1
|
López-Cabeza R, Cox L, Gámiz B, Galán-Pérez JA, Celis R. Adsorption of sulfamethoxazole and ethofumesate in biochar- and organoclay-amended soil: Changes with adsorbent aging in the laboratory and in the field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173501. [PMID: 38797398 DOI: 10.1016/j.scitotenv.2024.173501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Biochars and organoclays have been proposed as efficient adsorbents to reduce the mobility of agrochemicals in soils. However, following their application to soils, these adsorbents undergo changes in their physicochemical properties over time due to their interaction with soil components. In this study, the adsorption capacity of a commercial biochar and a commercial organoclay for the antibiotic sulfamethoxazole (SFMX) and the pesticide ethofumesate (ETFM) was evaluated over aging periods of 3 months in the laboratory and 1 year in the field, subsequent to their application to a Mediterranean soil. The results showed that the adsorption of SFMX and ETFM in the soil amended with the adsorbents was greater than in the unamended soil, but for both chemicals, adsorption decreased with aging of the adsorbents in the soil. Characterization of the adsorbents before and after aging revealed physical blocking of adsorption sites by soil components. The loss of adsorption capacity of the adsorbents upon aging led to higher leaching of SFMX and ETFM in the soil containing field-aged adsorbents, although leaching remained lower than in unamended soil. Our findings reveal that, under the Mediterranean environment studied, the efficacy of the studied materials as adsorbents is maintained to a considerable extent for at least one year after their field application, which would have positive implications in their use for attenuating the dispersion of agricultural contaminants in the environment.
Collapse
Affiliation(s)
- Rocío López-Cabeza
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain.
| | - Lucía Cox
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Beatriz Gámiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain; Departamento de Química Inorgánica, Instituto de Química para la Energía y Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, 14014 Córdoba, Spain
| | - Jose Antonio Galán-Pérez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain; Environmental Sustainability and Health Institute, Technological University of Dublin, Greenway Hub, Grangegorman, Dublin, Ireland
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| |
Collapse
|
2
|
Facenda G, Celis R, Gámiz B, López-Cabeza R. An enantioselective study of the behavior of the herbicide ethofumesate in agricultural soils: Impact of the addition of organoclays and biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115870. [PMID: 38159340 DOI: 10.1016/j.ecoenv.2023.115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Chiral pesticides that are still commercialized and incorporated into the environment as racemic mixtures of enantiomers require evaluation of the enantioselectivity of their biological activity and environmental fate processes for a better prediction of their field efficacy and environmental risks. In this work, we successfully separated the enantiomers of the chiral herbicide ethofumesate (ETFM), determined their absolute configuration, and characterized their herbicidal activity as well as their adsorption, degradation, enantiomerization, and leaching in Mediterranean agricultural soils. While the herbicidal activity of R-ethofumesate to the sensitive species Portulaca grandiflora was greater than that of S-ethofumesate, the adsorption, degradation, and leaching of the herbicide showed negligible enantioselectivity and enantiomer interconversion did not occur in soils. The adsorption of both enantiomers showed a positive correlation with the soil organic carbon content (r = 0.856, P = 0.015), and their degradation in soils occurred slowly (DT50 > 60 days) and at similar rates independent of their application as individual enantiomers or as a racemic mixture of enantiomers. The addition of three highly adsorptive materials to a scarcely adsorptive soil increased the adsorption of the enantiomers of ETFM and delayed their degradation without affecting the non-enantioselective character of the processes. As a result of their high adsorption capacity, the materials were highly effective in reducing the leaching of both enantiomers of ETFM through soil columns. The results of this work indicate that the application of single-enantiomer ETFM formulations, based on a higher herbicidal activity or a lower toxicity to non-target organisms of the formulated enantiomer, would reduce considerable exposure risks associated with incorporating into the environment the less favorable enantiomer, as this would show long persistence and high leaching potential in soils similar to its optical isomer.
