MS/MS method also had ~5× higher solvent and matrix-dependent instrument detection limits (0.12–0.35 ppb) compared to the LC-MS/MS method (0.02–0.06 ppb). In the analysis of incurred corn and oat samples, both methods generated comparable results within ±20% of reference values, however, the FI-MS/MS method failed to determine ochratoxin A in two incurred wheat flour samples due to co-eluted interferences due to the lack of chromatographic separation.
Collapse
Affiliation(s)
- Kai Zhang
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, HFS-717, College Park, MD 20740, USA
| |
Collapse
|
7
|
Joshi RS, Jagdale SS, Bansode SB, Shankar SS, Tellis MB, Pandya VK, Chugh A, Giri AP, Kulkarni MJ. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J Biomol Struct Dyn 2021; 39:3099-3114. [PMID: 32329408 PMCID: PMC7212545 DOI: 10.1080/07391102.2020.1760137] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected over 2.5 million individuals with a mortality rate ranging from 5 to 10%. There are several efforts going on in the drug discovery to control the SARS-CoV-2 viral infection. The main protease (MPro) plays a critical role in viral replication and maturation, thus can serve as the primary drug target. To understand the structural evolution of MPro, we have performed phylogenetic and Sequence Similarity Network analysis, that depicted divergence of Coronaviridae MPro in five clusters specific to viral hosts. This clustering was corroborated with the comparison of MPro structures. Furthermore, it has been observed that backbone and binding site conformations are conserved despite variation in some of the residues. These attributes can be exploited to repurpose available viral protease inhibitors against SARS-CoV-2 MPro. In agreement with this, we performed screening of ∼7100 molecules including active ingredients present in the Ayurvedic anti-tussive medicines, anti-viral phytochemicals and synthetic anti-virals against SARS-CoV-2 MPro as the primary target. We identified several natural molecules like δ-viniferin, myricitrin, taiwanhomoflavone A, lactucopicrin 15-oxalate, nympholide A, afzelin, biorobin, hesperidin and phyllaemblicin B that strongly binds to SARS-CoV-2 MPro. Intrestingly, these molecules also showed strong binding with other potential targets of SARS-CoV-2 infection like viral receptor human angiotensin-converting enzyme 2 (hACE-2) and RNA dependent RNA polymerase (RdRp). We anticipate that our approach for identification of multi-target-directed ligand will provide new avenues for drug discovery against SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rakesh S. Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shounak S. Jagdale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Sneha B. Bansode
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - S. Shiva Shankar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Meenakshi B. Tellis
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | | | | | - Ashok P. Giri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahesh J. Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Tolosa J, Barba FJ, Pallarés N, Ferrer E. Mycotoxin Identification and In Silico Toxicity Assessment Prediction in Atlantic Salmon. Mar Drugs 2020; 18:md18120629. [PMID: 33321782 PMCID: PMC7764005 DOI: 10.3390/md18120629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to identify mycotoxins in edible tissues of Atlantic salmon (Salmo salar) using liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). After using a non-targeted screening approach and a home-made spectral library, 233 mycotoxins were analyzed. Moreover, the occurrence of mycotoxins in fish filets was evaluated, and their potential toxicity was predicted by in silico methods. According to the obtained results, forty mycotoxins were identified in analyzed salmon samples, the predominant mycotoxins being enniatins (also rugulosin and 17 ophiobolins), commonly found in cereals and their by-products. Thus, mycotoxin carry-over can occur from feed to organs and edible tissues of cultivated fish. Moreover, the toxicity of detected mycotoxins was predicted by the in silico webserver ProTox-II, highlighting that special attention must be paid to some less reported mycotoxins due to their toxic predicted properties.
