1
|
Añazco C, Riedelsberger J, Vega-Montoto L, Rojas A. Exploring the Interplay between Polyphenols and Lysyl Oxidase Enzymes for Maintaining Extracellular Matrix Homeostasis. Int J Mol Sci 2023; 24:10985. [PMID: 37446164 DOI: 10.3390/ijms241310985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Collagen, the most abundant structural protein found in mammals, plays a vital role as a constituent of the extracellular matrix (ECM) that surrounds cells. Collagen fibrils are strengthened through the formation of covalent cross-links, which involve complex enzymatic and non-enzymatic reactions. Lysyl oxidase (LOX) is responsible for catalyzing the oxidative deamination of lysine and hydroxylysine residues, resulting in the production of aldehydes, allysine, and hydroxyallysine. These intermediates undergo spontaneous condensation reactions, leading to the formation of immature cross-links, which are the initial step in the development of mature covalent cross-links. Additionally, non-enzymatic glycation contributes to the formation of abnormal cross-linking in collagen fibrils. During glycation, specific lysine and arginine residues in collagen are modified by reducing sugars, leading to the creation of Advanced Glycation End-products (AGEs). These AGEs have been associated with changes in the mechanical properties of collagen fibers. Interestingly, various studies have reported that plant polyphenols possess amine oxidase-like activity and can act as potent inhibitors of protein glycation. This review article focuses on compiling the literature describing polyphenols with amine oxidase-like activity and antiglycation properties. Specifically, we explore the molecular mechanisms by which specific flavonoids impact or protect the normal collagen cross-linking process. Furthermore, we discuss how these dual activities can be harnessed to generate properly cross-linked collagen molecules, thereby promoting the stabilization of highly organized collagen fibrils.
Collapse
Affiliation(s)
- Carolina Añazco
- Laboratorio de Bioquímica Nutricional, Escuela de Nutrición y Dietética, Carrera de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, General Lagos #1190, Valdivia 5110773, Chile
| | - Janin Riedelsberger
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente 1141, Talca 3462227, Chile
| | - Lorenzo Vega-Montoto
- Chemical and Radiation Measurement, Idaho National Laboratory (INL), 1705 N. Yellowstone Hwy, Idaho Falls, ID 83415, USA
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 3480112, Chile
| |
Collapse
|
2
|
Yamaguchi K, Itakura M, Kitazawa R, Lim SY, Nagata K, Shibata T, Akagawa M, Uchida K. Oxidative deamination of lysine residues by polyphenols generates an equilibrium of aldehyde and 2-piperidinol products. J Biol Chem 2021; 297:101035. [PMID: 34339739 PMCID: PMC8387773 DOI: 10.1016/j.jbc.2021.101035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Polyphenols, especially catechol-type polyphenols, exhibit lysyl oxidase-like activity and mediate oxidative deamination of lysine residues in proteins. Previous studies have shown that polyphenol-mediated oxidative deamination of lysine residues can be associated with altered electrical properties of proteins and increased crossreactivity with natural immunoglobulin M antibodies. This interaction suggested that oxidized proteins could act as innate antigens and elicit an innate immune response. However, the structural basis for oxidatively deaminated lysine residues remains unclear. In the present study, to establish the chemistry of lysine oxidation, we characterized oxidation products obtained via incubation of the lysine analog N-biotinyl-5-aminopentylamine with eggshell membranes containing lysyl oxidase and identified a unique six-membered ring 2-piperidinol derivative equilibrated with a ring-open product (aldehyde) as the major product. By monitoring these aldehyde-2-piperidinol products, we evaluated the lysyl oxidase-like activity of polyphenols. We also observed that this reaction was mediated by some polyphenols, especially o-diphenolic-type polyphenols, in the presence of copper ions. Interestingly, the natural immunoglobulin M monoclonal antibody recognized these aldehyde-2-piperidinol products as an innate epitope. These findings establish the existence of a dynamic equilibrium of oxidized lysine and provide important insights into the chemopreventive function of dietary polyphenols for chronic diseases.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masanori Itakura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Roma Kitazawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sei-Young Lim
