1
|
Han X, Wei Y, Yuan L, Yin X, Liu Y, Wang C, Jiang X, Li T, Liu Q. Characterization of flavor profiles of wines produced with Coniella vitis-infected grapes by GC-MS, HPLC, and sensory analysis. Food Chem 2025; 471:142820. [PMID: 39799689 DOI: 10.1016/j.foodchem.2025.142820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Grapevine white rot is a fungal disease that frequently occurs during the growing season, resulting in reduced fruit quality and severe yield losses. This work aimed to compare the differences in flavor profiles between wines made from different percentages of Coniella vitis-infected grapes by using FTIR spectrometer, sensory analysis, HS-SPME-GC-MS and HPLC-DAD. C. vitis infection significantly increased the soluble solids, glycerol and glucuronic acid contents, decreased the ethanol, malic and tartaric acid contents, altered the sensory characteristics of wines. Volatile phenolics, i.e., phenol, 4-ethylphenol and 4-ethylguaiacol, were the most significant difference volatile organic compounds of C. vitis infection, and methyl octanoate could be considered as an early marker of infection. C. vitis infection significantly increased most phenolic compounds contents and improved the antioxidant capacity of wine. This study would provide some new insights to understand the effect of grapevine white rot on characteristics flavor profiles of wines.
Collapse
Affiliation(s)
- Xing Han
- Shandong Academy of Grape, Shandong, Academy of Agricultural Sciences, Jinan 250100, China
| | - Yanfeng Wei
- Shandong Academy of Grape, Shandong, Academy of Agricultural Sciences, Jinan 250100, China
| | - Lifang Yuan
- Shandong Academy of Grape, Shandong, Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiangtian Yin
- Shandong Academy of Grape, Shandong, Academy of Agricultural Sciences, Jinan 250100, China
| | - Yao Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Chundong Wang
- Shandong Academy of Grape, Shandong, Academy of Agricultural Sciences, Jinan 250100, China
| | - Xilong Jiang
- Shandong Academy of Grape, Shandong, Academy of Agricultural Sciences, Jinan 250100, China
| | - Tinggang Li
- Shandong Academy of Grape, Shandong, Academy of Agricultural Sciences, Jinan 250100, China.
| | - Qibao Liu
- Shandong Academy of Grape, Shandong, Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
2
|
Lu HC, Tian MB, Shi N, Li HQ, Li MY, Cheng CF, Chen W, Li SD, He F, Duan CQ, Schubert A, Wang J. Volatilomics of Cabernet Sauvignon grapes and sensory perception of wines are affected by canopy side in vineyards with different row orientations. Food Chem 2024; 460:140508. [PMID: 39047494 DOI: 10.1016/j.foodchem.2024.140508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to clarify how microclimate diversity altered volatilomics in Cabernet Sauvignon grapes and wines. Four row-oriented vineyards were selected, and metabolites of grapes and wines were determined from separate canopy sides. Results showed that shaded sides received 59% of the solar radiation and experienced 55% of the high-temperature days compared to the exposed sides on average. Grape primary metabolites were slightly affected by the canopy side. Herbaceous aromas were consistently more abundant in grapes and wines from shaded clusters. Heat-stressed canopy sides accelerated terpenoid loss and increased norisoprenoid levels in grapes, while β-damascenone in north-side wines was 13%-32% higher than that in south-side wines of the east-west vineyard. The northeast-southwest vineyard showed the most notable variation in taste and aroma sensory scores, with four parameters significantly different. There were 32 aroma series identified in wines, and banana, pineapple, and strawberry odors were highly correlated with aroma sensory score.
Collapse
Affiliation(s)
- Hao-Cheng Lu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; PlantStressLab, Department of Agricultural, Forestry, and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, (TO), Italy
| | - Meng-Bo Tian
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ning Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hui-Qing Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ming-Yu Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | | | - Wu Chen
- CITIC Niya Wine Co. Ltd, Manasi 832200, Xinjiang, China
| | - Shu-De Li
- CITIC Niya Wine Co. Ltd, Manasi 832200, Xinjiang, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Andrea Schubert
- PlantStressLab, Department of Agricultural, Forestry, and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, (TO), Italy
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
3
|
Gong D, Prusky D, Long D, Bi Y, Zhang Y. Moldy odors in food - a review. Food Chem 2024; 458:140210. [PMID: 38943948 DOI: 10.1016/j.foodchem.2024.140210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Food products are susceptible to mold contamination, releasing moldy odors. These moldy odors not only affect the flavor of food, but also pose a risk to human health. Moldy odors are a mixture of volatile organic compounds (VOCs) released by the fungi themselves, which are the main source of moldy odors in moldy foods. These VOCs are secondary metabolites of fungi and are synthesized through various biosynthetic pathways. Both the fungi themselves and environmental factors affect the release of moldy odors. This review summarized the main components of musty odors in moldy foods and their producing fungi. In addition, this review focused on the functions of moldy volatile organic compounds (MVOCs) and the biosynthetic pathways of the major MVOCs, and summarized the factors affecting the release of MVOCs as well as the detection methods. It expected to provide a basis for ensuring food safety.
Collapse
Affiliation(s)
- Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Dov Prusky
- Department of Postharvest and Food Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Umberath KM, Mischke A, Caspers-Weiffenbach R, Backmann L, Scharfenberger-Schmeer M, Wegmann-Herr P, Schieber A, Weber F. Curse or blessing: Growth- and laccase-modulating properties of polyphenols and their oxidized derivatives on Botrytis cinerea. Food Res Int 2024; 192:114782. [PMID: 39147480 DOI: 10.1016/j.foodres.2024.114782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Infection of grapevines with the grey mold pathogen Botrytis cinerea results in severe problems for winemakers worldwide. Browning of wine is caused by the laccase-mediated oxidation of polyphenols. In the last decades, Botrytis management has become increasingly difficult due to the rising number of resistances and the genetic variety of Botrytis strains. During the search for sustainable fungicides, polyphenols showed great potential to inhibit fungal growth. The present study revealed two important aspects regarding the effects of grape-specific polyphenols and their polymerized oxidation products on Botrytis wild strains. On the one hand, laccase-mediated oxidized polyphenols, which resemble the products found in infected grapes, showed the same potential for inhibition of growth and laccase activity, but differed from their native forms. On the other hand, the impact of phenolic compounds on mycelial growth is not correlated to the effect on laccase activity. Instead, mycelial growth and relative specific laccase activity appear to be modulated independently. All phenolic compounds showed not only inhibitory but also inductive effects on fungal growth and/or laccase activity, an observation which is reported for the first time. The simultaneous inhibition of growth and laccase activity demonstrated may serve as a basis for the development of a natural botryticide. Yet, the results showed considerable differences between genetically distinguishable strains, impeding the use of a specific phenolic compound against the genetic variety of wild strains. The present findings might have important implications for future understanding of Botrytis cinerea infections and sustainable Botrytis management including the role of polyphenols.
Collapse
Affiliation(s)
- Kim Marie Umberath
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Agricultural Faculty, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany.
| | - Anna Mischke
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Agricultural Faculty, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany.
| | - Rita Caspers-Weiffenbach
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Agricultural Faculty, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany.
| | - Louis Backmann
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany; Department of Biology, Chemical Plant Ecology, Technische Universität Darmstadt, Schnittspahnstrasse 4, D-64287 Darmstadt, Germany.
| | - Maren Scharfenberger-Schmeer
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany; Hochschule Kaiserslautern, Weincampus Neustadt, Breitenweg 71, D-67435 Neustadt, Germany.
| | - Pascal Wegmann-Herr
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany.
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Agricultural Faculty, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany.
| | - Fabian Weber
- Section of Organic Food Quality, University of Kassel, Nordbahnhofstr. 1a, D-37213 Witzenhausen, Germany.
| |
Collapse
|
5
|
Halty-deLeon L, Pal Mahadevan V, Wiesel E, Hansson BS, Wicher D. Response Plasticity of Drosophila Olfactory Sensory Neurons. Int J Mol Sci 2024; 25:7125. [PMID: 39000230 PMCID: PMC11241008 DOI: 10.3390/ijms25137125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
In insect olfaction, sensitization refers to the amplification of a weak olfactory signal when the stimulus is repeated within a specific time window. In the vinegar fly, Drosophila melanogaster, this occurs already at the periphery, at the level of olfactory sensory neurons (OSNs) located in the antenna. In our study, we investigate whether sensitization is a widespread property in a set of seven types of OSNs, as well as the mechanisms involved. First, we characterize and compare the differences in spontaneous activity, response velocity and response dynamics, among the selected OSN types. These express different receptors with distinct tuning properties and behavioral relevance. Second, we show that sensitization is not a general property. Among our selected OSN types, it occurs in those responding to more general food odors, while OSNs involved in very specific detection of highly specific ecological cues like pheromones and warning signals show no sensitization. Moreover, we show that mitochondria play an active role in sensitization by contributing to the increase in intracellular Ca2+ upon weak receptor activation. Thus, by using a combination of single sensillum recordings (SSRs), calcium imaging and pharmacology, we widen the understanding of how the olfactory signal is processed at the periphery.