Collapse
|
9
|
Abo Nouh FA, Gezaf SA, Abdel-Azeem AM. Aspergillus Mycotoxins: Potential as Biocontrol Agents. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Wang L, Liu B, Jin J, Ma L, Dai X, Pan L, Liu Y, Zhao Y, Xing F. The Complex Essential Oils Highly Control the Toxigenic Fungal Microbiome and Major Mycotoxins During Storage of Maize. Front Microbiol 2019; 10:1643. [PMID: 31379790 PMCID: PMC6646819 DOI: 10.3389/fmicb.2019.01643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
The contamination of maize with fungi and subsequent mycotoxins is a pivotal and long-standing safety concern in the maize industry. In this study, the inhibitory effects of the complex essential oils (cinnamaldehyde, citral, eugenol, and menthol, 3:3:2:2, v/v) on fungal growth and mycotoxins production in stored maize were evaluated using traditional plate counting, internal transcribed spacer 2 (ITS2) sequencing and liquid chromatography-tandem mass spectrometry. Complex essential oils (0.02%) significantly (p < 0.05) reduced the total fungi counts and the content of aflatoxin B1, zearalenone, and deoxynivalenol in stored maize during 12 months of storage, and were more effective than propionic acid (0.2%). The fungal diversity of the control group was the highest with 113 operational taxonomic units. During storage of maize kernels, Aspergillus, Fusarium, Wallemia, Sarocladium, and Penicillium were main genera. At 0-6 months, the fungal diversity was high and Fusarium was predominant genus. However, at 7-11 months, the fungal diversity was low and Aspergillus was predominant genus. During the later stages of storage, the prevalence of Aspergillus in maize treated with essential oils was significantly lower than (p < 0.05) that observed in the propionic acid treated and control samples. The results of this study suggest that the complex essential oils may be employed successfully to control toxigenic fungi and subsequent contamination with mycotoxins in maize.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bin Liu
- Shandong Quality Inspection Center for Medical Devices, Jinan, China
| | - Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Longxue Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaofeng Dai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lin Pan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yueju Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
11
|
Ostry V, Toman J, Grosse Y, Malir F. Cyclopiazonic acid: 50th anniversary of its discovery. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In 1968, the mycotoxin cyclopiazonic acid (CPA) was first discovered and characterised as a chemical substance. Within the following five decades, much has been learned from the results of CPA research. CPA is produced by several Penicillium species (P. griseofulvum, P. camemberti, P. commune, P. dipodomyicola) and Aspergillus species (A. flavus, A. oryzae and A. tamarii). It is widespread on naturally contaminated agricultural raw materials. CPA has been reported to occur in food commodities (e.g. oilseeds, nuts, cereals, dried figs, milk, cheese and meat products) and to possess toxicological significance. CPA is also frequently detected in peanuts and maize; the presence of CPA and aflatoxins in maize and peanuts contaminated with A. flavus suggests that synergism may occur. CPA is toxic to several animal species, such as rats, pigs, guinea pigs, poultry and dogs. After ingesting CPA-contaminated feeds, test animals display severe gastrointestinal upsets and neurological disorders. Organs affected include the liver, kidney, heart, and digestive tract, which show degenerative changes and necrosis. Biologically, CPA is a specific inhibitor of sarco(endo)plasmic reticulum Ca2+-ATPase. Data from toxicological evaluation of aflatoxins and CPA in broiler chickens demonstrate that both aflatoxins and CPA alone and the aflatoxin-CPA combination can adversely affect broiler health. The effects of aflatoxins and CPA combination were additive in most cases.
Collapse
Affiliation(s)
- V. Ostry
- National Institute of Public Health, Centre for Health, Nutrition and Food, National Reference Centre for Microfungi and Mycotoxins in Food Chains, Palackeho 3a, 61242 Brno, Czech Republic
| | - J. Toman
- University of Hradec Kralove, Department of Biology, Faculty of Science, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Y. Grosse
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - F. Malir
- University of Hradec Kralove, Department of Biology, Faculty of Science, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
De Berardis S, De Paola EL, Montevecchi G, Garbini D, Masino F, Antonelli A, Melucci D. Determination of four Alternaria alternata mycotoxins by QuEChERS approach coupled with liquid chromatography-tandem mass spectrometry in tomato-based and fruit-based products. Food Res Int 2018; 106:677-685. [PMID: 29579974 DOI: 10.1016/j.foodres.2018.01.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/30/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
A liquid chromatography-tandem mass spectrometry method for the determination of four Alternaria toxins, i.e. alternariol, alternariol monomethyl ether, tentoxin, and tenuazonic acid in tomato-based and fruit-based products was developed using a QuEChERs approach for the extraction of the mycotoxins. To optimise the QuEChERs extraction, several parameters were tested: types of QuEChERs pouches, sample weights, quantities of added water, use of dispersive SPE as a purification step, types of solvent and conditions of shaking. The method showed good linearity (R2 > 0.997) and precision (RSD% < 10) for all analytes. Tenuazonic acid showed very good recovery (98.8%-108.9%) for tomato-based products, as well as for fruit-based products. The method was successfully applied to 57 samples collected from the Italian market. Tenuazonic acid was found in appreciable concentrations in some products. The highest value was found in a tomato sauce sample (814 μg/kg).