Collapse
Affiliation(s)
- Gracia Facenda
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Beatriz Gámiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain; Departamento de Química Inorgánica, Instituto de Química para la Energía y Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, 14014 Córdoba, Spain
| | - Rocío López-Cabeza
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain.
| |
Collapse
|
3
|
Galán-Pérez JA, Gámiz B, Celis R. Soil modification with organic amendments and organo-clays: Effects on sorption, degradation, and bioactivity of the allelochemical scopoletin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114102. [PMID: 34800766 DOI: 10.1016/j.jenvman.2021.114102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
We assessed the effect of three organic amendments and two organo-clays on sorption, persistence, and phytotoxicity of scopoletin, an allelochemical compound with potential as bioherbicide, in a Mediterranean alkaline soil. The aim was to elucidate whether the phytotoxicity of scopoletin could be expressed better in amended than unamended soil. The three organic amendments were fresh solid olive-mill waste (OMW), composted solid olive-mill waste (OMWc), and biochar (BC) prepared from OMWc. The two organo-clays were a commercial organo-montmorillonite (Cloi10) and lab-synthesized oleate-modified hydrotalcite (HT-OLE). The amendments enhanced sorption of scopoletin by the soil consistently with their individual affinities for the allelochemical: Cloi10 ≫ OMW > BC > OMWc > HT-OLE. The soil persistence of scopoletin increased significantly because of the addition of Cloi10, OMW, and BC. This increase was attributed to a combination of sorption, which protected the allelochemical from rapid biodegradation, and microbial activity changes. Although the inhibitory effect produced by the amendments themselves obscured the phytotoxicity of scopoletin to Lactuca sativa L. in soil treated with OMW and Cloi10, applying scopoletin to BC-amended soil led to a marked reduction in root length and aerial biomass of the emerged seedlings even though BC alone did not negatively affect these parameters. This inhibitory effect of scopoletin in BC-amended soil was in contrast to the negligible effect exerted by the allelochemical when applied to unamended soil. The results show that soils treated with suitable amendments, such as BC, might provide a scenario in which the herbicidal properties of 7-hydroxycoumarins could be better expressed.
Collapse
Affiliation(s)
- José A Galán-Pérez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012, Seville, Spain
| | - Beatriz Gámiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012, Seville, Spain.
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012, Seville, Spain
| |
Collapse
|
4
|
Phuekphong AF, Imwiset KJ, Ogawa M. Designing nanoarchitecture for environmental remediation based on the clay minerals as building block. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122888. [PMID: 32937697 DOI: 10.1016/j.jhazmat.2020.122888] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Nanoarchitecture of hybrids materials based on clay minerals as nano building blocks for the environmental remediation is summarized with the emphasis on the utilization of layered clay minerals, especially smectite group of clay minerals, as nano building blocks for designing functional nanostructures for the adsorption of molecular contaminants from the environments. Smectites are well-known adsorbents of cationic contaminants, while surface modification of smectites with organoammonium ions has given hydrophobic and microporous characters to uptake nonionic organic contaminants from environments. Not only on the designed interactions between adsorbent-adsorbate for efficient and higher capacity adsorption, the states of the adsorbed nonionic organic compounds have been altered and varied by the modification of smectites as shown by the controlled release and specific catalytic reactions. The organically modified clays are classified from the nanoarchitecture, and the functions derived from the nanoarchitectures are discussed based on the structure-property relationship.