Collapse
Affiliation(s)
| | | | - Eric Wiesel
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Dieter Wicher
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
6
|
Tungadi TD, Powell G, Shaw B, Fountain MT. Factors influencing oviposition behaviour of the invasive pest, Drosophila suzukii, derived from interactions with other Drosophila species: potential applications for control. PEST MANAGEMENT SCIENCE 2023; 79:4132-4139. [PMID: 37516913 PMCID: PMC10952728 DOI: 10.1002/ps.7693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/16/2023] [Accepted: 07/30/2023] [Indexed: 07/31/2023]
Abstract
Drosophila suzukii (Matsumura) or spotted wing Drosophila is a worldwide invasive pest of soft- and stone-fruit production. Female D. suzukii lay their eggs in ripening fruit and the hatched larvae damage fruit from the inside, rendering it unmarketable and causing significant economic loss. Current methods to reduce D. suzukii population in the field primarily rely on chemical insecticides which are not a sustainable long-term solution and increase the risk of resistance developing. Several studies demonstrate that when D. suzukii encounter or coexist with other Drosophila on a food source, this is usually a disadvantage to D. suzukii, leading to reduced oviposition and increased larval mortality. These effects have potential to be exploited from a pest management perspective. In this review we summarise recent research articles focusing on the interspecific interactions between D. suzukii and other Drosophila species aimed at understanding how this drives D. suzukii behaviour. Potential semiochemical and microbiome impacts are postulated as determinants of D. suzukii behaviour. Development of control practices focusing on reducing D. suzukii populations and deterring them from laying eggs by utilising factors that drive their behaviour are discussed. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Bethan Shaw
- NIABCambridgeUK
- New Zealand Institute for Plant and Food Research LtdAucklandNew Zealand
| | | |
Collapse
|
7
|
Delcros L, Collas S, Hervé M, Blondin B, Roland A. Evolution of Markers Involved in the Fresh Mushroom Off-Flavor in Wine During Alcoholic Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14687-14696. [PMID: 37751519 DOI: 10.1021/acs.jafc.3c02692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The fresh mushroom off-flavor (FMOff) is due to several C8 compounds such as 1-octen-3-one, 1-octen-3-ol and 1-hydroxyoctan-3-one, among others. Recently, glycosidic precursors of some FMOff compounds have been identified in grape musts, but the evolution of such compounds during alcoholic fermentation (AF) remains poorly studied. Therefore, the aim of this work was to monitor both FMOff glycosidic precursors and volatile compounds during AF by comparing healthy and Crustomyces subabruptus-contaminated musts. For the first time, glycosidic analysis revealed the presence of 1-hydroxyoctan-3-one glycosides in the laboratory-contaminated musts, together with other FMOff glycosidic fractions already described in the literature. During AF, the FMOff glycosidic fraction decreased, even more in the case of 1-hydroxyoctan-3-one precursors. For the volatile FMOff compounds, their evolutions were both compound- and matrix-dependent except for 1-hydroxyoctan-3-one, which seemed to reach an identical threshold concentration in wine regardless of its initial level in contaminated musts.
Collapse
Affiliation(s)
- Léa Delcros
- MHCS, 51530 Oiry, France
- Comité Champagne, 51200 Epernay, France
| | | | | | - Bruno Blondin
- UMR SPO, Univ Montpellier INRAE, Institut Agro, 34060 Montpellier, France
| | - Aurélie Roland
- UMR SPO, Univ Montpellier INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
8
|
Chen Z, Wu YP, Lan YB, Cui YZ, Shi TH, Hua YB, Duan CQ, Pan QH. Differences in Aroma Profile of Cabernet Sauvignon Grapes and Wines from Four Plots in Jieshi Mountain Region of Eastern China. Foods 2023; 12:2668. [PMID: 37509760 PMCID: PMC10378549 DOI: 10.3390/foods12142668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The Bohai Bay region is a famous wine-growing area in China, where the rainfall is concentrated in the summer due to the influence of the temperate semi-humid monsoon climate. As such, the vineyard terrain has a significant impact on the flavor quality of the grapes and the resulting wines. To explore the relationship between the 'Cabernet Sauvignon' wine style and terrain, this study takes four different plots in the Jieshi Mountain region to investigate the differences in the aroma profile of Cabernet Sauvignon grapes and wines of two consecutive vintages. Based on two-way ANOVA, there were 25 free and 8 glycosylated aroma compounds in the grapes and 21 and 10 aroma compounds with an odor activity value greater than 0.1 in the wines at the end of alcohol fermentation (AF) and malolactic fermentation (MLF), respectively, that varied among the four plots. Wines from the four plots showed a significant difference in floral and fruity aroma attributes, which were mainly related to esters with high odor activity values. The difference in concentration of these compounds between plots was more pronounced in 2021 than in 2020, and a similar result was shown on the Shannon-Wiener index, which represents wine aroma diversity. It has been suggested that high rainfall makes the plot effect more pronounced. Pearson's correlation analysis indicated that concentrations of (E)-3-hexen-1-ol in grapes and ethyl 3-methylbutanoate, ethyl hexanoate, isoamyl acetate, isopentanoic acid, and phenethyl acetate in wines were strongly positively correlated with the concentrations of N, P, K, Fe, and electrical conductivity in soil but negatively correlated with soil pH. This study laid a theoretical foundation for further improving the level of vineyard management and grape and wine quality in the Jieshi Mountain region.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yang-Peng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yi-Bin Lan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yan-Zhi Cui
- Bodega Longes Co., Ltd., Qinghuangdao 066600, China
| | - Tong-Hua Shi
- Bodega Longes Co., Ltd., Qinghuangdao 066600, China
| | - Yu-Bo Hua
- Bodega Longes Co., Ltd., Qinghuangdao 066600, China
| | - Chang-Qing Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
9
|
Delcros L, Costis A, Le Guerneve C, Collas S, Hervé M, Roland A. First identification of a new molecule involved in the fresh mushroom off-flavor in wines: 1-hydroxyoctan-3-one. Food Chem 2023; 413:135678. [PMID: 36796265 DOI: 10.1016/j.foodchem.2023.135678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
The fresh mushrooms off-flavor (FMOff) has been appearing in wines since the 2000 s; the C8 compounds, 1-octen-3-one, 1-octen-3-ol and 3-octanol are involved in this specific taint, yet they alone do not fully explain its occurrence. The objective of this work was to identify by GC-MS new FMOff markers in contaminated matrices, to correlate compound levels with wine sensory characterization and to determine the sensory attributes of 1-hydroxyoctan-3-one, a new candidate involved in FMOff. In practice, grape musts were artificially contaminated with Crustomyces subabruptus, and fermented to obtain tainted wines. GC-MS analysis of contaminated musts and wines revealed the presence of 1-hydroxyoctan-3-one only in contaminated musts, and not in the healthy control. In a selection of 16 wines affected by FMOff, the level of 1-hydroxyoctan-3-one correlated significantly (r2 = 0.86) with sensory analysis scores. Finally, 1-hydroxyoctan-3-one was synthesized and found to generate a fresh mushroom aroma in a wine matrix.
Collapse
Affiliation(s)
- Léa Delcros
- MHCS, Epernay, France; Comité Champagne, Epernay, France; UMR SPO, Univ Montpellier INRAE, Institut Agro, Montpellier, France
| | - Arnaud Costis
- UMR SPO, Univ Montpellier INRAE, Institut Agro, Montpellier, France
| | | | | | | | - Aurélie Roland
- UMR SPO, Univ Montpellier INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
10
|
Zhao Y, De Coninck B, Ribeiro B, Nicolaï B, Hertog M. Early detection of Botrytis cinerea in strawberry fruit during quiescent infection using selected ion flow tube mass spectrometry (SIFT-MS). Int J Food Microbiol 2023; 402:110313. [PMID: 37421873 DOI: 10.1016/j.ijfoodmicro.2023.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Botrytis cinerea is a devastating pathogen that can cause huge postharvest losses of strawberry. Although this fungus usually infects strawberries through their flowers, symptoms mainly appear when fruit are fully mature. A fast and sensitive method to detect and quantify the fungal infection, prior to symptom development, is, therefore, needed. In this study, we explore the possibility of using the strawberry volatilome to identify biomarkers for B. cinerea infection. Strawberry flowers were inoculated with B. cinerea to mimic the natural infection. First, quantitative polymerase chain reaction (qPCR) was used to quantify B. cinerea in the strawberry fruit. The detection limit of qPCR for B. cinerea DNA extracted from strawberries was 0.01 ng. Subsequently, changes in the fruit volatilome at different fruit developmental stages were characterized using gas chromatography - mass spectrometry (GC-MS) and selected ion flow tube mass spectrometry (SIFT-MS). Based on GC-MS data, 1-octen-3-ol produced by B. cinerea was confirmed as a potential biomarker of B. cinerea infection. Moreover, the product ion NO+ 127, obtained by SIFT-MS measurements, was proposed as a potential biomarker for B. cinerea infection by comparing its relative level with that of 1-octen-3-ol (obtained by GC-MS) and B. cinerea (obtained by qPCR). Separate PLS regressions were carried out for each developmental stages, and 11 product ions were significantly altered at all developmental stages. Finally, PLS regressions using these 11 ions as variables allowed the discrimination between samples containing different amount of B. cinerea. This work showed that profiling the fruit's volatilome using SIFT-MS can be used as a potential alternative to detect B. cinerea during the quiescent stage of B. cinerea infection prior to symptom development. Moreover, the corresponding compounds of potential biomarkers suggest that the volatile changes caused by B. cinerea infection may contribute to strawberry defense.