Collapse
Affiliation(s)
- Sara De Berardis
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Eleonora Laura De Paola
- Department of Life Science (Agro-Food Science Area), University of Modena and Reggio Emilia, Via G. Amendola 2 (Padiglione Besta), 42122 Reggio Emilia, Italy
| | - Giuseppe Montevecchi
- BIOGEST - SITEIA Interdepartmental Centre, University of Modena and Reggio Emilia, Piazzale Europa 1, 42124 Reggio Emilia, Italy.
| | - Davide Garbini
- Coop Italia soc.coop., Via del Lavoro 6/8, 40033, Casalecchio di Reno, Bologna, Italy
| | - Francesca Masino
- Department of Life Science (Agro-Food Science Area), University of Modena and Reggio Emilia, Via G. Amendola 2 (Padiglione Besta), 42122 Reggio Emilia, Italy; BIOGEST - SITEIA Interdepartmental Centre, University of Modena and Reggio Emilia, Piazzale Europa 1, 42124 Reggio Emilia, Italy
| | - Andrea Antonelli
- Department of Life Science (Agro-Food Science Area), University of Modena and Reggio Emilia, Via G. Amendola 2 (Padiglione Besta), 42122 Reggio Emilia, Italy; BIOGEST - SITEIA Interdepartmental Centre, University of Modena and Reggio Emilia, Piazzale Europa 1, 42124 Reggio Emilia, Italy
| | - Dora Melucci
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
13
|
Xing F, Liu X, Wang L, Selvaraj JN, Jin N, Wang Y, Zhao Y, Liu Y. Distribution and variation of fungi and major mycotoxins in pre- and post-nature drying maize in North China Plain. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Detection of cyclopiazonic acid (CPA) in maize by immunoassay. Mycotoxin Res 2017; 33:157-165. [DOI: 10.1007/s12550-017-0275-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 11/26/2022]
|
15
|
Tolosa J, Graziani G, Gaspari A, Chianese D, Ferrer E, Mañes J, Ritieni A. Multi-Mycotoxin Analysis in Durum Wheat Pasta by Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Toxins (Basel) 2017; 9:toxins9020059. [PMID: 28208797 PMCID: PMC5331438 DOI: 10.3390/toxins9020059] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/04/2017] [Indexed: 01/04/2023] Open
Abstract
A simple and rapid multi-mycotoxin method for the determination of 17 mycotoxins simultaneously is described in the present survey on durum and soft wheat pasta samples. Mycotoxins included in the study were those mainly reported in cereal samples: ochratoxin-A (OTA), aflatoxin B1 (AFB1), zearalenone (ZON), deoxynivalenol (DON), 3-and 15-acetyl-deoxynivalenol (3-AcDON and 15-AcDON), nivalenol (NIV), neosolaniol (NEO), fusarenon-X, (FUS-X), T-2 toxin (T-2) and HT-2 toxin (HT-2), fumonisin B1 and B2 (FB1 and FB2), and four emerging mycotoxins: three enniatins (ENA, ENA1, and ENB), and beauvericin (BEA). Twenty-nine samples were analyzed to provide an overview on mycotoxin presence: 27 samples of durum wheat pasta, and two samples of baby food. Analytical results concluded that trichothecenes showed the highest incidence, mainly DON, NIV, and HT-2 toxin, followed by ZON and ENB, while NEO, FUS-X, OTA, AFB1, and FUM were not detected in any sample. The highest contents corresponded to ENB and ranged from 91.15 µg/kg to 710.90 µg/kg.
Collapse
Affiliation(s)
- Josefa Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
- Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Giulia Graziani
- Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Anna Gaspari
- Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Donato Chianese
- Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Emilia Ferrer
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
| | - Alberto Ritieni
- Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
16
|
Determination of cyclopiazonic acid in white mould cheese by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) using a novel internal standard. Food Chem 2016; 211:978-82. [DOI: 10.1016/j.foodchem.2016.05.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022]
|
17
|
|
18
|
Won M, Kwon S, Kim TH. An Efficient Synthesis of Alternariol. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2015. [DOI: 10.5012/jkcs.2015.59.5.471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Myresiotis CK, Testempasis S, Vryzas Z, Karaoglanidis GS, Papadopoulou-Mourkidou E. Determination of mycotoxins in pomegranate fruits and juices using a QuEChERS-based method. Food Chem 2015; 182:81-8. [DOI: 10.1016/j.foodchem.2015.02.141] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 02/22/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
|
20
|
Determination of Ochratoxin A in Wheat and Maize by Solid Bar Microextraction with Liquid Chromatography and Fluorescence Detection. Toxins (Basel) 2015; 7:3000-11. [PMID: 26251923 PMCID: PMC4549736 DOI: 10.3390/toxins7083000] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 11/21/2022] Open
Abstract
Solid bar microextraction (SBME), followed by liquid chromatography with fluorescence detection (HPLC-FLD), for the quantification of ochratoxin A in wheat and maize was developed. Ground wheat and maize grains were extracted with acetonitrile-water-acetic acid (79:20:1, v/v/v), followed by defatting with cyclohexane, and subjected to SBME-LC-FLD analysis. SBME devices were constructed by packing 2 mg sorbent (C18) into porous polypropylene micro-tubes (2.5 cm length, 600 μm i.d., and 0.2 μm pore size). SBME devices were conditioned with methanol and placed into 5 mL stirred sample solutions for 70 min. After extraction, OTA was desorbed into 200 μL of methanol for 15 min, the solution was removed in vacuum, the residue was dissolved in 50 μL of methanol-water (1:1, v/v) and ochratoxin A content was determined by HPLC-FLD. Under optimized extraction conditions, the limit of detection of 0.9 μg·kg−1 and 2.5 μg·kg−1 and the precision of 3.4% and 5.0% over a concentration range of 1 to 100 μg·kg−1 in wheat and maize flour, respectively, were obtained.