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Nagata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mitsugu Akagawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
3
|
Akagawa M. Protein carbonylation: molecular mechanisms, biological implications, and analytical approaches. Free Radic Res 2021; 55:307-320. [DOI: 10.1080/10715762.2020.1851027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mitsugu Akagawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
4
|
Ofoedu CE, You L, Osuji CM, Iwouno JO, Kabuo NO, Ojukwu M, Agunwah IM, Chacha JS, Muobike OP, Agunbiade AO, Sardo G, Bono G, Okpala COR, Korzeniowska M. Hydrogen Peroxide Effects on Natural-Sourced Polysacchrides: Free Radical Formation/Production, Degradation Process, and Reaction Mechanism-A Critical Synopsis. Foods 2021; 10:699. [PMID: 33806060 PMCID: PMC8064442 DOI: 10.3390/foods10040699] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous reactive oxygen species (ROS) entities exist, and hydrogen peroxide (H2O2) is very key among them as it is well known to possess a stable but poor reactivity capable of generating free radicals. Considered among reactive atoms, molecules, and compounds with electron-rich sites, free radicals emerging from metabolic reactions during cellular respirations can induce oxidative stress and cause cellular structure damage, resulting in diverse life-threatening diseases when produced in excess. Therefore, an antioxidant is needed to curb the overproduction of free radicals especially in biological systems (in vivo and in vitro). Despite the inherent properties limiting its bioactivities, polysaccharides from natural sources increasingly gain research attention given their position as a functional ingredient. Improving the functionality and bioactivity of polysaccharides have been established through degradation of their molecular integrity. In this critical synopsis; we articulate the effects of H2O2 on the degradation of polysaccharides from natural sources. Specifically, the synopsis focused on free radical formation/production, polysaccharide degradation processes with H2O2, the effects of polysaccharide degradation on the structural characteristics; physicochemical properties; and bioactivities; in addition to the antioxidant capability. The degradation mechanisms involving polysaccharide's antioxidative property; with some examples and their respective sources are briefly summarised.
Collapse
Affiliation(s)
- Chigozie E. Ofoedu
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (J.S.C.); (A.O.A.)
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (J.S.C.); (A.O.A.)
| | - Chijioke M. Osuji
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - Jude O. Iwouno
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - Ngozi O. Kabuo
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - Moses Ojukwu
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Ijeoma M. Agunwah
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - James S. Chacha
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (J.S.C.); (A.O.A.)
- Department of Food Technology, Nutrition and Consumer Sciences, Sokoine University of Agriculture, 3006 Morogoro, Tanzania
| | - Onyinye P. Muobike
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - Adedoyin O. Agunbiade
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (J.S.C.); (A.O.A.)
- Department of Food Technology, University of Ibadan, 200284 Ibadan, Nigeria
| | - Giacomo Sardo
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council (CNR), Via Vaccara, 61, 91026 Mazara del Vallo, Italy; (G.S.); (G.B.)
| | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council (CNR), Via Vaccara, 61, 91026 Mazara del Vallo, Italy; (G.S.); (G.B.)