Collapse
Affiliation(s)
- Yijie Zhao
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium; Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium; KU Leuven Plant Institute, 3001 Heverlee, Belgium
| | - Barbara De Coninck
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium; KU Leuven Plant Institute, 3001 Heverlee, Belgium
| | - Bianca Ribeiro
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium; KU Leuven Plant Institute, 3001 Heverlee, Belgium
| | - Bart Nicolaï
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium; Flanders Centre of Postharvest Technology, Willem de Croylaan 42, 3001 Leuven, Belgium; KU Leuven Plant Institute, 3001 Heverlee, Belgium
| | - Maarten Hertog
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium; KU Leuven Plant Institute, 3001 Heverlee, Belgium.
| |
Collapse
|
11
|
Wen H, Zhang D, Zhao H, Zhang Y, Yan X, Lin W, He S, Ding L. Molecular networking-guided isolation of undescribed antifungal odoriferous sesquiterpenoids from a marine mesophotic zone sponge-associated Streptomyces sp. NBU3428. PHYTOCHEMISTRY 2023:113779. [PMID: 37364708 DOI: 10.1016/j.phytochem.2023.113779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Under the guidance of MS/MS-based molecular networking, eight odoriferous sesquiterpenes including two undescribed geosmin-type sesquiterpenoid degradations, odoripenoid A (1) and odoripenoid B (2), and two undescribed germacrane-type sesquiterpenoids, odoripenoid C (3) and odoripenoid (4), together with four known related compounds (5-8) were isolated from the EtOAc extract of the marine mesophotic zone sponge-associated Streptomyces sp. NBU3428. All chemical structures including absolute configurations of these compounds were elucidated by means of HRESIMS, NMR, ECD calculations and single-crystal X-ray diffraction experiments. Compounds 1 and 2 represent the rarely geosmin-related metabolites directly as natural products from actinomycetes. The isolated compounds (1-8) were assayed in a range of biological activities. Compounds 1 and 2 showed anti-Candida albicans activity with MIC values of 16 and 32 μg/mL, respectively, representing potential antifungal agents.
Collapse
Affiliation(s)
- Huimin Wen
- Department of Marine Pharmacy, Ningbo University, Ningbo, 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Dashuai Zhang
- Department of Marine Pharmacy, Ningbo University, Ningbo, 315211, China
| | - Hang Zhao
- Department of Marine Pharmacy, Ningbo University, Ningbo, 315211, China
| | - Yawen Zhang
- Department of Marine Pharmacy, Ningbo University, Ningbo, 315211, China
| | - Xiaojun Yan
- Department of Marine Pharmacy, Ningbo University, Ningbo, 315211, China
| | - Wenhan Lin
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315800, China
| | - Shan He
- Department of Marine Pharmacy, Ningbo University, Ningbo, 315211, China; Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315800, China.
| | - Lijian Ding
- Department of Marine Pharmacy, Ningbo University, Ningbo, 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
12
|
Tong W, Sun B, Ling M, Zhang X, Yang W, Shi Y, Pan Q, Duan C, Lan Y. Influence of modified carbonic maceration technique on the chemical and sensory characteristics of Cabernet Sauvignon wines. Food Chem 2023; 403:134341. [DOI: 10.1016/j.foodchem.2022.134341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
|
13
|
Bonich FS, Christmann M, Freund M. Replacement of SO 2 by plant phenolic concentrates to control oxidations in winemaking. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235602005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
In conventional winemaking, sulfites have long been used to control oxidation and spoilage microorganisms. However, the current wine trends and growing consumer health concerns have increased the need to seek alternatives to this preservative. In this context, the present study investigated plant-phenolic concentrates and explored their potential to replace the useful properties of SO2 to control oxidations. The concentrates came from ten different plants and were provided by the company Biolethics Europe, from the Netherlands. Laccase activity control assays were performed using the syringaldazine chromogenic substratein must from botrytized grapes, and the oxygen consumption rate was measured using a non-invasive method based on luminescence in model wine solutions. Positive results were obtained in the two essays, which must be complemented with sensory analyzes and monitoring of the evolution of the wines.
Collapse
|
14
|
Zhao HX, Zhang TY, Wang H, Hu CY, Tang YL, Xu B. Occurrence of fungal spores in drinking water: A review of pathogenicity, odor, chlorine resistance and control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158626. [PMID: 36087680 DOI: 10.1016/j.scitotenv.2022.158626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Fungi in drinking water have been long neglected due to the lack of convenient analysis methods, widely accepted regulations and efficient control strategies. However, in the last few decades, fungi in drinking water have been widely recognized as opportunity pathogens that cause serious damage to the health of immune-compromised individuals. In drinking water treatment plants, fungal spores are more resistant to chlorine disinfection than bacteria and viruses, which can regrow in drinking water distribution systems and subsequently pose health threats to water consumers. In addition, fungi in drinking water may represent an ignored source of taste and odor (T&O). This review identified 74 genera of fungi isolated from drinking water and presented their detailed taxonomy, sources and biomass levels in drinking water systems. The typical pathways of exposure of water-borne fungi and the main effects on human health are clarified. The fungi producing T&O compounds and their products are summarized. Data on free chlorine or monochloramine inactivation of fungal spores and other pathogens are compared. At the first time, we suggested four chlorine-resistant mechanisms including aggregation to tolerate chlorine, strong cell walls, cellular responses to oxidative stress and antioxidation of melanin, which are instructive for the future fungi control attempts. Finally, the inactivation performance of fungal spores by various technologies are comprehensively analyzed. The purpose of this study is to provide an overview of fungi distribution and risks in drinking water, provide insight into the chlorine resistance mechanisms of fungal spores and propose approaches for the control of fungi in drinking water.
Collapse
Affiliation(s)
- Heng-Xuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Pérez-Porras P, Gómez-Plaza E, Osete-Álcaraz A, Martínez-Pérez P, Jurado R, Bautista-Ortín AB. The effect of ultrasound on Syrah wine composition as affected by the ripening or sanitary status of the grapes. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSeveral studies have demonstrated that the application of ultrasounds to crushed grapes improves the chromatic and sensory characteristics of the resulting wines by facilitating the extractability of compounds from grapes to the must-wine. The objective of this work was to determine whether the application of ultrasounds to grapes of different maturity levels or different sanitary status leads to the same positive outcome as regards chromatic characteristics, phenolic and aroma compounds as well as sensory properties. The results showed that, independent of grape ripening or sanitary status, the application of ultrasounds to Syrah crushed grapes leads to wines with better chromatic characteristics at the moment of bottling, increasing colour intensity, total phenol content and tannin concentration up to 12%, 18% and 43%, respectively, in the wines from less ripen grapes and 13%, 23% and 30% in the wine from partially rotten grapes. The concentration of volatile compounds was less affected by sonication than the chromatic characteristics, with small decreases in the main families of volatile compounds, although the sensory analysis showed clear differences between control wines and those made from sonicated grapes, which were generally preferred and score higher for most of the sensory parameters evaluated.
Collapse
|
16
|
Delcros L, Godet T, Collas S, Hervé M, Blondin B, Roland A. Identification of a Glycosylated Fraction Involved in Mushroom Off-Flavors in Grapes: Influence of Gray Rot, Powdery Mildew and Crustomyces subabruptus. Molecules 2022; 27:7306. [PMID: 36364131 PMCID: PMC9656183 DOI: 10.3390/molecules27217306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 09/28/2023] Open
Abstract
An organoleptic defect, termed fresh mushroom off-flavor and mainly caused by the C8 compounds 1-octen-3-one, 3-octanol and 1-octen-3-ol, has been identified in wines and spirits since the 2000s. The aim of this work was to identify the presence of glycosidic precursors of these C8 compounds and to evaluate the influence of different molds on the glycosylated fractions of three grape varieties. Must samples contaminated by molds (gray rot, powdery mildew and Crustomyces subabruptus) and three levels of attack severity (from healthy to 10-15%) were studied. After a β-glycosidase treatment on Meunier and Pinot noir musts contaminated by Crustomyces subabruptus, 1-octen-3-one, 1-octen-3-ol and 3-octanol were identified by GC-MS, proving the existence of glycosidic fractions in the musts. A Pinot noir must contaminated by Crustomyces subabruptus displayed a 230% increase in the glycosylated fraction responsible for 1-octen-3-one in comparison with an uncontaminated sample. Powdery mildew did not appear to affect the levels of the studied glycosidic fractions in Chardonnay musts. Gray rot on Meunier and Pinot noir musts had opposite effects depending on glycoside type, decreasing the 1-octen-3-one fraction and increasing the 1-octen-3-ol fraction.
Collapse
Affiliation(s)
- Léa Delcros
- MHCS, 51200 Epernay, France
- Comité Champagne, 51200 Epernay, France
| | - Teddy Godet
- UMR SPO, Université de Montpellier INRAE, Institut Agro, 34060 Montpellier, France
| | | | | | - Bruno Blondin
- UMR SPO, Université de Montpellier INRAE, Institut Agro, 34060 Montpellier, France
| | - Aurélie Roland
- UMR SPO, Université de Montpellier INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
17
|
Li X, Li T, Li M, Chen D, Liu X, Zhao S, Dai X, Chen J, Kong Z, Tan J. Effect of Pathogenic Fungal Infestation on the Berry Quality and Volatile Organic Compounds of Cabernet Sauvignon and Petit Manseng Grapes. FRONTIERS IN PLANT SCIENCE 2022; 13:942487. [PMID: 35937365 PMCID: PMC9353940 DOI: 10.3389/fpls.2022.942487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The effect of pathogenic fungal infestation on berry quality and volatile organic compounds (VOCs) of Cabernet Sauvignon (CS) and Petit Manseng (PM) were investigated by using biochemical assays and gas chromatography-ion mobility spectrometry. No significant difference in diseases-affected grapes for 100-berry weight. The content of tannins and vitamin C decreased significantly in disease-affected grapes, mostly in white rot-affected PM, which decreased by 71.67% and 66.29%. The reduced total flavonoid content in diseases-affected grape, among which the least and most were anthracnose-affected PM (1.61%) and white rot-affected CS (44.74%). All diseases-affected CS had much higher titratable acid, a maximum (18.86 g/100 ml) was observed in the gray mold-affected grapes, while only anthracnose-affected grapes with a higher titratable acid level (21.8 g/100 mL) were observed in PM. A total of 61 VOCs were identified, including 14 alcohols, 13 esters, 12 aldehydes, 4 acids, 4 ketones, 1 ether, and 13 unknown compounds, which were discussed from different functional groups, such as C6-VOCs, alcohols, ester acetates, aldehydes, and acids. The VOCs of CS changed more than that of Petit Manseng's after infection, while gray mold-affected Cabernet Sauvignon had the most change. C6-VOCs, including hexanal and (E)-2-hexenal were decreased in all affected grapes. Some unique VOCs may serve as hypothetical biomarkers to help us identify specific varieties of pathogenic fungal infestation.