Collapse
|
21
|
Shar ZH, Sumbal GA, Sherazi STH, Kara H, Hussain M, Bhanger MI. Determination of Ochratoxin A in Poultry Feed by High-Performance Liquid Chromatography with a Monolithic Column. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.951447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
|
23
|
Mikula H, Skrinjar P, Sohr B, Ellmer D, Hametner C, Fröhlich J. Total synthesis of masked Alternaria mycotoxins—sulfates and glucosides of alternariol (AOH) and alternariol-9-methyl ether (AME). Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Minor contribution of alternariol, alternariol monomethyl ether and tenuazonic acid to the genotoxic properties of extracts from Alternaria alternata infested rice. Toxicol Lett 2012; 214:46-52. [DOI: 10.1016/j.toxlet.2012.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 07/31/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022]
|
25
|
Fagnano M, Fiorentino N, D'Egidio MG, Quaranta F, Ritieni A, Ferracane R, Raimondi G. Durum wheat in conventional and organic farming: yield amount and pasta quality in Southern Italy. ScientificWorldJournal 2012; 2012:973058. [PMID: 22701377 PMCID: PMC3373301 DOI: 10.1100/2012/973058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/24/2012] [Indexed: 11/17/2022] Open
Abstract
Five durum wheat cultivars were grown in a Mediterranean area (Southern Italy) under conventional and organic farming with the aim to evaluate agronomic, technological, sensory, and sanitary quality of grains and pasta. The cultivar Matt produced the best pasta quality under conventional cropping system, while the quality parameters evaluated were unsatisfactory under organic farming. The cultivar Saragolla showed the best yield amount and pasta quality in all the experimental conditions, thus proving to be the cultivar more adapt to organic farming. In all the tested experimental conditions, nivalenol (NIV) and deoxynivalenol (DON) occurrence was very low and the other mycotoxins evaluated were completely absent. These data confirm the low risk of mycotoxin contamination in the Mediterranean climate conditions. Finally, it has been possible to produce high-quality pasta in Southern Italy from durum wheat grown both in conventional and organic farming.
Collapse
Affiliation(s)
- Massimo Fagnano
- Department of Agricultural Engineering and Agronomy, Naples University Federico II, Via Università 100, 80055 Portici, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Scientific Opinion on the risks for animal and public health related to the presence ofAlternariatoxins in feed and food. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2407] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Biosensors for secondary metabolites, two case studies: ochratoxin A and microcystin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [PMID: 21520719 DOI: 10.1007/978-1-4419-7347-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Secondary metabolites are chemical compounds that are not directly involved in the normal growth, development or reproduction of organisms. Due to the toxicity shown by some of these compounds, their presence can represent a threat to human health. Reliable detection systems able to control their presence are required, as a tool to ensure public health. This chapter offers an overview of different techniques developed for the detection of toxic secondary metabolites, taking ochratoxin A and microcystins as two representative examples. While ochratoxin A is a mycotoxin produced by several species of fungi, microcystins are cyanotoxins released by certain strains of cyanobacteria. Biosensor-based strategies are emphasized as powerful screening tools.
