1
|
Liu Q, Liu Y, Liu T, Fan J, Xia Z, Zhou Y, Deng X. Expanding horizons of iminosugars as broad-spectrum anti-virals: mechanism, efficacy and novel developments. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:55. [PMID: 39325109 PMCID: PMC11427655 DOI: 10.1007/s13659-024-00477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Iminosugars, a class of polyhydroxylated cyclic alkaloids with intriguing properties, hold promising therapeutic potentials against a broad spectrum of enveloped viruses, including DENV, HCV, HIV, and influenza viruses. Mechanistically, iminosugars act as the competitive inhibitors of host endoplasmic reticular α-glucosidases I and II to disrupt the proper folding of viral nascent glycoproteins, which thereby exerts antiviral effects. Remarkably, the glycoproteins of many enveloped viruses are significantly more dependent on the calnexin pathway of the protein folding than most host glycoproteins. Therefore, extensive interests and efforts have been devoted to exploit iminosugars as broad-spectrum antiviral agents. This review provides the summary and insights into the recent advancements in the development of novel iminosugars as effective and selective antiviral agents against a variety of enveloped viruses, as well as the understandings of their antiviral mechanisms.
Collapse
Affiliation(s)
- Qiantong Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yanyun Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tingting Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Jinbao Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zanxian Xia
- School of Life Science, Central South University, Changsha, 410013, Hunan, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Wang GY, Yan DX, Rong RX, Shi BY, Lin GJ, Yin F, Wei WT, Li XL, Wang KR. Amphiphilic α-Peptoid-deoxynojirimycin Conjugate-based Multivalent Glycosidase Inhibitor for Hypoglycemic Effect and Fluorescence Imaging. J Med Chem 2024; 67:5945-5956. [PMID: 38504504 DOI: 10.1021/acs.jmedchem.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Multivalent glycosidase inhibitors based on 1-deoxynojirimycin derivatives against α-glucosidases have been rapidly developed. Nonetheless, the mechanism based on self-assembled multivalent glucosidase inhibitors in living systems needs to be further studied. It remains to be determined whether the self-assembly possesses sufficient stability to endure transit through the small intestine and subsequently bind to the glycosidases located therein. In this paper, two amphiphilic compounds, 1-deoxynojirimycin and α-peptoid conjugates (LP-4DNJ-3C and LP-4DNJ-6C), were designed. Their self-assembling behaviors, multivalent α-glucosidase inhibition effect, and fluorescence imaging on living organs were studied. LP-4DNJ-6C exhibited better multivalent α-glucosidase inhibition activities in vitro. Moreover, the self-assembly of LP-4DNJ-6C could effectively form a complex with Nile red. The complex showed fluorescence quenching effect upon binding with α-glucosidases and exhibited potent fluorescence imaging in the small intestine. This result suggests that a multivalent hypoglycemic effect achieved through self-assembly in the intestine is a viable approach, enabling the rational design of multivalent hypoglycemic drugs.
Collapse
Affiliation(s)
- Guang-Yuan Wang
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
- College of Chemical Engineering & Material, Hebei Key Laboratory of Heterocyclic Compounds, Handan Key Laboratory of Organic Small Molecule Materials, Handan University, Handan 056005, P. R. China
| | - Dong-Xiao Yan
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, P. R. China
| | - Rui-Xue Rong
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, P. R. China
| | - Bing-Ye Shi
- Affiliated Hospital of Hebei University, Hebei University, Baoding 071002, P. R. China
| | - Gao-Juan Lin
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
| | - Fangqian Yin
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
- College of Chemical Engineering & Material, Hebei Key Laboratory of Heterocyclic Compounds, Handan Key Laboratory of Organic Small Molecule Materials, Handan University, Handan 056005, P. R. China
| | - Wen-Tong Wei
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
| | - Xiao-Liu Li
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
| | - Ke-Rang Wang
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
3
|
Zhang Y, Miao R, Ma K, Zhang Y, Fang X, Wei J, Yin R, Zhao J, Tian J. Effects and Mechanistic Role of Mulberry Leaves in Treating Diabetes and its Complications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1711-1749. [PMID: 37646143 DOI: 10.1142/s0192415x23500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Diabetes mellitus (DM) has become a surge burden worldwide owing to its high prevalence and range of associated complications such as coronary artery disease, blindness, stroke, and renal failure. Accordingly, the treatment and management of DM have become a research hotspot. Mulberry leaves (Morus alba L.) have been used in Traditional Chinese Medicine for a long time, with the first record of its use published in Shennong Bencao Jing (Shennong's Classic of Materia Medica). Mulberry leaves (MLs) are considered highly valuable medicinal food homologs that contain polysaccharides, flavonoids, alkaloids, and other bioactive substances. Modern pharmacological studies have shown that MLs have multiple bioactive effects, including hypolipidemic, hypoglycemic, antioxidation, and anti-inflammatory properties, with the ability to protect islet [Formula: see text]-cells, alleviate insulin resistance, and regulate intestinal flora. However, the pharmacological mechanisms of MLs in DM have not been fully elucidated. In this review, we summarize the botanical characterization, traditional use, chemical constituents, pharmacokinetics, and toxicology of MLs, and highlight the mechanisms involved in treating DM and its complications. This review can provide a valuable reference for the further development and utilization of MLs in the prevention and treatment of DM.