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| |
Collapse
|
5
|
Pérez-Burillo S, Jiménez-Zamora A, Párraga J, Rufián-Henares J, Pastoriza S. Furosine and 5-hydroxymethylfurfural as chemical markers of tea processing and storage. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Arcanjo NMO, Luna C, Madruga MS, Estévez M. Antioxidant and pro-oxidant actions of resveratrol on human serum albumin in the presence of toxic diabetes metabolites: Glyoxal and methyl-glyoxal. Biochim Biophys Acta Gen Subj 2018; 1862:1938-1947. [PMID: 29902553 DOI: 10.1016/j.bbagen.2018.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/08/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Methylglyoxal (MGO) and glyoxal (GO) are attracting considerable attention because of their role in the onset of diabetes symptoms. Therefore, to comprehend the molecular fundamentals of their pathological actions is of the utmost importance. In this study, the molecular interactions between resveratrol (RES) and human serum albumin (HSA) and the ability of the stilbene to counteract the oxidative damage caused by pathological concentrations of MGO and GO to the human plasma protein, was assessed. The oxidation of Cys34 in HSA as well as the formation of specific protein semialdehydes AAS (α-aminoadipic), GGS (γ-glutamic) and the accumulation of Advanced Glycation End-products (AGEs) was investigated. Resveratrol was found to neutralize both α-dicarbonyls by forming adducts detected by HESI-Orbitrap-MS. This antioxidant action was manifested in a significant reduction of AGEs. However, RES-α-dicarbonyl conjugates oxidized Cys34 and lysine, arginine and/or proline by a nucleophilic attack on SH and ε-NH groups in HSA. The formation of specific semialdehydes in HSA after incubation with GO and MGO at pathological concentrations was reported for the first time in this study, and may be used as early and specific biomarkers of the oxidative stress undergone by diabetic patients. The pro-oxidative role of the RES-α-dicarbonyl conjugates should be further investigated to clarify whether this action leads to positive or harmful clinical consequences. The biological relevance of human protein carbonylation as a redox signaling mechanism and/or as a reflection of oxidative damage and disease should also be studied in future works.
Collapse
Affiliation(s)
- N M O Arcanjo
- Department of Food Engineering, Federal University of Paraiba, Joao Pessoa CEP 58051-900, PB, Brazil
| | - C Luna
- Servicio Extremeño de Salud, SES, Gobierno de Extremadura, Cáceres, Spain
| | - M S Madruga
- Department of Food Engineering, Federal University of Paraiba, Joao Pessoa CEP 58051-900, PB, Brazil
| | - M Estévez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003 Cáceres. Spain.
| |
Collapse
|
7
|
Furuhashi M, Hatasa Y, Kawamura S, Shibata T, Akagawa M, Uchida K. Identification of Polyphenol-Specific Innate Epitopes That Originated from a Resveratrol Analogue. Biochemistry 2017; 56:4701-4712. [PMID: 28796948 DOI: 10.1021/acs.biochem.7b00409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyphenols have received a significant amount of attention in disease prevention because of their unique chemical and biological properties. However, the underlying molecular mechanism for their beneficial effects remains unclear. We have now identified a polyphenol as a source of innate epitopes detected in natural IgM and established a unique gain-of-function mechanism in the formation of innate epitopes by polyphenol via the polymerization of proteins. Upon incubation with bovine serum albumin (BSA) under physiological conditions, several polyphenols converted the protein into the innate epitopes recognized by the IgM Abs. Interestingly, piceatannol, a naturally occurring hydroxylated analogue of a red wine polyphenol, resveratrol, mediated the modification of BSA, whose polymerized form was specifically recognized by the IgMs. The piceatannol-mediated polymerization of the protein was associated with the formation of a lysine-derived cross-link, dehydrolysinonorleucine. In addition, an oxidatively deaminated product, α-aminoadipic semialdehyde, was detected as a potential precursor for the cross-link in the piceatannol-treated BSA, suggesting that the polymerization of the protein might be mediated by the oxidation of a lysine residue by piceatannol followed by a Schiff base reaction with the ε-amino group of an unoxidized lysine residue. The results of this study established a novel mechanism for the formation of innate epitopes by small dietary molecules and support the notion that many of the beneficial effects of polyphenols could be attributed, at least in part, to their lysyl oxidase-like activity. They also suggest that resveratrol may have beneficial effects on human health because of its conversion to piceatannol.
Collapse
Affiliation(s)
- Mai Furuhashi
- Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya 464-8601, Japan
| | - Yukinori Hatasa
- Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya 464-8601, Japan
| | - Sae Kawamura
- Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya 464-8601, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya 464-8601, Japan.,PRESTO, Japan Science and Technology Agency , Kawaguchi, Saitama 332-0012, Japan
| | - Mitsugu Akagawa
- Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Sakai 599-8531, Japan
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya 464-8601, Japan.,Laboratory of Food Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Lysyl Oxidase and the Tumor Microenvironment. Int J Mol Sci 2016; 18:ijms18010062. [PMID: 28036074 PMCID: PMC5297697 DOI: 10.3390/ijms18010062] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022] Open
Abstract
The lysyl oxidase (LOX) family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM). Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated.