Collapse
|
29
|
Degradation kinetics of the Alternaria mycotoxin tenuazonic acid in aqueous solutions. Anal Bioanal Chem 2009; 397:453-62. [DOI: 10.1007/s00216-009-3288-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/24/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
|
30
|
Rahmani A, Jinap S, Soleimany F. Qualitative and Quantitative Analysis of Mycotoxins. Compr Rev Food Sci Food Saf 2009; 8:202-251. [DOI: 10.1111/j.1541-4337.2009.00079.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Determination of cyclopiazonic acid in food and feeds by liquid chromatography–tandem mass spectrometry. J Chromatogr A 2009; 1216:3812-8. [DOI: 10.1016/j.chroma.2009.02.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/16/2009] [Accepted: 02/20/2009] [Indexed: 11/21/2022]
|
32
|
Almeda S, Arce L, Benavente F, Sanz-Nebot V, Barbosa J, Valcárcel M. Comparison of off- and in-line solid-phase extraction for enhancing sensitivity in capillary electrophoresis using ochratoxin as a model compound. Anal Bioanal Chem 2009; 394:609-15. [PMID: 19252901 DOI: 10.1007/s00216-009-2696-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/29/2009] [Accepted: 02/09/2009] [Indexed: 11/25/2022]
Abstract
This paper proposes and compares two approaches based on off- and in-line solid-phase extraction (SPE), intended to enhance sensitivity in capillary electrophoresis with ultraviolet detection (CE-UV) using as a model the determination of ochratoxin A (OA) in river water samples. In the off-line SPE mode, the reversed-phase sorbent (octadecilsylane, C(18)) selectively retains the target analyte (OA) and allows large volumes of the sample (70 mL) to be introduced and subsequently eluted in a small volume (0.1 mL) of an appropriate solution. In the in-line SPE mode, a custom-made microcartridge is inserted near the inlet of the capillary, which is filled with the same C(18) sorbent. This solid phase selectively retains OA present in a sample volume as low as approximately 640 microL for subsequent elution with ca. 135 nL of an appropriate eluent. The limit of detection (LOD) obtained with the in-line SPE method was 1 ng L(-1), which is 3 orders of magnitude lower than that obtained with CE-UV and roughly 1 order lower than that provided by the off-line SPE-CE-UV method.
Collapse
Affiliation(s)
- S Almeda
- Department of Analytical Chemistry, University of Córdoba, Campus de Rabanales, 14071, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Cyclopiazonic acid (CPA) is a mycotoxin produced by some of the same species of fungi that produce the more widely known aflatoxins. As a consequence it has been found previously that CPA and the aflatoxins may co-occur in commodities under certain conditions. CPA, which is a substituted indole, has a chromophore with absorptions in the ultraviolet (UV) region (223 nm, 278 nm). Quantification of CPA is commonly accomplished by liquid chromatographic separation followed by detection of one of the UV absorbances. CPA has not previously been described as fluorescent, and it likely is not. However, herein we report that, following exposure to high intensity UV light in a photochemical reactor, fluorescent products of CPA are produced. In methanol or aqueous acetonitrile these products have an excitation maximum of 372 nm and an emission maximum of 462 nm. Upon exposure to UV light for extended periods a decrease in the absorbance of CPA at 223 nm and 278 nm and a concomitant increase in fluorescence was observed. CPA and aflatoxin B1 were separated by reverse-phase liquid chromatography and the eluant was subjected to post-column photolysis, which allowed the fluorescence detection of both toxins. The ability to photolyse CPA and detect this toxin by fluorescence may open up new avenues for determination of this mycotoxin alone or together with the aflatoxins.
Collapse
Affiliation(s)
- C. Maragos
- Mycotoxin Research Unit, National Center for Agricultural Utilization Research, ARS, USDA, 1815 N. University Street, Peoria, IL 61604, USA
| |
Collapse
|
34
|
Spanjer MC, Rensen PM, Scholten JM. LC-MS/MS multi-method for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25:472-89. [PMID: 18348046 DOI: 10.1080/02652030701552964] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mycotoxin analysis is usually carried out by high performance liquid chromatography after immunoaffinity column cleanup or in enzyme-linked immunosorbent assay tests. These methods normally involve determination of single compounds only. EU legislation already exists for the aflatoxins, ochratoxin A and patulin in food, and legislation will come into force for deoxynivalenol, zearalenone and the fumonisins in 2007. To enforce the various legal limits, it would be preferable to determine all mycotoxins by routine analysis in different types of matrices in one single extract. This would also be advantageous for HACCP control purposes. For this reason, a multi-method was developed with which 33 mycotoxins in various products could be analysed simultaneously. The mycotoxins were extracted with an acetonitrile/water mixture, diluted with water and then directly injected into a LC-MS/MS system. The mycotoxins were separated by reversed-phase HPLC and detected using an electrospray ionisation interface (ESI) and tandem MS, using MRM in the positive ion mode, to increase specificity for quality control. The following mycotoxins could be analysed in a single 30-min run: Aflatoxins B1, B2, G1 and G2, ochratoxin A, deoxynivalenol, zearalenone, T-2 toxin, HT-2 toxin, alpha-zearalenol, alpha-zearalanol, beta-zearalanol, sterigmatocystin, cyclopiazonic acid, penicillic acid, fumonisins B1, B2 and B3, diacetoxyscirpenol, 3- and 15-acetyl-deoxynivalenol, zearalanone, ergotamin, ergocornin, ergocristin, alpha-ergocryptin, citrinin, roquefortin C, fusarenone X, nivalenol, mycophenolic acid, alternariol and alternariol monomethyl ether. The limit of quantification for the aflatoxins and ochratoxin A was 1.0 microg kg(-1) and for deoxynivalenol 50 microg kg(-1). The quantification limits for the other mycotoxins were in the range 10-200 microg kg(-1). The matrix effect and validation data are presented for between 13 and 24 mycotoxins in peanuts, pistachios, wheat, maize, cornflakes, raisins and figs. The method has been compared with the official EU method for the determination of aflatoxins in food and relevant FAPAS rounds. The multi-mycotoxin method has been proven by the detection of more than one mycotoxin in maize, buckwheat, figs and nuts. The LC-MS/MS technique has also been applied to baby food, which is subject to lower limits for aflatoxin B1 and ochratoxin A, ergot alkaloids in naturally contaminated rye and freeze-dried silage samples.