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun 130117, P. R. China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jingxue Zhao
- Development Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| |
Collapse
|
4
|
Parida IS, Takasu S, Nakagawa K. A comprehensive review on the production, pharmacokinetics and health benefits of mulberry leaf iminosugars: Main focus on 1-deoxynojirimycin, d-fagomine, and 2-O-ɑ-d-galactopyranosyl-DNJ. Crit Rev Food Sci Nutr 2021:1-29. [PMID: 34658276 DOI: 10.1080/10408398.2021.1989660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mulberry leaves are rich in biologically active compounds, including phenolics, polysaccharides, and alkaloids. Mulberry leaf iminosugars (MLIs; a type of polyhydroxylated alkaloids), in particular, have been gaining increasing attention due to their health-promoting effects, including anti-diabetic, anti-obesity, anti-hyperglycemic, anti-hypercholesterolemic, anti-inflammatory, and gut microbiota-modulatory activities. Knowledge regarding the in vivo bioavailability and bioactivity of MLIs are crucial to understand their role and function and human health. Therefore, this review is aimed to comprehensively summarize the existing studies on the oral pharmacokinetics and the physiological significance of selected MLIs (i.e.,1-deoxynojirimycin, d-fagomine, and 2-O-ɑ-d-galactopyranosyl-DNJ). Evidence have suggested that MLIs possess relatively good uptake and safety profiles, which support their prospective use for oral intake; the therapeutic potential of these compounds against metabolic and chronic disorders and the underlying mechanisms behind these effects have also been studied in in vitro and in vivo models. Also discussed are the biosynthetic pathways of MLIs in plants, as well as the agronomic and processing factors that affect their concentration in mulberry leaves-derived products.
Collapse
Affiliation(s)
| | - Soo Takasu
- Laboratory of Pharmaceutical Analytical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Wang H, Shen Y, Zhao L, Ye Y. 1-Deoxynojirimycin and its Derivatives: A Mini Review of the Literature. Curr Med Chem 2021; 28:628-643. [PMID: 31942844 DOI: 10.2174/0929867327666200114112728] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 12/22/2019] [Indexed: 11/22/2022]
Abstract
1-Deoxynojirimycin (1-DNJ) is a naturally occurring sugar analogue with unique bioactivities. It is found in mulberry leaves and silkworms, as well as in the metabolites of certain microorganisms, including Streptomyces and Bacillus. 1-DNJ is a potent α-glucosidase inhibitor and it possesses anti-hyperglycemic, anti-obese, anti-viral and anti-tumor properties. Some derivatives of 1-DNJ, like miglitol, miglustat and migalastat, were applied clinically to treat diseases such as diabetes and lysosomal storage disorders. The present review focused on the extraction, determination, pharmacokinetics and bioactivity of 1-DNJ, as well as the clinical application of 1-DNJ derivatives.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin Shen
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Amin AR, Kassab RB, Abdel Moneim AE, Amin HK. Comparison Among Garlic, Berberine, Resveratrol,Hibiscus sabdariffa, GenusZizyphus, Hesperidin, Red Beetroot,Catha edulis,Portulaca oleracea, and Mulberry Leaves in the Treatment of Hypertension and Type 2 DM: A Comprehensive Review. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20921623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus (DM) and hypertension are 2 of the most prevalent diseases with poor impact on health status worldwide. In most cases, they coexist with other metabolic disorders as well as cardiac, micro- and macrovascular complications. Many plants are known for their hypotensive, cardioprotective, and/or antidiabetic activities. Their active ingredients either identified and isolated or still utilized as herbal preparations of certain plant parts. The use of medicinal plants comprises the main basis for most of the traditional medicine (TM) systems and procedures. As conventional medicines seem insufficient to control such progressive diseases, herbal agents from TM could be used as adjuvant with good impact on disease control and progression as well as other concomitant health conditions. The aim of this study is to compare the efficacy of 10 different herbal medicines of botanical origin or herbal preparations in the management of hypertension and its cardiovascular complications and type 2 DM along with various coexisting health disorders. These herbal medicines are garlic, berberine, resveratrol, Hibiscus sabdariffa, Zizyphus ( oxyphylla, mucronate, jujube, rugosa), hesperidin, red beetroot, Catha edulis, mulberry leaves, and Portulaca oleracea.