Collapse
Affiliation(s)
- Xueyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Minmin Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Deyong Chen
- College of Life Sciences, Tarim University, Alar, China
| | - Xiaowei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianxin Tan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Lan Y, Liu M, Zhang X, Li S, Shi Y, Duan C. Regional Variation of Chemical Characteristics in Young Marselan (Vitis vinifera L.) Red Wines from Five Regions of China. Foods 2022; 11:foods11060787. [PMID: 35327212 PMCID: PMC8948681 DOI: 10.3390/foods11060787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 12/10/2022] Open
Abstract
The environmental conditions of wine regions determine the flavor characteristics of wine. The characterization of the chemical composition and sensory profiles of young Marselan wines from five wine-producing regions in China was investigated by gas chromatography-mass spectrometry (MS), high-performance liquid chromatography–triple-quadrupole MS/MS and descriptive analysis. Young Marselan wines can be successful discriminated based on concentrations of volatile compounds, but not phenolic compounds, by orthogonal partial least squares discriminant analysis according to regions. Compared to Jiaodong Peninsula (JDP) and Bohai Bay (BHB) regions, there were relatively lower average concentrations of varietal volatiles (mainly including β-citronellol, geraniol, and (E)-β-damasenone) and several fermentation aroma compounds (including isoamyl acetate, octanoic acid, decanoic acid, ethyl decanoate, etc.) but higher levels of acetic acid in Xinjiang (XJ), Loess Plateau (LP), and Huaizhuo Basin (HZB) regions, which were related to their characteristic environmental conditions. Marselan wines from HZB, LP, and XJ regions were characterized by lower L values and higher a and Cab values. Marselan wines from XJ were discriminated from the wines from other regions due to their higher concentrations of several flavonols. Sensory analysis indicated that Marselan wines from HZB region were characterized by relatively low intensities of floral and fruity aromas compared to other regions.
Collapse
Affiliation(s)
- Yibin Lan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.L.); (M.L.); (X.Z.); (S.L.); (Y.S.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Min Liu
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.L.); (M.L.); (X.Z.); (S.L.); (Y.S.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xinke Zhang
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.L.); (M.L.); (X.Z.); (S.L.); (Y.S.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Siyu Li
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.L.); (M.L.); (X.Z.); (S.L.); (Y.S.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ying Shi
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.L.); (M.L.); (X.Z.); (S.L.); (Y.S.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.L.); (M.L.); (X.Z.); (S.L.); (Y.S.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Correspondence:
| |
Collapse
|
19
|
Identifying volatile compounds in rabbit fish (Siganus fuscescens) tissues and their enzymatic generation. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03977-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Dopazo V, Luz C, Quiles JM, Calpe J, Romano R, Mañes J, Meca G. Potential application of lactic acid bacteria in the biopreservation of red grape from mycotoxigenic fungi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:898-907. [PMID: 34240436 DOI: 10.1002/jsfa.11422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Filamentous fungi are the main contamination agent in the viticultural sector. Use of synthetic fungicides is the regular answer to these contaminations. Nevertheless, because of several problems associated with the use of synthetic compounds, the industry demands new and safer methods. In the present work, the biopreservation potential of four lactic acid bacteria (LAB) strains was studied against the principal grape contaminant fungi. RESULTS Agar diffusion test evidenced that all four culture-free supernatant (CFS) had antifungal properties against all tested fungi. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) test values evidenced that media fermented by the Lactobacillus plantarum E3 and Lactobacillus plantarum E4 strains showed the highest antifungal activity, resulting in an MFC from 6.3 to 100 g L-1 . Analysis of CFS evidenced the presence of different antifungal compounds, such as lactic acid, phenyllactic acid and pyrazines. In tests on red grapes, an average reduction of 1.32 log10 of the spores per gram of fruit was achieved by all CFS in grapes inoculated with Aspergillus ochraceus and by 0.94 log10 for L. plantarum E3 CFS against Botrytis cinerea. CONCLUSION The antifungal activity of the fermented CFS by L. plantarum E3 reduced the growth of B. cinerea and A. ochraceus in grapes, which are the main contaminant and main producer of ochratoxin A in these crops, respectively. Therefore, based on the results obtained in this work, use of the strain L. plantarum E3 could be an interesting option for the biopreservation of grapes. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Victor Dopazo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Carlos Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Juan M Quiles
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Jorge Calpe
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Raffaele Romano
- Department of Agriculture, University of Napoli Federico II, Portici, Italy
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
21
|
The Impact of Must Nutrients and Yeast Strain on the Aromatic Quality of Wines for Cognac Distillation. FERMENTATION 2022. [DOI: 10.3390/fermentation8020051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to understand the influence of nitrogen and lipid nutrition on the aromatic quality of wines for cognac distillation, we developed a transdisciplinary approach that combined statistical modeling (experimental central composite design and response surface modeling) with metabolomic analysis. Three Saccharomyces cerevisiae strains that met the requirements of cognac appellation were tested at a laboratory scale (1 L) and a statistical analysis of covariance was performed to highlight the organoleptic profile (fermentative aromas, terpenes, alcohols and aldehydes) of each strain. The results showed that nitrogen and lipid nutrients had an impact on the aromatic quality of cognac wines: high lipid concentrations favored the production of organic acids, 1-octen-3-ol and terpenes and inhibited the synthesis of esters. Beyond this trend, each yeast strain displayed its own organoleptic characteristics but had identical responses to different nutritional conditions.
Collapse
|
22
|
Santos H, Augusto C, Reis P, Rego C, Figueiredo AC, Fortes AM. Volatile Metabolism of Wine Grape Trincadeira: Impact of Infection with Botrytis cinerea. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11010141. [PMID: 35009143 PMCID: PMC8747702 DOI: 10.3390/plants11010141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 05/27/2023]
Abstract
The aroma of grapes is cultivar dependent and is influenced by terroir, vineyard practices, and abiotic and biotic stresses. Trincadeira is a non-aromatic variety associated with low phenolic content and high sugar and organic acid levels. This cultivar, widely used in Portuguese wines, presents high susceptibility to Botrytis cinerea. This work aimed to characterise the volatile profile of Trincadeira grapes and how it changes under infection with B. cinerea. Thirty-six volatile organic compounds were identified, from different functional groups, namely alcohols, ester acetates, fatty acid esters, fatty acids, aldehydes, and products of the lipoxygenase pathway. Both free and glycosidic volatile organic compounds were analysed by Gas Chromatography and Gas Chromatography coupled to Mass Spectrometry for component quantification and identification, respectively. A multivariance analysis showed a clear discrimination between healthy and infected grapes with 2-trans-hexenal and isoamyl-acetate among the compounds identified as negative and positive markers of infection, respectively. Ester acetates such as 2-phenylethyl acetate, isoamyl acetate, and 2-methylbutyl acetate were present in higher contents in infected samples, whereas the contents of several fatty acid esters, such as ethyl decanoate and ethyl dodecanoate, decreased. These data were integrated with quantitative PCR data regarding genes involved in volatile metabolism and showed up-regulation of a gene coding for Hydroperoxide Lyase 2 in infected grapes. Altogether, these changes in volatile metabolism indicate an impact on the grape quality and may be related to defence against B. cinerea. The presence/absence of specific compounds might be used as infection biomarkers in the assessment of Trincadeira grapes' quality.
Collapse
Affiliation(s)
- Helena Santos
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal; (H.S.); (C.A.)
| | - Catarina Augusto
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal; (H.S.); (C.A.)
| | - Pedro Reis
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (P.R.); (C.R.)
| | - Cecília Rego
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (P.R.); (C.R.)
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Ana Margarida Fortes
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal; (H.S.); (C.A.)
| |
Collapse
|
23
|
Rienth M, Vigneron N, Walker RP, Castellarin SD, Sweetman C, Burbidge CA, Bonghi C, Famiani F, Darriet P. Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario. FRONTIERS IN PLANT SCIENCE 2021; 12:717223. [PMID: 34956249 PMCID: PMC8693719 DOI: 10.3389/fpls.2021.717223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
The grapevine is subject to high number of fungal and viral diseases, which are responsible for important economic losses in the global wine sector every year. These pathogens deteriorate grapevine berry quality either directly via the modulation of fruit metabolic pathways and the production of endogenous compounds associated with bad taste and/or flavor, or indirectly via their impact on vine physiology. The most common and devastating fungal diseases in viticulture are gray mold, downy mildew (DM), and powdery mildew (PM), caused, respectively by Botrytis cinerea, Plasmopara viticola, and Erysiphe necator. Whereas B. cinerea mainly infects and deteriorates the ripening fruit directly, deteriorations by DM and PM are mostly indirect via a reduction of photosynthetic leaf area. Nevertheless, mildews can also infect berries at certain developmental stages and directly alter fruit quality via the biosynthesis of unpleasant flavor compounds that impair ultimate wine quality. The grapevine is furthermore host of a wide range of viruses that reduce vine longevity, productivity and berry quality in different ways. The most widespread virus-related diseases, that are known nowadays, are Grapevine Leafroll Disease (GLRD), Grapevine Fanleaf Disease (GFLD), and the more recently characterized grapevine red blotch disease (GRBD). Future climatic conditions are creating a more favorable environment for the proliferation of most virus-insect vectors, so the spread of virus-related diseases is expected to increase in most wine-growing regions. However, the impact of climate change on the evolution of fungal disease pressure will be variable and depending on region and pathogen, with mildews remaining certainly the major phytosanitary threat in most regions because their development rate is to a large extent temperature-driven. This paper aims to provide a review of published literature on most important grapevine fungal and viral pathogens and their impact on grape berry physiology and quality. Our overview of the published literature highlights gaps in our understanding of plant-pathogen interactions, which are valuable for conceiving future research programs dealing with the different pathogens and their impacts on grapevine berry quality and metabolism.