Collapse
Affiliation(s)
- Martien C Spanjer
- National Reference Laboratory for Mycotoxins and Pesticides in Food, Food and Consumer Product Safety Authority (VWA), Hoogte Kadijk 401, The Netherlands.
| | | | | |
Collapse
|
35
|
Grossi P, Olivares IRB, de Freitas DR, Lancas FM. A novel HS-SBSE system coupled with gas chromatography and mass spectrometry for the analysis of organochlorine pesticides in water samples. J Sep Sci 2008; 31:3630-7. [DOI: 10.1002/jssc.200800338] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Determination of mycophenolic acid in meat products using mixed mode reversed phase-anion exchange clean-up and liquid chromatography–high-resolution mass spectrometry. J Chromatogr A 2008; 1205:103-8. [DOI: 10.1016/j.chroma.2008.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/04/2008] [Accepted: 08/08/2008] [Indexed: 11/19/2022]
|
37
|
Usleber E, Dade M, Schneider E, Dietrich R, Bauer J, Märtlbauer E. Enzyme immunoassay for mycophenolic acid in milk and cheese. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6857-6862. [PMID: 18611027 DOI: 10.1021/jf801063w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mycophenolic acid (MPA) was reacted with N-hydroxysuccinimide and conjugated to keyhole limpet hemocyanin (KLH), and to horseradish peroxidase (HRP), respectively. The MPA-KLH was used to produce anti-MPA antiserum in rabbits. A competitive direct enzyme immunoassay (EIA) for MPA was established with anti-MPA antiserum and MPA-HRP conjugate. The mean 50% inhibition and detection limit of MPA standard curves (n = 103) were 197 +/- 67 and 81 +/- 48 pg/mL, respectively. The EIA was specific for MPA and its synthetic 2-morpholinoethyl ester, mycophenolate mofetil (91% relative cross-reactivity). Raw bulk milk and pasteurized milk, with and without beta-glucuronidase pretreatment, were analyzed by EIA. No MPA was found in milk, at a detection limit of 100 pg/mL (recovery 58-66% at 0.125-2 ng/mL). Blue-veined cheese from the German market (n = 53) was analyzed by EIA, and the detection limit was at 0.5 ng/g (recovery 68-79% at 5-100 ng/g). All but two cheeses contained MPA, although mostly (66%) at levels of <10 ng/g. MPA at 400-1200 ng/g was found in Roquefort cheeses. Highest levels (4-11 microg/g) were found in a German soft cheese preparation. MPA levels in mycelium-rich parts of cheese were 3 times higher than in mycelium-free parts.
Collapse
Affiliation(s)
- Ewald Usleber
- Institute of Veterinary Food Science, Veterinary Faculty, Justus-Liebig-University, Ludwigstrasse 21, 35390 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Ostry V. Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. WORLD MYCOTOXIN J 2008. [DOI: 10.3920/wmj2008.x013] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microfungi of the genus Alternaria are ubiquitous pathogens and saprophytes. Many species of the genus Alternaria commonly cause spoilage of various food crops in the field or post-harvest decay. Due to their growth even at low temperatures, they are also responsible for spoilage of these commodities during refrigerated transport and storage. Several Alternaria species are known producers of toxic secondary metabolites - Alternaria mycotoxins. A. alternata produces a number of mycotoxins, including alternariol, alternariol monomethyl ether, altenuene, altertoxins I, II, III, tenuazonic acid and other less toxic metabolites. Tenuazonic acid is toxic to several animal species, e.g. mice, chicken, dogs. Alternariol, alternariol monomethyl ether, altenuene and altertoxin I are not very acutely toxic. There are several reports on the mutagenicity and genotoxicity of alternariol, and alternariol monomethyl ether. Alternariol has been identified as a topoisomerase I and II poison which might contribute to the impairment of DNA integrity in human colon carcinoma cells. Analytical methods to determine Alternaria toxins are largely based on procedures, involving cleanup by solvent partitioning or solid phase extraction, followed by chromatographic separation techniques, in combination with ultraviolet, fluorescence, electrochemical and mass spectroscopic detection. A large number of Alternaria metabolites has been reported to occur naturally in food commodities (e.g. fruit, vegetables, cereals and oil plants). Alternariol, alternariol monomethyl ether and tenuazonic acid were frequently detected in apples, apple products, mandarins, olives, pepper, red pepper, tomatoes, tomato products, oilseed rape meal, sunflower seeds, sorghum, wheat and edible oils. Alternariol and alternariol monomethyl ether were detected in citrus fruit, Japanese pears, prune nectar, raspberries, red currant, carrots, barley and oats. Alternariol monomethyl ether and tenuazonic acid were detected in melon. Natural occurrence of alternariol has been reported in apple juice, cranberry juice, grape juice, prune nectar, raspberry juice, red wine and lentils.