Collapse
Affiliation(s)
- Amira R. Amin
- Cardiology and Oncology Section, Nasser Institute for Research and Treatment, Cairo, Egypt
| | - Rami B. Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hatem K. Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Egypt
| |
Collapse
|
7
|
Hong KQ, Fu XM, Yin H, Li ST, Chen T, Wang ZW. Advances in the Extraction, Purification and Detection of the Natural Product 1-Deoxynojirimycin. Crit Rev Anal Chem 2020; 51:246-257. [PMID: 31914794 DOI: 10.1080/10408347.2019.1711012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1-Deoxynojirimycin (1-DNJ), a polyhydroxylated alkaloid, is a highly selective and potent glycosidase inhibitor that has garnered great interest as a tool to study cellular recognition and as a potential therapeutic agent. The development of analytical methods for the quantification polyhydroxylated alkaloids in natural products requires a multifaceted approach. Many publications over the past five decades have described analytical methods for this compound. However, recently more advanced techniques have come to prominence for sample extraction, purification, detection, and identification. This review provides an updated, extensive overview of the available methods for the extraction, purification, identification or detection of 1-DNJ. The review highlights different strategies for the design of 1-DNJ detection methods, which we analyzed in light of recent detection data. Finally, we conclude with perspectives on possible strategies for increasing the efficiency of identification and quantification of 1-DNJ in the future.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiao-Meng Fu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Hao Yin
- Institute of Sericultural Sciences of Sichuan Province, Nanchong, China
| | - Shu-Ting Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhi-Wen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Qu Y, Wang L, Guo W. Screening and Identification of Antipyretic Components in the Postfrost Leaves of Morus alba Based on Multivariable and Continuous-Index Spectrum-Effect Correlation. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:8796276. [PMID: 31737405 PMCID: PMC6815998 DOI: 10.1155/2019/8796276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
The leaves of Morus alba (LMA) are crucial traditional Chinese medicine (TCM) of clearing heat. In ancient Chinese materia medica and the current Pharmacopoeia of the People's Republic of China, LMA are recorded to be harvested after frost for medicinal purpose. However, the reason and mechanism of this traditional usage have been still unknown so far. In this work, it was confirmed firstly that the antipyretic effect of LMA after frost was better than that of before frost significantly on feverish rats. Subsequently, the chemical profiles of LMA before and after frost were characterized by fingerprint, respectively. Then, the endemic peaks after frost and positive differential peaks were screened as the research object of spectrum-effect correlation by orthogonal signal correction partial least square discrimination (OPLS). Finally, a multivariable and continuous-index spectrum-effect correlation model coupled with OPLS was established. As a result, the antipyretic components of postfrost LMA were screened and identified as citric acid derivative and tryptophan which may be the synergistic material basis. The study can provide a scientific foundation for the enhancement of effects in the postfrost LMA. Moreover, the strategy of this research could provide a valuable reference for revealing the material basis of synergetic or antagonistic effects among other complex drug systems.