Collapse
Affiliation(s)
- Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Nicolas Vigneron
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Crista A. Burbidge
- School of Agriculture and Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Glen Osmond, SA, Australia
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Philippe Darriet
- Univ. Bordeaux, Unité de recherche Œnologie EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| |
Collapse
|
24
|
Noviello M, Gattullo CE, Faccia M, Paradiso VM, Gambacorta G. Application of natural and synthetic zeolites in the oenological field. Food Res Int 2021; 150:110737. [PMID: 34865756 DOI: 10.1016/j.foodres.2021.110737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
Zeolites are crystalline hydrated aluminosilicates, of natural or synthetic origin, characterized by a microporous structure and high adsorption properties. They are employed as soil amendments and fertilizer carriers in agriculture, as catalysts, detergents, adsorbents and molecular sieves in many chemical processes, as well as in water and soil decontamination, and in food processing. They have been also tested in the oenological field for several potential applications; yet an overview on such topic is not still available. The present review summarizes the recent and innovative applications of zeolites in winemaking and supplies a critical discussion about their potential to prevent protein haze, tartrate instability or the appearance of certain defects, like light-struck off-flavour and earthy off-flavours. Further applications of these minerals in the management of winery wastes and in the analytical field are also reviewed. The outcomes of this work evidenced the need of further research on the use of zeolites in oenology for better exploiting their peculiar sorption and exchange properties, selecting the most efficient natural types and improving the performances of the synthetic ones, without disregarding the potential secondary effects of these treatments on wine quality.
Collapse
Affiliation(s)
- Mirella Noviello
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, via Amendola, 165/a, I-70126 Bari, Italy
| | - Concetta Eliana Gattullo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, via Amendola, 165/a, I-70126 Bari, Italy
| | - Michele Faccia
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, via Amendola, 165/a, I-70126 Bari, Italy
| | - Vito Michele Paradiso
- Department of Biological and Environmental Sciences and Technologies, Laboratory of Agri-food microbiology and Food technologies, University of Salento, Centro Ecotekne, S.P. 6 Lecce-Monteroni, I-73100 Lecce, Italy.
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, via Amendola, 165/a, I-70126 Bari, Italy
| |
Collapse
|
25
|
Zhu W, Jiang B, Zhong F, Chen J, Zhang T. Effect of Microbial Fermentation on the Fishy-Odor Compounds in Kelp ( Laminaria japonica). Foods 2021; 10:foods10112532. [PMID: 34828815 PMCID: PMC8623561 DOI: 10.3390/foods10112532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Kelp (Laminaria japonica) is an important marine resource with low cost and rich nutrition. However, its fishy odor has compromised consumer acceptance. In this study, the effects of fermentation with Lactobacillus plantarum FSB7, Pediococcus pentosaceus CICC 21862 and Saccharomyces cerevisiae SK1.008 on fishy notes in kelp was studied using gas chromatography-mass spectrometry (GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS) and odor activity values (OAVs). Forty-four volatile organic compounds (VOCs) were identified in unfermented kelp, most of which were aldehydes, followed by alkanes, alcohols and ketones. Among them were 19 volatile compounds with OAV greater than one. Substances containing α,β-unsaturated carbonyl structure (1-Octen-3-one, (E,Z)-2,6-nonadienal, (E,E)-2,4-decadienal, etc.) are the main contributors to kelp fishy odor. The number of VOCs in kelp samples fermented by L. plantarum, P. pentosaceus and S. cerevisiae were decreased to 22, 24 and 34, respectively. GC-IMS shows that the fingerprint of the S. cerevisiae fermented sample had the most obvious changes. The disappearance of 1-octen-3-one and a 91% decrease in unsaturated aldehydes indicate that S. cerevisiae was the most effective, while L. plantarum and P. pentosaceus only reached 43-55%. The decrease in kelp fishy notes was related to the decrease in α,β-unsaturated carbonyl groups. The experimental results show that odor reduction with fermentation is feasible.
Collapse
Affiliation(s)
- Wenyang Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.Z.); (J.C.); (T.Z.)
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.Z.); (J.C.); (T.Z.)
- International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85915296
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.Z.); (J.C.); (T.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.Z.); (J.C.); (T.Z.)
- International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.Z.); (J.C.); (T.Z.)
- International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
26
|
Wu J, Liu Y, Zhao H, Huang M, Sun Y, Zhang J, Sun B. Recent advances in the understanding of off-flavors in alcoholic beverages: Generation, regulation, and challenges. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Li H, James A, Shen X, Wang Y. Roles of microbiota in the formation of botrytized grapes and wines. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1958925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hua Li
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Armachius James
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Xuemei Shen
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Yousheng Wang
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
28
|
Abstract
Of all the oral sensations that are experienced, "metallic" is one that is rarely reported in healthy participants. So why, then, do chemotherapy patients so frequently report that "metallic" sensations overpower and interfere with their enjoyment of food and drink? This side-effect of chemotherapy-often referred to (e.g., by patients) as "metal mouth"-can adversely affect their appetite, resulting in weight loss, which potentially endangers (or at the very least slows) their recovery. The etiology of "metal mouth" is poorly understood, and current management strategies are largely unevidenced. As a result, patients continue to suffer as a result of this poorly understood phenomenon. Here, we provide our perspective on the issue, outlining the evidence for a range of possible etiologies, and highlighting key research questions. We explore the evidence for "metallic" as a putative taste, and whether "metal mouth" might therefore be a form of phantageusia, perhaps similar to already-described "release-of-inhibition" phenomena. We comment on the possibility that "metal mouth" may simply be a direct effect of chemotherapy drugs. We present the novel theory that "metal mouth" may be linked to chemotherapy-induced sensitization of TRPV1. Finally, we discuss the evidence for retronasal olfaction of lipid oxidation products in the etiology of "metal mouth." This article seeks principally to guide much-needed future research which will hopefully one day provide a basis for the development of novel supportive therapies for future generations of patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Alastair J M Reith
- Oxford Medical School, Medical Sciences Division, John Radcliffe Hospital, UK
| | - Charles Spence
- Crossmodal Research Laboratory, Department of Experimental Psychology, Oxford University, UK
| |
Collapse
|
29
|
Feng L, Wang J, Ye D, Song Y, Qin Y, Liu Y. Yeast population dynamics during spontaneous fermentation of icewine and selection of indigenous Saccharomyces cerevisiae strains for the winemaking in Qilian, China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5385-5394. [PMID: 32535908 DOI: 10.1002/jsfa.10588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Icewine produced in China is becoming popular, but there is only limited knowledge available on the yeast population that occurs during fermentation and also on the selection of indigenous Saccharomyces cerevisiae strains for its production. In this work, we first investigated yeast species and the evolution of yeast population in spontaneous fermentations of icewine produced in the Qilian region of China and then analyzed the biodiversity and important enological properties of S. cerevisiae isolates. RESULTS Seven species of five genera including S. cerevisiae, S. uvarum, Torulaspora delbrueckii, Hanseniaspora uvarum, Lachancea thermotolerans, Metschnikowia aff. fructicola and H. osmophila were identified by the colony morphology on Wallerstein Laboratory Nutrient medium and sequence analysis of the 26S rRNA gene D1/D2 domain. Saccharomyces cerevisiae, H. uvarum and L. thermotolerans were the dominant species, representing almost 87% of the total yeast isolates. Microvinification with seven preselected S. cerevisiae strains were performed on Vidal. All selected strains could complete fermentations, and the enochemical parameters were within the acceptable ranges of the wine industry. W5B3 produced higher amounts of ethyl hexanoate and ethyl octanoate than other strains. R3A10 was a low volatile acid producer and the corresponding icewine presented the highest values on some odorants including β-damascenone, 1-octen-3-ol, ethyl 2-methylbutyrate, and isoamyl alcohol. Vidal icewines fermented with R3A10, R3A16 and W5B3 were well accepted by the judges because of superior sensory quality. CONCLUSION Three indigenous strains (R3A10, R3A16 and W5B3) could be used as starters and could potentially improve the regional character of the icewine in Qilian. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Feng
- Jiyang College of Zhejiang A&F University, Zhuji, China
- College of Enology, Northwest A&F University, Yangling, China
| | - Jiaming Wang
- Labstat International ULC, Chemistry, Kitchener, Ontario, Canada
| | - Dongqing Ye
- College of Enology, Northwest A&F University, Yangling, China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Delbac L, Rusch A, Binet D, Thiéry D. Seasonal variation of Drosophilidae communities in viticultural landscapes. Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Pedrotti C, Marcon ÂR, Echeverrigaray L, Ribeiro RTDS, Schwambach J. Essential oil as sustainable alternative for diseases management of grapes in postharvest and in vineyard and its influence on wine. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:73-81. [PMID: 33131418 DOI: 10.1080/03601234.2020.1838827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aimed to determine the chemical composition of Eucalyptus staigeriana essential oil (EO) and its effect in vivo against Botrytis cinerea and Colletotrichum acutatum in postharvest of grapes and in a vineyard. Moreover, grapes collected from de field experiments were used to evaluate the impact of the alternative control on the alcoholic fermentation and wine composition. The major compounds of E. staigeriana EO were citral (30.91%), 1,8-cineole (24.59%), and limonene (19.47%). In the postharvest experiment, EO was efficient, reducing the incidence and severity of disease caused by B. cinerea and the incidence of disease caused by C. acutatum, both in preventive and curative treatment. Moreover, this EO reduced the incidence and severity of gray rot caused by B. cinerea and the severity of ripe rot caused by C. acutatum in the field. The alternative control did not significantly influence the alcoholic fermentation and volatile composition of wines, except for the residual presence of 1,8-cineole that can contribute to the aroma complexity of 'Isabella' wine. These results are promising and indicate that E. staigeriana EO might be further investigated as a natural alternative to control fungal rots on grapes.