Collapse
Affiliation(s)
- Alisa Fern Phuekphong
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Kamonnart Jaa Imwiset
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
5
|
Real M, Gámiz B, López-Cabeza R, Celis R. Sorption, persistence, and leaching of the allelochemical umbelliferone in soils treated with nanoengineered sorbents. Sci Rep 2019; 9:9764. [PMID: 31278287 PMCID: PMC6611869 DOI: 10.1038/s41598-019-46031-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
Coumarins represent an important family of allelochemicals with fungicidal, bactericidal, insecticidal, nematicidal, and herbicidal properties. Like for other allelochemicals, the short persistence of coumarins in soils can reduce their biological activity and hamper their application as environmentally friendly agrochemicals. We evaluated the sorption of the coumarin umbelliferone by eight soils and six sorbent materials, and then selected two nanoengineered sorbents, hexadecyltrimethylammonium-modified Arizona montmorillonite (SA-HDTMA) and olive-mill waste biochar (BC), to assess the effect of their addition to two distinct soils on umbelliferone sorption, persistence, and leaching. Umbelliferone was sorbed to a greater extent by the acid soils (A1-A2, Kd > 4.0 L kg−1) than by the alkaline soils (B1-B6, Kd < 0.5 L kg−1). The addition of BC and SA-HDTMA at a rate of 4% to alkaline soil (B2) increased the umbelliferone sorption Kd value from 0.3 to 1.6–2.0 L kg−1, whereas their addition to acid soil (A1) increased the Kd value from 4.6 to 12.2–19.0 L kg−1. Incubation experiments showed that BC had more impact than SA-HDTMA on the persistence of umbelliferone in the soils, increasing its half-life from 0.3-2.5 to 1.2–14.4 days, depending on the soil. Furthermore, the addition of BC to the top 0–5 cm of soil columns reduced leaching of umbelliferone and led to accumulation of umbelliferone residues in the top 0–5 cm soil layer. The addition of nanoengineered materials, such as organoclays and biochars, could thus be a suitable strategy to increase the persistence and reduce the mobility of coumarins in the rhizosphere with the aim of prolonging their biological activity.
Collapse
Affiliation(s)
- Miguel Real
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012, Sevilla, Spain
| | - Beatriz Gámiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012, Sevilla, Spain
| | - Rocío López-Cabeza
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012, Sevilla, Spain
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.
| |
Collapse
|
6
|
López-Cabeza R, Poiger T, Cornejo J, Celis R. A clay-based formulation of the herbicide imazaquin containing exclusively the biologically active enantiomer. PEST MANAGEMENT SCIENCE 2019; 75:1894-1901. [PMID: 30537433 DOI: 10.1002/ps.5296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Imazaquin is a chiral herbicide which displays high mobility in soils. Like other imidazolinones, imazaquin is available for use only as racemic mixture of its enantiomers. In this work, several clay materials were assayed as adsorbents of imazaquin, and then the most suitable material was selected to prepare a clay-based slow release imazaquin nanoformulation containing exclusively the biologically active R-enantiomer. Next, laboratory experiments were conducted to illustrate the benefits of using the clay-based R-imazaquin formulation over the free (non-supported) racemic herbicide or the free pure R-imazaquin enantiomer regarding its leaching behavior and bioefficacy. RESULTS The clay material selected as a carrier for R-imazaquin, hexadecyltrimethylammonium-saturated montmorillonite (SA-HDTMA), combined a high affinity for the herbicide and a high stability of the clay-herbicide adsorption complex. In a simulated scenario of high water input shortly after herbicide application, the clay-based R-imazaquin formulation displayed reduced leaching and increased bioefficacy compared to free racemic imazaquin and free R-imazaquin. CONCLUSION The new clay-R-imazaquin formulation prepared, besides avoiding the environmental impact caused by the application of the less active S-enantiomer, reduced the herbicide leaching losses and prolonged the herbicidal activity, by increasing the residence time of the herbicide in the topsoil. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rocío López-Cabeza
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
| | - Thomas Poiger
- Institute for Plant Production Sciences (IPS, Agroscope), Wädenswil, Switzerland
| | - Juan Cornejo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
| |
Collapse
|
7
|
Gámiz B, Facenda G, Celis R. Nanoengineered Sorbents To Increase the Persistence of the Allelochemical Carvone in the Rhizosphere. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:589-596. [PMID: 30562019 DOI: 10.1021/acs.jafc.8b05692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study investigates the changes in sorption/desorption, dissipation, and leaching of the two enantiomeric forms of the allelochemical carvone, R-carvone and S-carvone, after amending an agricultural soil sample with two nanoengineered sorbents: biochar (BC) and organoclay (OCl). The sorption of carvone enantiomers was nonenantioselective and similarly improved by the addition of OCl and BC to the soil. However, OCl-amended soil showed reversible sorption, whereas BC-amended soil displayed sorption-desorption hysteresis. Dissipation of carvone enantiomers was enantioselective. Both amendments increased the half-life of the enantiomers in the soil. This effect was more pronounced for BC-amended soil and for S-carvone. Leaching of R- and S-carvone through soil columns was scarce in unamended soil (<7%), due to their rapid degradation during leaching, and null for OCl- and BC-amended soil, for which much of the applied R- and S-carvone remained in the top 0-5 cm of the amended soil layer. Addition of biochars and organoclays could help increase the persistence of carvone enantiomers in the rhizosphere, which may favor their use as residual pest-management substances.