Collapse
Affiliation(s)
- Yongsheng Qu
- Shandong Academy of Chinese Medicine, 7 Yanzishanxi Street, Jinan 250014, China
| | - Liang Wang
- Shandong Academy of Chinese Medicine, 7 Yanzishanxi Street, Jinan 250014, China
| | - Wei Guo
- Shandong Academy of Chinese Medicine, 7 Yanzishanxi Street, Jinan 250014, China
| |
Collapse
|
9
|
Thakur K, Zhang YY, Mocan A, Zhang F, Zhang JG, Wei ZJ. 1-Deoxynojirimycin, its potential for management of non-communicable metabolic diseases. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Guo N, Jiang YW, Kou P, Liu ZM, Efferth T, Li YY, Fu YJ. Application of integrative cloud point extraction and concentration for the analysis of polyphenols and alkaloids in mulberry leaves. J Pharm Biomed Anal 2019; 167:132-139. [DOI: 10.1016/j.jpba.2019.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 11/30/2022]
|
11
|
Wang R, Li Y, Mu W, Li Z, Sun J, Wang B, Zhong Z, Luo X, Xie C, Huang Y. Mulberry leaf extract reduces the glycemic indexes of four common dietary carbohydrates. Medicine (Baltimore) 2018; 97:e11996. [PMID: 30142838 PMCID: PMC6113008 DOI: 10.1097/md.0000000000011996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/29/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND 1-Deoxynojirimycin (DNJ), a component of mulberry leaf extract (MLE), reduces postprandial hyperglycemia by inhibiting intestinal a-glycosidase. The aim of this exploratory study was to investigate the effects of MLE on the glycemic indexes (GI) of common dietary carbohydrates. METHODS This single-center, randomized, open-label, 7-cycle self-controlled crossover study enrolled 15 healthy volunteers at the National Drug Clinical Trial Institution, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine (June 2014 to December 2014). The participants were randomized to receive glucose (3 occasions), glucose+MLE, sucrose+MLE, maltose+MLE, and maltodextrin+MLE orally during 7 visits (every 3 days). Blood glucose level was tested at 15 minutes before and at 15, 30, 45, 60, 90, and 120 minutes after carbohydrate intake. The GI of each carbohydrate relative to glucose (GI = 100) was calculated using the incremental area under the curve method. Safety was assessed at each visit. RESULTS All participants completed the protocol. After carbohydrate ingestion, blood glucose level peaked at 30 minutes (glucose, glucose+MLE, sucrose+MLE, and maltose+MLE) or 45 minutes (maltodextrin+MLE) before returning to preprandial levels at 120 minutes. At 30 minutes, the change in blood glucose level was lower for sucrose+MLE, maltose+MLE, and maltodextrin+MLE than for glucose or glucose+MLE (P < .05). GI was lowest for sucrose+MLE (43.22 ± 17.47) and maltose+MLE (49.23 ± 22.39), intermediate for maltodextrin+MLE (75.90 ± 26.01), and higher for glucose+MLE (91.88 ± 27.24). MLE reduced the GIs for maltose, sucrose, maltodextrin, and glucose by 53.11%, 33.51%, 31.00%, and 8.12%, respectively. MLE was well tolerated. CONCLUSIONS Coconsumption of MLE with sucrose, maltose, or maltodextrin can reduce the GI values of these carbohydrates. TRIAL REGISTRATION Chinese Clinical Trial Registry Platform, no. ChiCTR-IPR-15006484. Registered on May 28, 2015.
Collapse
Affiliation(s)
- Ruihua Wang
- Medical institution conducting clinical trials for human used drug, The 2nd Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
| | - Yanfen Li
- Medical institution conducting clinical trials for human used drug, The 2nd Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
| | - Wei Mu
- Medical institution conducting clinical trials for human used drug, The 2nd Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
| | - Ziqiang Li
- Medical institution conducting clinical trials for human used drug, The 2nd Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
| | - Jinxia Sun
- Medical institution conducting clinical trials for human used drug, The 2nd Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
| | - Baohe Wang
- Medical institution conducting clinical trials for human used drug, The 2nd Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
| | | | - Xiuzhen Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhong Huang
- Medical institution conducting clinical trials for human used drug, The 2nd Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
| |
Collapse
|
12
|
Wu H, Zeng W, Chen L, Yu B, Guo Y, Chen G, Liang Z. Integrated multi-spectroscopic and molecular docking techniques to probe the interaction mechanism between maltase and 1-deoxynojirimycin, an α-glucosidase inhibitor. Int J Biol Macromol 2018; 114:1194-1202. [DOI: 10.1016/j.ijbiomac.2018.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/16/2022]
|
13
|
Li Y, Zhang X, Liang C, Hu J, Yu Z. Safety evaluation of mulberry leaf extract: Acute, subacute toxicity and genotoxicity studies. Regul Toxicol Pharmacol 2018. [DOI: 10.1016/j.yrtph.2018.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Tchabo W, Ma Y, Kwaw E, Xiao L, Wu M, T. Apaliya M. Impact of extraction parameters and their optimization on the nutraceuticals and antioxidant properties of aqueous extract mulberry leaf. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1446025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- William Tchabo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P.R. China
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P.R. China