Collapse
|
9
|
Hamagami H, Kumazoe M, Yamaguchi Y, Fuse S, Tachibana H, Tanaka H. 6-Azido-6-deoxy-l
-idose as a Hetero-Bifunctional Spacer for the Synthesis of Azido-Containing Chemical Probes. Chemistry 2016; 22:12884-90. [DOI: 10.1002/chem.201602044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Hiroki Hamagami
- Department of Chemical Science and Engineering; School of Material and Chemical Technology; Tokyo Institute of Technology; 2-12-1-H101 Ookayama Meguro Tokyo 152-8552 Japan
| | - Motofumi Kumazoe
- Department of Bioscience and Biotechnology; Faculty of Agriculture; Kyushu University; 6-10-1 Hakozaki Fukuoka 812-8581 Japan
| | - Yoshiki Yamaguchi
- RIKEN-Max-Planck Joint Research Center, for Systems Chemical Biology; RIKEN Global Research Cluster; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Shinichiro Fuse
- Department of Chemical Science and Engineering; School of Material and Chemical Technology; Tokyo Institute of Technology; 2-12-1-H101 Ookayama Meguro Tokyo 152-8552 Japan
- Laboratory for Chemistry and Life Science; Tokyo Institute of Technology; 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| | - Hirofumi Tachibana
- Department of Bioscience and Biotechnology; Faculty of Agriculture; Kyushu University; 6-10-1 Hakozaki Fukuoka 812-8581 Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering; School of Material and Chemical Technology; Tokyo Institute of Technology; 2-12-1-H101 Ookayama Meguro Tokyo 152-8552 Japan
| |
Collapse
|
10
|
Hatasa Y, Chikazawa M, Furuhashi M, Nakashima F, Shibata T, Kondo T, Akagawa M, Hamagami H, Tanaka H, Tachibana H, Uchida K. Oxidative Deamination of Serum Albumins by (-)-Epigallocatechin-3-O-Gallate: A Potential Mechanism for the Formation of Innate Antigens by Antioxidants. PLoS One 2016; 11:e0153002. [PMID: 27046229 PMCID: PMC4821561 DOI: 10.1371/journal.pone.0153002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG), the most abundant polyphenol in green tea, mediates the oxidative modification of proteins, generating protein carbonyls. However, the underlying molecular mechanism remains unclear. Here we analyzed the EGCG-derived intermediates generated upon incubation with the human serum albumin (HSA) and established that EGCG selectively oxidized the lysine residues via its oxidative deamination activity. In addition, we characterized the EGCG-oxidized proteins and discovered that the EGCG could be an endogenous source of the electrically-transformed proteins that could be recognized by the natural antibodies. When HSA was incubated with EGCG in the phosphate-buffered saline (pH 7.4) at 37°C, the protein carbonylation was associated with the formation of EGCG-derived products, such as the protein-bound EGCG, oxidized EGCG, and aminated EGCG. The aminated EGCG was also detected in the sera from the mice treated with EGCG in vivo. EGCG selectively oxidized lysine residues at the EGCG-binding domains in HSA to generate an oxidatively deaminated product, aminoadipic semialdehyde. In addition, EGCG treatment results in the increased negative charge of the protein due to the oxidative deamination of the lysine residues. More strikingly, the formation of protein carbonyls by EGCG markedly increased its cross-reactivity with the natural IgM antibodies. These findings suggest that many of the beneficial effects of EGCG may be partly attributed to its oxidative deamination activity, generating the oxidized proteins as a target of natural antibodies.