Collapse
Affiliation(s)
- Beatriz Gámiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes 10 , 41012 Sevilla , Spain
| | - Gracia Facenda
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes 10 , 41012 Sevilla , Spain
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes 10 , 41012 Sevilla , Spain
| |
Collapse
|
8
|
Gámiz B, Cox L, Hermosín MC, Spokas K, Celis R. Assessing the Effect of Organoclays and Biochar on the Fate of Abscisic Acid in Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:29-38. [PMID: 27959547 DOI: 10.1021/acs.jafc.6b03668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The potential use of allelopathic and signaling compounds as environmentally friendly agrochemicals is a subject of increasing interest, but the fate of these compounds once they reach the soil environment is poorly understood. This work studied how the sorption, persistence, and leaching of the two enantiomers of the phytohormone abscisic acid (ABA) in agricultural soil was affected by the amendments of two organoclays (SA-HDTMA and Cloi10) and a biochar derived from apple wood (BC). In conventional 24-h batch sorption experiments, higher affinity toward ABA enantiomers was displayed by SA-HDTMA followed by Cloi10 and then BC. Desorption could be ascertained only in BC, where ABA enantiomers presented difficulties to be desorbed. Dissipation of ABA in the soil was enantioselective with S-ABA being degraded more quickly than R-ABA, and followed the order unamended > Cloi10-amended > BC-amended > SA-HDTMA-amended soil for both enantiomers. Sorption determined during the incubation experiment indicated some loss of sorption capacity with time in organoclay-amended soil and increasing sorption in BC-amended soil, suggesting surface sorption mechanisms for organoclays and slow (potentially pore filling) kinetics in BC-amended soil. The leaching of ABA enantiomers was delayed after amendment of soil to an extent that depended on the amendment sorption capacity, and it was almost completely suppressed by addition of BC due to its irreversible sorption. Organoclays and BC affected differently the final behavior and enantioselectivity of ABA in soil as a consequence of dissimilar sorption capacities and alterations in sorption with time, which will affect the plant and microbial availability of endogenous and exogenous ABA in the rhizosphere.
Collapse
Affiliation(s)
- Beatriz Gámiz
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Lucía Cox
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - M Carmen Hermosín
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Kurt Spokas
- Agricultural Research Service, U.S. Department of Agriculture , 439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, Minnesota 55108, United States
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| |
Collapse
|
9
|
Li M, Zhao Z, Wu X, Zhou W, Zhu L. Impact of mineral components in cow manure biochars on the adsorption and competitive adsorption of oxytetracycline and carbaryl. RSC Adv 2017. [DOI: 10.1039/c6ra26534k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Knowledge about the impact of mineral component in biochar on the sorption of OTC and CBL is limited and need be systematically studied. The mineral component of cow manure biochar showed different effects on the sorption of OTC and CBL.