Collapse
Affiliation(s)
- V. Ostry
- National Institute of Public Health, Centre for Hygiene of Food Chains, National Reference Centre for Microfungi and Mycotoxins in Food Chains, Palackeho 3a, 61242 Brno, Czech Republic
| |
Collapse
|
39
|
Vatinno R, Aresta A, Zambonin CG, Palmisano F. Determination of Ochratoxin A in green coffee beans by solid-phase microextraction and liquid chromatography with fluorescence detection. J Chromatogr A 2008; 1187:145-50. [DOI: 10.1016/j.chroma.2008.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 02/01/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
|
40
|
Gonçalez E, Nogueira JH, Fonseca H, Felicio JD, Pino FA, Corrêa B. Mycobiota and mycotoxins in Brazilian peanut kernels from sowing to harvest. Int J Food Microbiol 2008; 123:184-90. [DOI: 10.1016/j.ijfoodmicro.2008.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Revised: 01/02/2008] [Accepted: 01/04/2008] [Indexed: 11/30/2022]
|
41
|
Gallo G, Lo Bianco M, Bognanni R, Saimbene G. Mycotoxins in Durum Wheat Grain: Hygienic-Health Quality of Sicilian Production. J Food Sci 2008; 73:T42-7. [DOI: 10.1111/j.1750-3841.2008.00704.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
McClure EL, Wong CS. Solid phase microextraction of macrolide, trimethoprim, and sulfonamide antibiotics in wastewaters. J Chromatogr A 2007; 1169:53-62. [PMID: 17875312 DOI: 10.1016/j.chroma.2007.08.062] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/27/2007] [Accepted: 08/30/2007] [Indexed: 11/25/2022]
Abstract
In this work, we optimize a solid phase microextraction (SPME) method for the simultaneous collection of antibiotics (sulfonamides, macrolides, and trimethoprim) present in wastewaters. The performance of the SPME method is compared to a solid phase extraction (SPE) method. Analytes in both cases were quantified by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) with electrospray ionization. The advantages offered by SPME in this application are: decreased sample volume requirements, ease of sample processing and extraction, decreased cost, and most importantly, elimination of electrospray matrix effects. Despite having higher limits of quantification (16-1380 ng/L in influent and 35-260 ng/L in effluent), nearly all of the compounds found to be present in Edmonton Gold Bar wastewater by SPE were measurable by SPME (i.e., sulfamethoxazole, trimethoprim, erythromycin, and clarithromycin), with values similar to those obtained using the former method. Limits of quantification for the SPE method for the measured compounds were 4.7-15 ng/L and 0.86-6.1 ng/L for influent and effluent, respectively.
Collapse
Affiliation(s)
- Evelyn L McClure
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | |
Collapse
|
43
|
Aresta A, Vatinno R, Palmisano F, Zambonin CG. Determination of Ochratoxin A in wine at sub ng/mL levels by solid-phase microextraction coupled to liquid chromatography with fluorescence detection. J Chromatogr A 2006; 1115:196-201. [PMID: 16554057 DOI: 10.1016/j.chroma.2006.02.092] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 02/23/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
Solid-phase microextraction (SPME), using a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber, interfaced with liquid chromatography-fluorescence detection (LC-FD) has been applied to the determination of Ochratoxin A (OTA) in wine samples. Compared to the most widely adopted extraction/clean-up procedure based on immunoaffinity columns (IAC), the solventless extraction is simpler and cost-effective, requiring the simple immersion of the fiber in diluted wine samples. Furthermore, a fast LC separation is achieved under isocratic conditions. The linear range investigated in wine was 0.25-8 ng/mL; at fortification levels of 0.5 and 2 ng/mL, within-day intra-laboratory precision (repeatability) values, expressed as RSD%, were 5.9 and 5.1, respectively, whereas between days (n = 4) precision was 8.5 and 7.1%, respectively. The limit of detection (LOD) at a signal-to-noise (S/N) ratio of 3 was 0.07 ng/mL; the limit of quantification (LOQ) calculated at S/N = 10 was 0.22 ng/mL, well below the European regulatory level of 2 ng/mL. The potential of the method has been demonstrated by the analysis of a number of different wine samples.