Collapse
Affiliation(s)
- Yukinori Hatasa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Miho Chikazawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mai Furuhashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Fumie Nakashima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Tatsuhiko Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mitsugu Akagawa
- Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hiroki Hamagami
- Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Hiroshi Tanaka
- Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
11
|
Limited beneficial effects of piceatannol supplementation on obesity complications in the obese Zucker rat: gut microbiota, metabolic, endocrine, and cardiac aspects. J Physiol Biochem 2016; 72:567-82. [PMID: 26792656 DOI: 10.1007/s13105-015-0464-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
|
12
|
Jongberg S, Utrera M, Morcuende D, Lund MN, Skibsted LH, Estévez M. Influence of the Oxidation States of 4-Methylcatechol and Catechin on the Oxidative Stability of β-Lactoglobulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8501-8509. [PMID: 26348706 DOI: 10.1021/acs.jafc.5b02551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chemical interactions between proteins and phenols affect the overall oxidative stability of a given biological system. To investigate the effect of protein-phenol adduct formation on the oxidative stability of β-lactoglobulin (β-LG), the protein was left to react with an equimolar concentration of 4-methylcatechol (4MC), catechin (Cat), or their respective quinone forms, 4-methylbenzoquinone (4MBQ) and catechin-quinone (CatQ), and subsequently subjected to metal-catalyzed oxidation by Fe(II)/H2O2 for 20 days at 37 °C. The reaction with 4MBQ resulted in 60% thiol loss and 22% loss of amino groups, whereas the addition of 4MC resulted in 12% thiol loss. The reaction with Cat or CatQ resulted in no apparent modification of β-LG. The oxidative stability of β-LG after reaction with each of 4MC, 4MBQ, Cat, or CatQ was impaired. Especially 4MC and 4MBQ were found to be pro-oxidative toward α-aminoadipic semialdehyde and γ-glutamic semialdehyde formation as well as the generation of fluorescent Schiff base products. The changes observed were ascribed to the redirection of oxidation as a result of the blocking of thiol groups but also to the oxidative deamination pathway, accelerating the production of semialdehydes and subsequently Schiff base structures.
Collapse
Affiliation(s)
- Sisse Jongberg
- Department of Food Science, Faculty of Science, University of Copenhagen , Rolighedsvej 30, 1958 Frederiksberg, Denmark
| | - Mariana Utrera
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura , 10003 Cáceres, Spain
| | - David Morcuende
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura , 10003 Cáceres, Spain
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen , Rolighedsvej 30, 1958 Frederiksberg, Denmark
| | - Leif H Skibsted
- Department of Food Science, Faculty of Science, University of Copenhagen , Rolighedsvej 30, 1958 Frederiksberg, Denmark
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura , 10003 Cáceres, Spain
| |
Collapse
|
13
|
Nagai R, Shirakawa JI, Ohno RI, Moroishi N, Nagai M. Inhibition of AGEs formation by natural products. Amino Acids 2013; 46:261-6. [PMID: 23504149 DOI: 10.1007/s00726-013-1487-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/05/2013] [Indexed: 12/20/2022]
Abstract
Since advanced glycation end-products (AGEs) inhibitors such as benfotiamine, pyridoxamine and aminoguanidine significantly inhibit the development of retinopathy and neuropathy in streptozotocin-induced diabetic rats, treatment with AGEs inhibitors is believed to be a potential strategy for preventing lifestyle-related diseases such as diabetic complications and atherosclerosis. Furthermore, preventive medicine is the most important approach to preventing lifestyle-related diseases, and improving daily nutritional intake is thought to prevent the pathogenesis of such diseases. Therefore, AGEs inhibitors that can be obtained from daily meals are preferred to prescribed drugs. In this article, we describe a strategy for developing new AGEs inhibitors from natural products.
Collapse
Affiliation(s)
- Ryoji Nagai
- Laboratory of Food and Regulation Biology Department of Bioscience, School of Agriculture, Tokai University, Kawayou Minamiaso Aso-gun, Kumamoto, 869-1404, Japan,
| | | | | | | | | |
Collapse
|
14
|
Jongberg S, Lund MN, Waterhouse AL, Skibsted LH. 4-methylcatechol inhibits protein oxidation in meat but not disulfide formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10329-35. [PMID: 21861533 DOI: 10.1021/jf202268q] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The interaction between phenolic compounds and protein thiols was investigated in minced beef with or without 500 ppm 4-methylcatechol (4-MC) that had been stored under oxygen or argon for 7 days (4 °C). Myofibrillar protein isolates were extracted, and the oxidative stability evaluated by the protein radical intensity measured by ESR spectroscopy was found to be improved by 4-MC as well as by storage without oxygen. Significant loss of thiols was found in samples stored under oxygen compared to argon, whereas an additional loss was found in samples with added 4-MC stored under oxygen. In beef with added 4-MC, LC-MS analysis showed formation of thiol-quinone adducts, which may explain the observed additional loss of thiols. Although storage without oxygen inhibited protein cross-link formation as evaluated by SDS-PAGE, both in presence and in the absence of 4-MC, no inhibitory effect of 4-MC was found on the formation of protein disulfide cross-links in beef stored under oxygen.