| | - Emmanuel Kwaw
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P.R. China
| | - Lulu Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P.R. China
| | - Meng Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P.R. China
| | - Maurice T. Apaliya
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
15
|
A UPLC–MS/MS method for simultaneous determination of 1-deoxynojirimycin and N-methyl-1-deoxynojirimycin in rat plasma and its application in pharmacokinetic and absolute bioavailability studies. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:205-210. [DOI: 10.1016/j.jchromb.2017.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/16/2017] [Accepted: 10/28/2017] [Indexed: 11/23/2022]
|
16
|
Pharmacokinetics, Tissue Distribution, and Elimination of Three Active Alkaloids in Rats after Oral Administration of the Effective Fraction of Alkaloids from Ramulus Mori, an Innovative Hypoglycemic Agent. Molecules 2017; 22:molecules22101616. [PMID: 28954438 PMCID: PMC6151740 DOI: 10.3390/molecules22101616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/10/2023] Open
Abstract
In this study, we systematically investigated the plasma pharmacokinetics, tissue distribution, and elimination of three active alkaloids after oral administration of the effective fraction of alkaloids from Ramulus Mori (SZ–A)—an innovative hypoglycemic agent—in rats. Moreover, the influences of other components in SZ–A on dynamic process of alkaloids were explored for the first time. The results showed that 1-deoxynojirimycin (DNJ), fagomine (FGM) and 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) exhibited nonlinear pharmacokinetics following oral administration of SZ–A (40–1000 mg/kg). The prolonged t1/2 and greater area under concentration-time curve (AUC) versus time (AUC0–t) of DNJ for SZ–A than for purified DNJ has been observed after both oral and intravenous administration. It was found that other components in SZ–A could enhance the absorption of DNJ through the intestinal barrier. The major distribution tissues of DNJ, FGM, and DAB were the gastrointestinal tract, liver, and kidney. Three alkaloids were mainly excreted into urine and feces, but less into bile. Interestingly, the excess excretion of FGM was revealed to be partly due to the biotransformation of other components in SZ–A via gut microbiota. These information provide a rational basis for the use of SZ–A in clinical practice.
Collapse
|
17
|
Hu XQ, Thakur K, Chen GH, Hu F, Zhang JG, Zhang HB, Wei ZJ. Metabolic Effect of 1-Deoxynojirimycin from Mulberry Leaves on db/db Diabetic Mice Using Liquid Chromatography-Mass Spectrometry Based Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4658-4667. [PMID: 28541040 DOI: 10.1021/acs.jafc.7b01766] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metabolomics was applied to the liquid chromatography-mass spectrometry urinary metabolic profile of type 2 diabetes (T2DM) mice treated with mulberry 1-deoxynojirimycin (DNJ). The serum biochemical indicators related to T2DM like blood glucose, insulin, triglyceride, total cholesterol, nitrogen, malondialdehyde, and creatinine decreased significantly in the treated group. The histopathological changes in liver cells were marked by deformations and disruptions in central area of nuclei in DM mice, whereas DNJ treatment recovered regular liver cells with normal nuclei. Most of the metabolites of T2DM were significantly different from healthy controls in the bulk data generated. The level of 16 metabolites showed that the diabetic group was closer to the healthy group as the DNJ treatment time prolonged. Moreover, DNJ inhibited the activity of glucosidase on glucose, lipid, and amino acid metabolism. Our results showed the mechanism of DNJ treatment of T2DM and could fetch deep insights into the potent metabolite markers of the applied antidiabetic interventions.
Collapse
Affiliation(s)
| | | | - Gui-Hai Chen
- Department of Neurology, The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu , Hefei 238000, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Amézqueta S, Ramos-Romero S, Martínez-Guimet C, Moreno A, Hereu M, Torres JL. Fate of d-Fagomine after Oral Administration to Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4414-4420. [PMID: 28489364 DOI: 10.1021/acs.jafc.7b01026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
d-Fagomine is an iminosugar found in buckwheat that is capable of inhibiting the adhesion of potentially pathogenic bacteria to epithelial mucosa and reducing the postprandial blood glucose concentration. This paper evaluates the excretion and metabolism of orally administered d-fagomine in rats and compares outcomes with the fate of 1-deoxynojirimycin. d-Fagomine and 1-deoxynojirimycin show similar absorption and excretion kinetics. d-Fagomine is partly absorbed (41-84%, dose of 2 mg/kg of body weight) and excreted in urine within 8 h, while the non-absorbed fraction is cleared in feces within 24 h. d-Fagomine is partially methylated (about 10% in urine and 3% in feces). The concentration of d-fagomine in urine from 1 to 6 h after administration is higher than 10 mg/L, the concentration that inhibits adhesion of Escherichia coli. Orally administered d-fagomine is partially absorbed and then rapidly excreted in urine, where it reaches a concentration that may be protective against urinary tract infections.