Collapse
Affiliation(s)
- Carine Pedrotti
- Laboratory of Plant Disease Control and Laboratory of Plant Biotechnology, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Ângela Rossi Marcon
- Laboratory of Enology and Applied Microbiology, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Laguna Echeverrigaray
- Laboratory of Enology and Applied Microbiology, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Rute Terezinha da Silva Ribeiro
- Laboratory of Plant Disease Control and Laboratory of Plant Biotechnology, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Joséli Schwambach
- Laboratory of Plant Disease Control and Laboratory of Plant Biotechnology, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| |
Collapse
|
32
|
Terutsuki D, Mitsuno H, Sato K, Sakurai T, Mase N, Kanzaki R. Highly effective volatile organic compound dissolving strategy based on mist atomization for odorant biosensors. Anal Chim Acta 2020; 1139:178-188. [PMID: 33190702 DOI: 10.1016/j.aca.2020.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
The detection of volatile organic compound (VOC) mixtures is crucial in the medical and security fields. Receptor-based odorant biosensors sensitively and selectively detect odorant molecules in a solution; however, odorant molecules generally exist as VOCs in the air and exhibit poor water solubility. Therefore, techniques that enable the dissolution of poorly water-soluble VOCs using portable systems are essential for practical biosensors' applications. We previously proposed a VOC dissolution method based on water atomization to increase the surface area via the generation of fine bubbles, as a proof-of-concept; however, the system was lab-based (non-mobile) and the dissolution was limited to one VOC. In this study, we established a highly effective VOC dissolution method based on mist atomization that can be used in the field. This new method demonstrated a rapid dissolution potential of a sparsely-soluble VOC mixture with various functional groups in distilled water (DW) within 1 min, without the use of any organic solvents. Calcium imaging revealed that odorant receptor 13a-expressing Sf21 cells (Or13a cells) responded to 1-octen-3-ol in the mixture. Further, we successfully developed a field-deployable prototype vacuum and dissolution system with a simple configuration that efficiently captured and rapidly dissolved airborne 1-octen-3-ol in DW. This study proposes a field-deployable system that is appropriate for solubilizing various airborne odorant molecules and therefore is a practical strategy to use in the context of odorant biosensors.
Collapse
Affiliation(s)
- Daigo Terutsuki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| | - Hidefumi Mitsuno
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Kohei Sato
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Takeshi Sakurai
- Department of Agricultural Innovation for Sustainability, Tokyo University of Agriculture, 1737 Funako, Atsugi-shi, Kanagawa, 243-0034, Japan
| | - Nobuyuki Mase
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan; Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
33
|
Ding L, Hertweck C. Oxygenated Geosmins and Plant-like Eudesmanes from a Bacterial Mangrove Endophyte. JOURNAL OF NATURAL PRODUCTS 2020; 83:2207-2211. [PMID: 32558565 DOI: 10.1021/acs.jnatprod.0c00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Geosmin (1) is a microbial terpene metabolite that is responsible for the typical smell of soil and causes an off-odor of food and water. Eudesmane sesquiterpenes are commonly found in plant essential oils. Here we describe the discovery of four geosmin-type metabolites, 7R-hydroxygeosmin (2), 3-oxogeosmin (3), 2R-hydroxy-7-oxogeosmin (4), 5-deoxy-7β,9β-dihydroxygeosmin (5), the plant-like eudesmanes 4β,10α-eudesmane-5β,11-diol (6) and (1S,5S,6S,7S,10S)-10α-eudesm-4(15)-ene-1α,6α-diol (7), and the known 1(10)E,5E-germacradiene-2,11-diol (8) from a bacterial endophyte (Streptomyces sp. JMRC:ST027706) of the mangrove plant Bruguiera gymnorrhiza. By means of NMR, MS, and ECD spectroscopy, all chemical structures as well as the absolute configurations for the new compounds were elucidated. Compounds 2-5 represent the first geosmin-related metabolites directly as bacterial natural products. The plant-derived eudesmane-5β,11-diol (6) and (1S,5S,6S,7S,10S)-10α-eudesm-4(15)-ene-1α,6α-diol (7) are also now reported as bacterial products. The broad antimicrobial activities of 6 against a suite of fungal and bacterial pathogens including methicillin-resistant Staphylococcus aureus suggest that this terpene could be an important active principle of the medicinal plant Cymbopogon distans. The discovery of geosmin metabolites from one actinomycete indicated that these bacteria could possess enzymes for modifying geosmin and offer a possibility for bioremediation.
Collapse
Affiliation(s)
- Ling Ding
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
34
|
Abstract
The literature about musty and moldy taint—the so-called cork taint—in wines is varied because there are many different molecules involved in this wine defect. Chloroanisoles are the most relevant compound responsible for cork taint and of these, 2,4,6-trichloroanisole (TCA) is the most common, but 2,3,4,6-tetrachloroanisole (TeCA) and 2,4,6-tribromoanisole (TBA) can also be responsible of this defect. For other compounds involved in cork taint, geosmin and 2-methylisoborneol (2-MIB) are responsible for earthy off-flavor; pyrazines cause vegetable odors, and guaiacol results in smoked, phenolic and medicinal defects. Off-odors of mushroom in wines are caused by 1-octen-3-ol and 1-octen-3-one coming from grapes contaminated by bunch rot (Botrytis cinerea). The sensory aspects of these molecules are illustrated in this review. Generally, the most important cause of this wine contamination is the natural cork of bottle stoppers, but this is not always true. Different origins of contamination include air pollution of the cellars, wood materials, barrels and chips. A review of the possible prevention or remedial treatments to cork taint is also presented. The best solution for this off-flavor is to prevent the wine contaminations.
Collapse
|
35
|
Simonato B, Lorenzini M, Cipriani M, Finato F, Zapparoli G. Correlating Noble Rot Infection of Garganega Withered Grapes with Key Molecules and Odorants of Botrytized Passito Wine. Foods 2019; 8:foods8120642. [PMID: 31817273 PMCID: PMC6963700 DOI: 10.3390/foods8120642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 11/17/2022] Open
Abstract
Experimental passito wines with different percentages of naturally noble-rotten grapes of the Garganega variety were analyzed to evaluate key molecules and odorants related to the typical aroma and sensory profile of botrytized passito wine. Remarkable changes in the concentration of 1-octen-3-ol, 4-terpineol, benzaldehyde, N-(3-methylbutyl)acetamide, and sherry lactone 1 and 2 were observed between sound and noble-rotten wines. Wines were perceived to be different for floral, honey, figs, apricot, and caramel scents. By partial least square regression these descriptors were well correlated to samples. An important positive contribution of sherry lactones, N-(3-methylbutyl)acetamide, vanillin, benzaldehyde, and γ-butyrolactone to honey, apricot, and caramel was observed. It is conceivable that oxidative effects of Botrytis cinerea infection play an important role in the genesis of these chemical and sensory aroma markers. This study provides a predictive tool for winemakers that use natural grape withering to produce wines whose aroma profile is not standardized due to the seasonal variation of noble rot incidence.
Collapse
Affiliation(s)
- Barbara Simonato
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (B.S.); (M.L.)
| | - Marilinda Lorenzini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (B.S.); (M.L.)
| | - Michela Cipriani
- Unione Italiana Vini, Viale del lavoro 8, 37135 Verona, Italy; (M.C.); (F.F.)
| | - Fabio Finato
- Unione Italiana Vini, Viale del lavoro 8, 37135 Verona, Italy; (M.C.); (F.F.)
| | - Giacomo Zapparoli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (B.S.); (M.L.)