Collapse
Affiliation(s)
- Sisse Jongberg
- Food Chemistry, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
15
|
Human serum albumin as an antioxidant in the oxidation of (-)-epigallocatechin gallate: participation of reversible covalent binding for interaction and stabilization. Biosci Biotechnol Biochem 2011; 75:100-6. [PMID: 21228463 DOI: 10.1271/bbb.100600] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human serum albumin (HSA) contributes to the stabilization of (-)-epigallocatechin gallate (EGCg) in serum. We characterize in the present study the mechanisms for preventing EGCg oxidation by HSA. EGCg was stable in human serum or buffers with HSA, but (-)-epigallocatechin (EGC) was unstable. We show by comparing EGCg and EGC in a neutral buffer that EGCg had a higher binding affinity than EGC. This indicates that the galloyl moiety participated in the interaction of EGCg with HSA and that this interaction was of critical importance in preventing EGCg oxidation. The binding affinity of EGCg for HSA and protein carbonyl formation in HSA were enhanced in an alkaline buffer. These results suggest the reversible covalent modification of EGCg via Schiff-base formation, and that the immobilization of EGCg to HSA, through the formation of a stable complex, prevented the polymerization and decomposition of EGCg in human serum.
Collapse
|
16
|
Ishii T, Mori T, Ichikawa T, Kaku M, Kusaka K, Uekusa Y, Akagawa M, Aihara Y, Furuta T, Wakimoto T, Kan T, Nakayama T. Structural characteristics of green tea catechins for formation of protein carbonyl in human serum albumin. Bioorg Med Chem 2010; 18:4892-6. [PMID: 20598557 DOI: 10.1016/j.bmc.2010.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/04/2010] [Accepted: 06/05/2010] [Indexed: 10/19/2022]
Abstract
Catechins are polyphenolic antioxidants found in green tea leaves. Recent studies have reported that various polyphenolic compounds, including catechins, cause protein carbonyl formation in proteins via their pro-oxidant actions. In this study, we evaluate the formation of protein carbonyl in human serum albumin (HSA) by tea catechins and investigate the relationship between catechin chemical structure and its pro-oxidant property. To assess the formation of protein carbonyl in HSA, HSA was incubated with four individual catechins under physiological conditions to generate biotin-LC-hydrazide labeled protein carbonyls. Comparison of catechins using Western blotting revealed that the formation of protein carbonyl in HSA was higher for pyrogallol-type catechins than the corresponding catechol-type catechins. In addition, the formation of protein carbonyl was also found to be higher for the catechins having a galloyl group than the corresponding catechins lacking a galloyl group. The importance of the pyrogallol structural motif in the B-ring and the galloyl group was confirmed using methylated catechins and phenolic acids. These results indicate that the most important structural element contributing to the formation of protein carbonyl in HSA by tea catechins is the pyrogallol structural motif in the B-ring, followed by the galloyl group. The oxidation stability and binding affinity of tea catechins with proteins are responsible for the formation of protein carbonyl, and consequently the difference in these properties of each catechin may contribute to the magnitude of their biological activities.