Collapse
Affiliation(s)
- Susana Amézqueta
- Departament d'Enginyeria Química i Química Analítica and Institut de Biomedicina (IBUB), Universitat de Barcelona , Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Sara Ramos-Romero
- Institute of Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Carolina Martínez-Guimet
- Institute of Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Albert Moreno
- Institute of Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Mercè Hereu
- Institute of Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Josep Lluís Torres
- Institute of Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
19
|
Sun Z, Yuan S, Zhao H, Wang Z, Liu Z. Preparation and evaluation of 1-deoxynojirimycin sustained-release pellets vs conventional immediate-release tablets. J Microencapsul 2017; 34:293-298. [DOI: 10.1080/02652048.2017.1321694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhaoying Sun
- Northeast Forestry University, Harbin, China
- Harbin Institute of Technology, Harbin, China
| | - Shujie Yuan
- Harbin Institute of Technology, Harbin, China
| | - Huanan Zhao
- Harbin Pharmaceutical Group R and D Center, Harbin, China
| | | | - Zhiming Liu
- Northeast Forestry University, Harbin, China
| |
Collapse
|
20
|
Gao K, Zheng C, Wang T, Zhao H, Wang J, Wang Z, Zhai X, Jia Z, Chen J, Zhou Y, Wang W. 1-Deoxynojirimycin: Occurrence, Extraction, Chemistry, Oral Pharmacokinetics, Biological Activities and In Silico Target Fishing. Molecules 2016; 21:E1600. [PMID: 27886092 PMCID: PMC6273535 DOI: 10.3390/molecules21111600] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022] Open
Abstract
1-Deoxynojirimycin (DNJ, C₆H13NO₄, 163.17 g/mol), an alkaloid azasugar or iminosugar, is a biologically active natural compound that exists in mulberry leaves and Commelina communis (dayflower) as well as from several bacterial strains such as Bacillus and Streptomyces species. Deoxynojirimycin possesses antihyperglycemic, anti-obesity, and antiviral features. Therefore, the aim of this detailed review article is to summarize the existing knowledge on occurrence, extraction, purification, determination, chemistry, and bioactivities of DNJ, so that researchers may use it to explore future perspectives of research on DNJ. Moreover, possible molecular targets of DNJ will also be investigated using suitable in silico approach.
Collapse
Affiliation(s)
- Kuo Gao
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Chenglong Zheng
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
- Beijing Gulou Hospital of Traditional Chinese Medicine, 13 DouFuChi Hutong, Dongcheng District, Beijing 100009, China.
| | - Tong Wang
- Beijing Gulou Hospital of Traditional Chinese Medicine, 13 DouFuChi Hutong, Dongcheng District, Beijing 100009, China.
| | - Huihui Zhao
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Juan Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Zhiyong Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Xing Zhai
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Zijun Jia
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Yingwu Zhou
- Beijing Gulou Hospital of Traditional Chinese Medicine, 13 DouFuChi Hutong, Dongcheng District, Beijing 100009, China.
| | - Wei Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| |
Collapse
|
21
|
Marx TK, Glávits R, Endres JR, Palmer PA, Clewell AE, Murbach TS, Hirka G, Pasics I. A 28-Day Repeated Dose Toxicological Study of an Aqueous Extract of Morus Alba L. Int J Toxicol 2016; 35:683-691. [PMID: 27733446 DOI: 10.1177/1091581816670597] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Morus alba L. (white mulberry) leaves are one of the oldest recognized traditional Chinese medicines. More recently, M alba leaves and their constituents, particularly iminosugars (or azasugars), have garnered attention for their ability to maintain normal blood glucose concentrations, an effect identified in both animal studies and human clinical trials. Reducose (Phynova Group Limited) is a commercial water-soluble extract of M alba leaves standardized to 5% 1-deoxynojirimycin (DNJ), an iminosugar with α-glucosidase inhibition properties. Although there is an extensive history of consumption of M alba leaves by humans and animals worldwide, suggesting that the leaves and their extracts have a relatively good safety profile, we are unaware of safety assessments on an extract containing a higher amount of DNJ than that occurs naturally. The current 28-day repeated dose oral toxicity study in rats, conducted according to Organisation for Economic Co-operation and Development guidelines, was carried out to assess the safety of Reducose. Male and female Hsd.Han Wistar rats (4 groups of 10 animals/sex) were administered Reducose via gavage at doses of 0, 1,000, 2,000 and 4,000 mg/kg body weight (bw)/d. No treatment-related mortality or adverse effects (per clinical observations, body weight/weight gain, food consumption, ophthalmoscopy, clinical pathology, gross pathology, organ weights, or histopathology) were observed, and no target organs were identified. The no observed adverse effect level was determined to be 4,000 mg/kg bw/d for both male and female rats, the highest dose tested.