- Correspondence:
| |
Collapse
|
36
|
Pedrotti C, Marcon ÂR, Delamare APL, Echeverrigaray S, da Silva Ribeiro RT, Schwambach J. Alternative control of grape rots by essential oils of two Eucalyptus species. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6552-6561. [PMID: 31321781 DOI: 10.1002/jsfa.9936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Essential oils (EOs) are volatile natural compounds produced by plant secondary metabolism, and some of them exhibit antimicrobial activity. The objective of the present study was to determine the chemical composition the EOs of Eucalyptus staigeriana and Eucalyptus globulus, and their effect in vitro and in vivo against Botrytis cinerea and Colletotrichum acutatum, the most important fungal rot diseases of grapes. Moreover, grapes collected from field experiments were used to evaluate the impact of the alternative control on the alcoholic fermentation and wine composition. RESULTS The major compound of E. staigeriana EO were citral 30.91% (19.74% geranial, 11.17% neral), 1.8-cineole (24.59%) and limonene (19.47%), while 1.8-cineole represented 68.26% of E. globulus EO. The two EOs showed in vitro antifungal activity against both pathogens. Eucalyptus staigeriana EO exhibited the highest activity inhibiting mycelial growth (MG) and conidial germination at 0.5 μL mL-1 . Moreover, this EO was able to reduce the incidence and severity of grey rot caused by B. cinerea and the severity of ripe rot caused by C. acutatum The alternative control did not significantly influence alcoholic fermentation, the physicochemical characteristics, and the volatile composition of wines. CONCLUSION These results are promising and indicate that E. staigeriana EO might be further investigated as a natural alternative for the control of fungal rots on wine grapes. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carine Pedrotti
- Laboratory of Plant Disease Control and Laboratory of Plant Biotechnology, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Ângela Rossi Marcon
- Laboratory of Applied Microbiology, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Ana Paula Longaray Delamare
- Laboratory of Applied Microbiology, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Sérgio Echeverrigaray
- Laboratory of Applied Microbiology, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Rute Terezinha da Silva Ribeiro
- Laboratory of Plant Disease Control and Laboratory of Plant Biotechnology, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Joséli Schwambach
- Laboratory of Plant Disease Control and Laboratory of Plant Biotechnology, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| |
Collapse
|
37
|
Zhao T, Wu J, Meng J, Shi P, Fang Y, Zhang Z, Sun X. Harvesting at the Right Time: Maturity and Its Effects on the Aromatic Characteristics of Cabernet Sauvignon Wine. Molecules 2019; 24:molecules24152777. [PMID: 31366183 PMCID: PMC6696524 DOI: 10.3390/molecules24152777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of this paper was to investigate how maturity affects the aroma characteristics of Cabernet Sauvignon wine. A series of four Vitis vinifera cv. Cabernet Sauvignon wines were produced from grapes of different harvest dates. The berries of sequential harvest treatments showed an increase in total soluble solids and anthocyanin and a decrease in titratable acidity. Berry shriveling was observed as berry weight decreased. In the wines, anthocyanin, dry extract, alcoholic strength, and pH were enhanced with the sequential harvest, whereas polyphenol and tannin were decreased. The concentrations of volatile compounds in sequential harvests were found to be at higher levels. Isopentanol, phenylethyl alcohol, ethyl acetate, ethyl lactate, benzaldehyde, citronellol, and linalool significantly increased when harvest was delayed by one or two weeks. Through a principal component analysis, the volatile compounds and phenols characterizing each harvest date were clearly differentiated. These results suggest that sequential harvest may be an optional strategy for winemakers to produce high-quality wine.
Collapse
Affiliation(s)
- Ting Zhao
- College of Enology, Northwest A & F University, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Yangling, Shaanxi 712100, China
| | - Jiaying Wu
- College of Enology, Northwest A & F University, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Yangling, Shaanxi 712100, China
| | - Jiangfei Meng
- College of Enology, Northwest A & F University, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Yangling, Shaanxi 712100, China
| | - Pengbao Shi
- College of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066600, China
| | - Yulin Fang
- College of Enology, Northwest A & F University, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Yangling, Shaanxi 712100, China
| | - Zhenwen Zhang
- College of Enology, Northwest A & F University, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Yangling, Shaanxi 712100, China.
| | - Xiangyu Sun
- College of Enology, Northwest A & F University, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Yangling, Shaanxi 712100, China.
| |
Collapse
|
38
|
Nerva L, Turina M, Zanzotto A, Gardiman M, Gaiotti F, Gambino G, Chitarra W. Isolation, molecular characterization and virome analysis of culturable wood fungal endophytes in esca symptomatic and asymptomatic grapevine plants. Environ Microbiol 2019; 21:2886-2904. [DOI: 10.1111/1462-2920.14651] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Luca Nerva
- Council for Agricultural Research and Economics – Research Centre for Viticulture and Enology CREA‐VE Via XXVIII Aprile 26, 31015 Conegliano (TV) Italy
- Institute for Sustainable Plant Protection CNR, Strada delle Cacce 73, 10135 Torino Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection CNR, Strada delle Cacce 73, 10135 Torino Italy
| | - Alessandro Zanzotto
- Council for Agricultural Research and Economics – Research Centre for Viticulture and Enology CREA‐VE Via XXVIII Aprile 26, 31015 Conegliano (TV) Italy
| | - Massimo Gardiman
- Council for Agricultural Research and Economics – Research Centre for Viticulture and Enology CREA‐VE Via XXVIII Aprile 26, 31015 Conegliano (TV) Italy
| | - Federica Gaiotti
- Council for Agricultural Research and Economics – Research Centre for Viticulture and Enology CREA‐VE Via XXVIII Aprile 26, 31015 Conegliano (TV) Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection CNR, Strada delle Cacce 73, 10135 Torino Italy
| | - Walter Chitarra
- Council for Agricultural Research and Economics – Research Centre for Viticulture and Enology CREA‐VE Via XXVIII Aprile 26, 31015 Conegliano (TV) Italy
- Institute for Sustainable Plant Protection CNR, Strada delle Cacce 73, 10135 Torino Italy
| |
Collapse
|
39
|
Chen S, Wang C, Qian M, Li Z, Xu Y. Characterization of the Key Aroma Compounds in Aged Chinese Rice Wine by Comparative Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Recombination, and Omission Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4876-4884. [PMID: 30920213 DOI: 10.1021/acs.jafc.9b01420] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aroma compounds in young and aged Chinese rice wines (rice wines) with a clear difference in their overall aroma profiles were analyzed by comparative aroma extract dilution analysis (cAEDA). In AEDA, more aroma-active regions with flavor dilution (FD) factors of ≥64 were detected in the aged rice wine than in the young rice wine. A total of 43 odorants were further identified and quantitated. The odor activity values (OAVs) revealed 33 aroma compounds with OAVs of ≥1 in young or aged rice wine. Among these aroma compounds with relatively higher OAVs, 3-methylbutanoic acid, 1,1-diethoxyethane, vanillin, 3-methylbutanal, sotolon, benzaldehyde, 4-vinylguaiacol, methional, and 2,3-butanedione showed significant differences between young and aged rice wines. This difference was confirmed through a quantitative analysis of 34 rice wine samples with ages of 0-15 years. Then, the aroma profile of the aged rice wine was successfully simulated through an aroma recombination model. Omission models suggested that sotolon, vanillin, 3-methylbutanal, and benzaldehyde played key roles in the overall aroma of aged rice wine.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Chengcheng Wang
- State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
- Institute of Renhuai Jiang-Flavor Liquor , Renhuai , Guizhou 564500 , People's Republic of China
| | - Michael Qian
- Department of Food Science & Technology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Zhou Li
- State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yan Xu
- State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
40
|
|
41
|
Ruiz-Moreno MJ, Raposo R, Puertas B, Cuevas FJ, Chinnici F, Moreno-Rojas JM, Cantos-Villar E. Effect of a grapevine-shoot waste extract on red wine aromatic properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5606-5615. [PMID: 29696658 DOI: 10.1002/jsfa.9104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The use of a grapevine-shoot extract (VIN) is being studied as an alternative to sulfur dioxide (SO2 ). VIN stabilizes anthocyanins and preserves polyphenolic compounds, and thus improves chromatic wine properties. In this study, selected aroma compounds (esters, C13 -norisoprenoids, oxidation and vine-shoot-related compounds), sensory analysis and the olfactometric profile were determined in the wines treated with VIN at two concentrations. RESULTS Treatment with VIN hardly modified the content of esters and oxidation-related compounds in the wines. However, the high β-damascenone and isoeugenol contents and the increase in astringency at tasting in VIN wines were noteworthy, as were some odorant zones. All these were established as VIN markers after the chemometric data analysis. CONCLUSION These data revealed that only the lowest dose tested may be recommended as a suitable alternative to SO2 . Although some aromatic properties of these wines may change, these changes are not considered to affect the quality of the wines negatively. These results are useful for wineries, which face having to discover the aroma-related processes in the challenge of producing SO2 -free wines without detriment to their sensory properties. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- María J Ruiz-Moreno
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Centro Alameda del Obispo, Consejería de Agricultura, Pesca y Desarrollo Rural (CAPDER), Junta de Andalucía, Córdoba, Spain
| | - Rafaela Raposo
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Centro Rancho de la Merced, Consejería de Agricultura, Pesca y Desarrollo Rural (CAPDER), Junta de Andalucía, Jerez de la Frontera, Spain
| | - Belén Puertas
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Centro Rancho de la Merced, Consejería de Agricultura, Pesca y Desarrollo Rural (CAPDER), Junta de Andalucía, Jerez de la Frontera, Spain
| | - Francisco J Cuevas
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Centro Alameda del Obispo, Consejería de Agricultura, Pesca y Desarrollo Rural (CAPDER), Junta de Andalucía, Córdoba, Spain
| | - Fabio Chinnici
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - José M Moreno-Rojas
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Centro Alameda del Obispo, Consejería de Agricultura, Pesca y Desarrollo Rural (CAPDER), Junta de Andalucía, Córdoba, Spain
| | - Emma Cantos-Villar
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Centro Rancho de la Merced, Consejería de Agricultura, Pesca y Desarrollo Rural (CAPDER), Junta de Andalucía, Jerez de la Frontera, Spain
| |
Collapse
|
42
|
Zapparoli G, Lorenzini M, Tosi E, Azzolini M, Slaghenaufi D, Ugliano M, Simonato B. Changes in chemical and sensory properties of Amarone wine produced by Penicillium infected grapes. Food Chem 2018; 263:42-50. [DOI: 10.1016/j.foodchem.2018.04.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
|
43
|
Lleixà J, Kioroglou D, Mas A, Portillo MDC. Microbiome dynamics during spontaneous fermentations of sound grapes in comparison with sour rot and Botrytis infected grapes. Int J Food Microbiol 2018; 281:36-46. [DOI: 10.1016/j.ijfoodmicro.2018.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022]
|
44
|
A GC-MS untargeted metabolomics approach for the classification of chemical differences in grape juices based on fungal pathogen. Food Chem 2018; 270:375-384. [PMID: 30174061 DOI: 10.1016/j.foodchem.2018.07.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/04/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022]
Abstract
Fungal bunch rot of grapes leads to production of detrimental flavour compounds, some of which are well characterised but others remain unidentified. The current study uses an untargeted metabolomics approach to classify volatile profiles of grape juices based on the presence of different fungal pathogens. Individual grape berries were inoculated with Botrytis cinerea, Penicillium expansum, Aspergillus niger or A. carbonarius. Grape bunches were inoculated and blended with healthy fruit, to provide 10% (w/w) infected juice. Juices from the above sample batches were analysed by GC/MS. PLS-DA of the normalised summed mass ions indicated sample classification according to pathogen. Compounds identified from those mass ion matrices that had high discriminative value for classification included 1,5-dimethylnaphthalene and several unidentified sesquiterpenes that were relatively higher in B. cinerea infected samples. A. niger and A. carbonarius samples were relatively higher in 2-(4-hexyl-2,5-dioxo-2,5-dihydrofuran-3-yl)acetic acid, while P. expansum samples were higher in γ-nonalactone and m-cresol.