Collapse
Affiliation(s)
- Takeshi Ishii
- Department of Food and Nutritional Sciences, and Global Center of Excellence (COE) Program, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Estévez M, Heinonen M. Effect of phenolic compounds on the formation of alpha-aminoadipic and gamma-glutamic semialdehydes from myofibrillar proteins oxidized by copper, iron, and myoglobin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4448-4455. [PMID: 20196602 DOI: 10.1021/jf903757h] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The effect of selected phenolic compounds, namely, gallic acid, chlorogenic acid, genistein, catechin, cyanidin-3-glucoside and rutin, on the formation of specific protein carbonyls, alpha-aminoadipic and gamma-glutamic semialdehydes (AAS and GGS, respectively), from oxidized myofibrillar proteins, was studied in the present article. Suspensions containing myofibrillar proteins (20 mg/mL) and the aforementioned phenolic compounds (1 mM) were oxidized (37 degrees C for 20 days) in the presence of copper acetate, iron (FeCl(3)), or myoglobin (10 microM) in combination with 1 mM H(2)O(2) and analyzed for AAS and GGS using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Suspensions with added alpha-tocopherol (1 mM) and a control group (with no phenolic compound) were also considered. In the presence of copper, the alpha-tocopherol and most phenolic compounds significantly inhibited the formation of AAS and GGS. In iron- and myoglobin-oxidized suspensions, however, some of those phenolic compounds (i.e., chlorogenic acid and genistein) promoted the formation of the semialdehydes. Besides the influence of the oxidation promoters, the overall effect of plant phenolics on protein oxidation is likely affected by the chemical structure of the phenolics and the result of the interactions between these compounds and myofibrillar proteins. Plausible mechanisms for the antioxidant and pro-oxidant effects of plant phenolics on myofibrillar proteins are proposed in the present article. This study highlights the complexity of redox reactions between plant phenolics and oxidizing myofibrillar proteins.
Collapse
Affiliation(s)
- Mario Estévez
- Department of Food and Environmental Sciences, Food Chemistry, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
18
|
Lee MRF, Tweed JKS, Cookson A, Sullivan ML. Immunogold labelling to localize polyphenol oxidase (PPO) during wilting of red clover leaf tissue and the effect of removing cellular matrices on PPO protection of glycerol-based lipid in the rumen. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:503-10. [PMID: 20355073 DOI: 10.1002/jsfa.3848] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND The enzyme polyphenol oxidase (PPO) reduces the extent of proteolysis and lipolysis within red clover fed to ruminants. PPO catalyses the conversion of phenols to quinones, which can react with nucleophilic cellular constituents (e.g. proteins) forming protein-phenol complexes that may reduce protein solubility, bioavailability to rumen microbes and deactivate plant enzymes. In this study, we localized PPO in red clover leaf tissue by immunogold labelling and investigated whether red clover lipid was protected in the absence of PPO-induced protein-phenol complexes and plant enzymes (lipases). RESULTS PPO protein was detected to a greater extent (P < 0.001) within the chloroplasts of mesophyll cells in stressed (cut/crushed and wilted for 1 h) than freshly cut leaves for both palisade (61.6 and 25.6 Au label per chloroplast, respectively) and spongy mesophyll cells (94.5 and 40.6 Au label per chloroplast, respectively). Hydrolysis of lipid and C18 polyunsaturated fatty acid biohydrogenation during in vitro batch culture was lower (P < 0.05) for wild-type red clover than for red clover with PPO expression reduced to undetectable levels but only when cellular matrices containing protein-phenol complexes were present. CONCLUSION Damaging of the leaves resulted in over a doubling of PPO detected within mesophyll cells, potentially as a consequence of conversion of the enzyme from latent to active form. PPO reduction of microbial lipolysis was apparent in macerated red clover tissue but not in the absence of the proteinaceous cellular matrix, suggesting that the PPO mechanism for reducing lipolysis may be primarily through the entrapment of lipid within protein-phenol complexes.
Collapse
Affiliation(s)
- Michael R F Lee
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK.
| | | | | | | |
Collapse
|
19
|
Lee M, Theobald V, Tweed J, Winters A, Scollan N. Effect of feeding fresh or conditioned red clover on milk fatty acids and nitrogen utilization in lactating dairy cows. J Dairy Sci 2009; 92:1136-47. [DOI: 10.3168/jds.2008-1692] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|