Collapse
|
22
|
Amézqueta S, Torres J. Advances in the analysis of iminocyclitols: Methods, sources and bioavailability. Talanta 2016; 151:157-171. [DOI: 10.1016/j.talanta.2016.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
|
23
|
Park SY, Jin BR, Lee YR, Kim YJ, Park JB, Jeon YH, Choi SW, Kwon O. Postprandial hypoglycemic effects of mulberry twig and root bark in vivo and in vitro. ACTA ACUST UNITED AC 2016. [DOI: 10.4163/jnh.2016.49.1.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Soo Yeon Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Bo Ra Jin
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yu Rim Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - You Jin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Jeong Bin Park
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Korea
| | - Young Hee Jeon
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyungsan 38430, Korea
| | - Sang Won Choi
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyungsan 38430, Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
24
|
Yang S, Wang B, Xia X, Li X, Wang R, Sheng L, Li D, Liu Y, Li Y. Simultaneous quantification of three active alkaloids from a traditional Chinese medicine Ramulus Mori (Sangzhi) in rat plasma using liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2015; 109:177-83. [DOI: 10.1016/j.jpba.2015.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/22/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
|
25
|
Lee JS, Kim YR, Park JM, Ha SJ, Kim YE, Baek NI, Hong EK. Mulberry fruit extract protects pancreatic β-cells against hydrogen peroxide-induced apoptosis via antioxidative activity. Molecules 2014; 19:8904-15. [PMID: 24972274 PMCID: PMC6270680 DOI: 10.3390/molecules19078904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/07/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
Among the many environmental stresses, excessive production of reactive oxygen species (ROS) and the ensuring oxidative stress are known to cause significant cellular damage. This has clinical implications in the onset of type 1 diabetes, which is triggered by the destruction of pancreatic β-cells and is associated with oxidative stress. In this study, we investigated the protective and antioxidative effects of mulberry extract (ME) in insulin-producing pancreatic β-cells. We found that ME protects pancreatic β-cells against hydrogen peroxide (H2O2)-induced oxidative stress and the associated apoptotic cell death. ME treatment significantly reduced the levels of H2O2-induced 2-diphenyl-1-picrylhydrazyl (DPPH) radicals, and lipid peroxidation and intracellular ROS accumulation. In addition, ME inhibited DNA condensation and/or fragmentation induced by H2O2. These results suggest that ME protects pancreatic β-cells against hydrogen peroxide-induced oxidative stress.
Collapse
Affiliation(s)
- Jong Seok Lee
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon 200701, Korea.
| | - Young Rae Kim
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon 200701, Korea.
| | - Jun Myoung Park
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon 200701, Korea.
| | - Suk-Jin Ha
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon 200701, Korea.
| | - Young Eon Kim
- Korea Food Research Institute, Seongnam 463746, Korea.
| | - Nam In Baek
- Department of Oriental Medicinal Materials and Processing, Kyung Hee University, Youngin 446701, Korea.
| | - Eock Kee Hong
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon 200701, Korea.
| |
Collapse
|
26
|
Do HJ, Lee SM, Kim YS, Shin MJ. Effect of 1-deoxynojirimycin on cholesterol efflux through ABCA1-LXRα pathway in 3T3-L1 adipocytes. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
27
|
Xiao BX, Wang Q, Fan LQ, Kong LT, Guo SR, Chang Q. Pharmacokinetic mechanism of enhancement by Radix Pueraria flavonoids on the hyperglycemic effects of Cortex Mori extract in rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:846-851. [PMID: 24333478 DOI: 10.1016/j.jep.2013.11.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/12/2013] [Accepted: 11/21/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus, characterized by abnormal blood glucose evaluation, is a serious chronic disease. In the treatment of the disease, α-glycosidase inhibitors play an important role for controlling the postprandial blood glucose level. Cortex Mori, a traditional Chinese herbal medicine, has a long history of use for the treatment of headaches, cough, edema and diabetes. Modern pharmacological studies have shown that the herb has beneficial effects on the suppression of postprandial blood glucose levels by inhibiting α-glycosidase activity in the small intestine. 