Collapse
Affiliation(s)
- Antonella Aresta
- Dipartimento di Chimica, Università degli Studi di Bari, Via E. Orabona 4, 70126 Bari, Italy
| | | | | | | |
Collapse
|
44
|
Aresta A, Palmisano F, Vatinno R, Zambonin CG. Ochratoxin a determination in beer by solid-phase microextraction coupled to liquid chromatography with fluorescence detection: a fast and sensitive method for assessment of noncompliance to legal limits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:1594-8. [PMID: 16506806 DOI: 10.1021/jf052666o] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A solid-phase microextraction-liquid chromatography-fluorescence detection (SPME-LC-FD) method for the determination of ochratoxin A (OTA) in commercial beer samples was developed for the first time using a 60 microm thick poly(dimethylsiloxane)/divinylbenzene (PDMS/DVB) fiber. The procedure required a very simple sample pretreatment, an isocratic elution, and provides a selective extraction. All of the factors influencing fiber adsorption (extraction time, temperature, pH, and salt addition) and desorption of the analyte (desorption and injection time and desorption solvent mixture composition) have been investigated. The linear range investigated in beer was 0.03-2 ng/mL; within-day and between-days relative standard deviation in beer were 4.3 and 5.9%, respectively. The limit of quantification in spiked beer was 53 pg mL(-)(1), well below all European regulatory levels.
Collapse
|
45
|
Yu JCC, Lai EPC. Polypyrrole modified stainless steel frits for on-line micro solid phase extraction of ochratoxin A. Anal Bioanal Chem 2005; 381:948-52. [PMID: 15657701 DOI: 10.1007/s00216-004-2994-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 11/14/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
Polypyrrole (PPy) was electrochemically synthesized on stainless steel frits as a sorbent for the micro solid phase extraction (muSPE) of ochratoxin A (OTA). Using 20 microl of standard solution under a fast flow rate of 0.5 ml/min, 80% recovery of OTA was achieved in the concentration range from 0.1-10 pg/mul. This good recovery was achieved within a short residence time of 1.2 s. A binding capacity of 1 ng OTA was estimated for each PPy-modified frit, or 2 ng OTA for two frits in series. The bound OTA could be pulsed eluted (PE) with 20 microl of 1% triethylamine in acetonitrile. On-line coupling of this PPy-on-a-frit and PE technique to high performance liquid chromatography (HPLC) was straightforward. On-line muSPE-PE-HPLC results clearly demonstrated the capability of PPy-on-a-frit to bind OTA in the presence of red wine, beer, and orange juice components.
Collapse
Affiliation(s)
- Jorn C C Yu
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | | |
Collapse
|
46
|
Garcia-Villanova RJ, Cordón C, González Paramás AM, Aparicio P, Garcia Rosales ME. Simultaneous immunoaffinity column cleanup and HPLC analysis of aflatoxins and ochratoxin A in Spanish bee pollen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:7235-7239. [PMID: 15563200 DOI: 10.1021/jf048882z] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bee pollen is a major substrate for mycotoxins growth when no prompt and adequate drying is performed by the beekeeper after collection by bees. Regulatory limits for aflatoxins and ochratoxin A are currently in force in the European Union for a rising list of foodstuffs, but not for this. An immunoaffinity column cleanup process has been applied prior to the analysis of aflatoxins B(1), B(2), G(1), and G(2) and ochratoxin A (OTA). Optimization of the HPLC conditions has involved both a gradient elution and a wavelength program for the separation and fluorimetric quantitation of all five mycotoxins at their maximum excitation and emission values of wavelength in a single run. The higher limit of detection (mug/kg) was 0.49 for OTA and 0.20 for aflatoxin B(1). Repeatability (RSDr) at the lower limit tested ranged from 9.85% for OTA to 6.23% for aflatoxin G(2), and recoveries also at the lower spiked level were 73% for OTA and 81% for aflatoxin B(1). None of the 20 samples assayed showed quantifiable values for the five mycotoxins.
Collapse
Affiliation(s)
- Rafael J Garcia-Villanova
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| | | | | | | | | |
Collapse
|
47
|
Shim WB, Kolosova AY, Kim YJ, Yang ZY, Park SJ, Eremin SA, Lee IS, Chung DH. Fluorescence polarization immunoassay based on a monoclonal antibody for the detection of ochratoxin A. Int J Food Sci Technol 2004. [DOI: 10.1111/j.1365-2621.2004.00856.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|