Collapse
|
45
|
Felšöciová S, Mašková Z, Kačániová M. Fungal diversity in the grapes-to-wines chain with emphasis on Penicillium species. POTRAVINARSTVO 2018. [DOI: 10.5219/882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this work was the description of surface and endogenous mycobiota colonisation of grapes, fresh grape juice, grape must, and wine primarily focused to the current spectrum of the penicillium species. One sample of white grape variety Palava and one sample of blue grape variety Dornfelder were collected in Small Carpathian wine growing region of Slovakia in the year 2017. Direct plating of grapes on agar plates was used for analysis of surface mycobiota of grapes while surface sterilsed grapes were used for endogenous mycobiota analysis. Mycobiota of juice, must, and wine was analysed by plate dilution method. Overall, we isolated 148 strains belonging to 13 genera of filamentous microscopic fungi and Mycelia sterilia from grape variety Palava, while the most frequent was Alternaria. Alternaria was the most common genus in the surface and endogenous colonisation with an average relative density 50% and 73.6%, respectively. A total of 2 species of Penicillium were detected from the grapes to wine, potentially toxigenic Penicillium expansum and P. chrysogenum. A total of 39 strains belonging to 6 genera and Mycelia sterilia were identified from grape variety Dornfelder. The most abundant genus was also Alternaria (51.3%), followed by Penicillium (12.8%). Alternaria was the most common genus in the surface and endogenous colonisation and fresh grape juice with an average relative density from 20% (grape juice) to 71% (endogenous colonisation of grapes). A total of 3 species of Penicillium were detected from the grapes to wine, where Penicillium expansum were detected most commonly. In the second part of our work some selected isolates were tested to the ability to produce mycotoxins such as patulin, citrinin, and roquefortin C in in vitro condition by thin layer chromatography method. All tested strains of Penicillium species were able to produce at least one mycotoxin.
Collapse
|
46
|
Pons A, Mouakka N, Deliere L, Crachereau JC, Davidou L, Sauris P, Guilbault P, Darriet P. Impact of Plasmopara viticola infection of Merlot and Cabernet Sauvignon grapes on wine composition and flavor. Food Chem 2018; 239:102-110. [DOI: 10.1016/j.foodchem.2017.06.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/29/2017] [Accepted: 06/14/2017] [Indexed: 11/28/2022]
|
47
|
Coelho E, Genisheva Z, Oliveira JM, Teixeira JA, Domingues L. Vinegar production from fruit concentrates: effect on volatile composition and antioxidant activity. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:4112-4122. [PMID: 29085154 PMCID: PMC5643795 DOI: 10.1007/s13197-017-2783-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 11/26/2022]
Abstract
Vinegar stands as a highly appreciated fermented food product due to several functional properties and multiple applications. This work focuses on vinegar production from fruit wines derived from fruit concentrates, to attain a food product with nutritional added value. Four fruit vinegars (orange, mango, cherry and banana), were produced and characterized, with total acidities of 5.3 ± 0.3% for orange, 5.6 ± 0.2% for mango, 4.9 ± 0.4% for cherry and 5.4 ± 0.4% for banana. Acetification showed impact on aroma volatiles, mainly related to oxidative reactions. Minor volatiles associated with varietal aroma were identified, monoterpenic alcohols in orange vinegar, esters in banana vinegar, C13-norisoprenoids in cherry vinegar and lactones in mango vinegar, indicating fruit vinegars differentiated sensory quality. Total antioxidant activity analysis by FRAP, revealed fruit vinegars potential to preserve and deliver fruit functional properties. Antioxidant activity of fruit vinegars, expressed as equivalents of Fe2SO4, was of 11.0 ± 1.67 mmol L-1 for orange, 4.8 ± 0.5 mmol L-1 for mango, 18.6 ± 2.33 mmol L-1 for cherry and 3.7 ± 0.3 mmol L-1 for banana. Therefore, fruit vinegars presented antioxidant activity close to the reported for the corresponding fruit, and between 8 and 40 folds higher than the one found in commercial cider vinegar, demonstrating the high functional potential of these novel vinegar products.
Collapse
Affiliation(s)
- Eduardo Coelho
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Zlatina Genisheva
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - José Maria Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
48
|
Comparative Characterization of Aroma Compounds in Merlot Wine by LiChrolut-EN-Based Aroma Extract Dilution Analysis and Odor Activity Value. CHEMOSENS PERCEPT 2017. [DOI: 10.1007/s12078-017-9236-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Lopez Pinar A, Rauhut D, Ruehl E, Buettner A. Quantification of the Changes in Potent Wine Odorants as Induced by Bunch Rot ( Botrytis cinerea) and Powdery Mildew ( Erysiphe necator). Front Chem 2017; 5:57. [PMID: 28824905 PMCID: PMC5540895 DOI: 10.3389/fchem.2017.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/17/2017] [Indexed: 11/13/2022] Open
Abstract
Fungal infections are detrimental for viticulture since they may reduce harvest yield and wine quality. This study aimed to characterize the effects of bunch rot and powdery mildew on wine aroma by quantification of representative aroma compounds using Stable Isotope Dilution Analysis (SIDA). For this purpose, samples affected to a high degree by each fungus were compared with a healthy sample in each case; to this aim, the respective samples were collected and processed applying identical conditions. Thereby, the effects of bunch rot were studied in three different grape varieties: White Riesling, Red Riesling and Gewürztraminer whereas the influence of powdery mildew was studied on the hybrid Gm 8622-3. Analyses revealed that both fungal diseases caused significant changes in the concentration of most target compounds. Thereby, the greatest effects were increases in the concentration of phenylacetic acid, acetic acid and γ-decalactone for both fungi and all grape varieties. Regarding other compounds, however, inconsistent effects of bunch rot were observed for the three varieties studied.
Collapse
Affiliation(s)
- Angela Lopez Pinar
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Doris Rauhut
- Department of Microbiology and Biochemistry, Hochschule Geisenheim UniversityGeisenheim, Germany
| | - Ernst Ruehl
- Department of Grapevine Breeding, Hochschule Geisenheim UniversityGeisenheim, Germany
| | - Andrea Buettner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
- Department Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVVFreising, Germany
| |
Collapse
|
50
|
Leyva Salas M, Mounier J, Valence F, Coton M, Thierry A, Coton E. Antifungal Microbial Agents for Food Biopreservation-A Review. Microorganisms 2017; 5:microorganisms5030037. [PMID: 28698479 PMCID: PMC5620628 DOI: 10.3390/microorganisms5030037] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 11/16/2022] Open
Abstract
Food spoilage is a major issue for the food industry, leading to food waste, substantial economic losses for manufacturers and consumers, and a negative impact on brand names. Among causes, fungal contamination can be encountered at various stages of the food chain (e.g., post-harvest, during processing or storage). Fungal development leads to food sensory defects varying from visual deterioration to noticeable odor, flavor, or texture changes but can also have negative health impacts via mycotoxin production by some molds. In order to avoid microbial spoilage and thus extend product shelf life, different treatments—including fungicides and chemical preservatives—are used. In parallel, public authorities encourage the food industry to limit the use of these chemical compounds and develop natural methods for food preservation. This is accompanied by a strong societal demand for ‘clean label’ food products, as consumers are looking for more natural, less severely processed and safer products. In this context, microbial agents corresponding to bioprotective cultures, fermentates, culture-free supernatant or purified molecules, exhibiting antifungal activities represent a growing interest as an alternative to chemical preservation. This review presents the main fungal spoilers encountered in food products, the antifungal microorganisms tested for food bioprotection, and their mechanisms of action. A focus is made in particular on the recent in situ studies and the constraints associated with the use of antifungal microbial agents for food biopreservation.
Collapse
Affiliation(s)
- Marcia Leyva Salas
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, 65 rue de Saint Brieuc, 35000 Rennes, France.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Florence Valence
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, 65 rue de Saint Brieuc, 35000 Rennes, France.
| | - Monika Coton
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Anne Thierry
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, 65 rue de Saint Brieuc, 35000 Rennes, France.
| | - Emmanuel Coton
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|