1-Deoxynojirimycin (DNJ), the main active ingredient of this herb, is recognized as a potent α-glycosidase inhibitor. Our previous studies have shown that the hypoglycemic effect of Cortex Mori extract (CME) was significantly improved when giving CME in combination with Radix Pueraria flavonoids (RPF). In the present study, the pharmacokinetics and intestinal permeability of DNJ were comparatively investigated in rats after being given orally or by intestinal perfusion with CME alone or in CME-RPF pairs, to explore the mechanism of this synergistic effect. MATERIALS AND METHODS The role of RPF on the plasma and urine concentrations of DNJ from CME orally administered was investigated. Four groups of rats received a single oral dose of either CME or CME-RPF, at DNJ equivalent doses of 20 and 40mg/kg, respectively. After dosing, plasma and urine were collected and assayed by LC/MS/MS. In addition, another two groups of rats were used for small intestinal perfusion with CME or CME-RPF at DNJ concentration of 10µM. RESULTS Compared to the data when dosing with CME alone, the Cmax of DNJ were decreased from 5.78 to 2.94µg/ml (p<0.05) and 10.66 to 5.35µg/ml (p<0.01); Tmax were delayed from 0.40 to 0.55h and 0.35 to 0.50h (p<0.05); and MRT were significantly prolonged from 1.14 to 1.72h (p<0.05) and 0.95 to 1.62h (p<0.01), after dosing with CME-RPF at DNJ doses of 20 and 40mg/kg, respectively. In addition, the urinary recovery of DNJ over the first 4h after dosing significantly decreased from 48.76% to 33.86%. Effective permeability (Peff) of DNJ was decreased from 7.53×10(-3) to 3.09×10(-3)cm/s (p<0.05) when RPF was added to CME, when it was evaluated using the rat intestinal perfusion model. CONCLUSIONS All the above results demonstrate that RPF was able to suspend and delay the absorption of DNJ, but did not affect the total amount of DNJ in the body. The resulting higher concentration of DNJ in the small intestine produced a relatively stronger effect of depressing the elevation of the postprandial blood glucose level. These findings support the important role of RPF in the application of CME on blood glucose control.
Collapse
Affiliation(s)
- Bing-Xin Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Qian Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Li-Qing Fan
- Beijing Peking University, WBL Biotech Co. Ltd., Beijing 100080, PR China
| | - Ling-Ti Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Shu-Ren Guo
- Beijing Peking University, WBL Biotech Co. Ltd., Beijing 100080, PR China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
28
|
Nam H, Jung H, Karuppasamy S, Park YS, Cho YS, Lee JY, Seong SI, Suh JG. Anti-diabetic effect of the soybean extract fermented by Bacillus subtilis MORI in db/db mice. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0222-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Vichasilp C, Nakagawa K, Sookwong P, Higuchi O, Kimura F, Miyazawa T. A novel gelatin crosslinking method retards release of mulberry 1-deoxynojirimycin providing a prolonged hypoglycaemic effect. Food Chem 2012; 134:1823-30. [DOI: 10.1016/j.foodchem.2012.03.086] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 11/26/2022]
|
30
|
Wang HJ, Chiang BH. Anti-diabetic effect of a traditional Chinese medicine formula. Food Funct 2012; 3:1161-9. [DOI: 10.1039/c2fo30139c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Kwon HJ, Chung JY, Kim JY, Kwon O. Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: in vivo and in vitro studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:3014-3019. [PMID: 21370820 DOI: 10.1021/jf103463f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Carbohydrate digestion by α-glucosidase and subsequent glucose uptake at the brush border are critical for postprandial blood glucose control. Any specific inhibitors are useful as hyperglycemia modulating agents. In this study, it was postulated that an array of active components in mulberry leaf extract (MLE) may provide higher potency in inhibiting intestinal glucose absorption compared to the single component 1-deoxynojirimycin (DNJ), which is recognized as a promising inhibitor of intestinal glucose absorption. Both MLE and DNJ were active in inhibiting α-glucosidase. However, in Caco-2 cells, only MLE showed significant inhibition of 2-deoxyglucose uptake, whereas DNJ was ineffective. For glucose loading, co-administration of MLE resulted in potent inhibitions of glucose responses compared to those by DNJ in Sprague Dawley (SD) rats, but this was not found for maltose loading. These novel findings add evidence that the unabsorbed phytochemicals in MLE compete with glucose for intestinal glucose transporters, but DNJ itself does not. We also evaluated the timing of MLE consumption. By administering MLE for 30 min before glucose loading, the incremental area under the curve (IAUC) was significantly lowered in the rats, as compared to a simultaneously administered group. Similarly, cellular glucose uptake was significantly reduced in Caco-2 cells following pretreatment.
Collapse
Affiliation(s)
- Hye Jin Kwon
- Department of Nutritional Science and Food Management, Ewha Women's University, 11-1 Daehyeon-dong, Seodeamun-gu, Seoul 120-750, Korea
| | | | | | | |
Collapse
|