Collapse
Affiliation(s)
- Mengwei Li
- Department of Environmental Science
- Zhejiang University
- Hangzhou
- China
| | - Zhendong Zhao
- Department of Environmental Science
- Zhejiang University
- Hangzhou
- China
| | - Xiaodan Wu
- Center of Analysis and Measurement
- Zhejiang University
- Hangzhou 310058
- China
| | - Wenjun Zhou
- Department of Environmental Science
- Zhejiang University
- Hangzhou
- China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control
| | - Lizhong Zhu
- Department of Environmental Science
- Zhejiang University
- Hangzhou
- China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control
| |
Collapse
|
10
|
Jiang L, Lin JL, Jia LX, Liu Y, Pan B, Yang Y, Lin Y. Effects of two different organic amendments addition to soil on sorption-desorption, leaching, bioavailability of penconazole and the growth of wheat (Triticum aestivum L.). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 167:130-138. [PMID: 26683765 DOI: 10.1016/j.jenvman.2015.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of sugarcane bagasse compost (SBC) and chicken manure compost (CMC) on the sorption-desorption, leaching and bioavailability of the fungicide penconazole in soil in a laboratory setting. The autoclave-treated SBC or CMC was applied at 2.5% and 5.0% (w/w). Results of batch equilibrium experiments exhibited that the sorption capacity of soils for penconazole was significantly promoted by the addition of SBC or CMC, whereas desorption of penconazole was drastically reduced; the influence was enhanced as the amount of organic amendments increased. Results of column leaching experiment indicated that the addition of SBC or CMC significantly limited the vertical movement of penconazole through the soil columns, considerably decreasing the content of penconazole in the soil leachate. Furthermore, results of bioavailability experiments demonstrated that the addition of organic amendments (SBC or CMC) remarkably influenced the uptake and translocation of penconazole, decreased penconazole accumulation in the plant tissues and increased the plant elongation and biomass. These data revealed important changes in pesticide behavior under SBC or CMC application, which should be useful for developing strategies to protect groundwater and crops from contamination from the residual pesticides in soil.
Collapse
Affiliation(s)
- Lei Jiang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou, 571737, China
| | - Jing Ling Lin
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Lin Xian Jia
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ying Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Bo Pan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yi Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yong Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou, 571737, China.
| |
Collapse
|
11
|
Gámiz B, Pignatello JJ, Cox L, Hermosín MC, Celis R. Environmental fate of the fungicide metalaxyl in soil amended with composted olive-mill waste and its biochar: An enantioselective study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:776-783. [PMID: 26433334 DOI: 10.1016/j.scitotenv.2015.09.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/10/2015] [Accepted: 09/18/2015] [Indexed: 06/05/2023]
Abstract
A large number of pesticides are chiral and reach the environment as mixtures of optical isomers or enantiomers. Agricultural practices can affect differently the environmental fate of the individual enantiomers. We investigated how amending an agricultural soil with composted olive-mill waste (OMWc) or its biochar (BC) at 2% (w:w) affected the sorption, degradation, and leaching of each of the two enantiomers of the chiral fungicide metalaxyl. Sorption of metalaxyl enantiomers was higher on BC (Kd ≈ 145 L kg(-1)) than on OMWc (Kd ≈ 22 L kg(-1)) and was not enantioselective in either case, and followed the order BC-amended>OMWc-amended>unamended soil. Both enantiomers showed greater resistance to desorption from BC-amended soil compared to unamended and OMWc-amended soil. Dissipation studies revealed that the degradation of metalaxyl was more enantioselective (R>S) in unamended and OMWc-amended soil than in BC-amended soil. The leaching of both S- and R-metalaxyl from soil columns was almost completely suppressed after amending the soil with BC and metalaxyl residues remaining in the soil columns were more racemic than those in soil column leachates. Our findings show that addition of BC affected the final enantioselective behavior of metalaxyl in soil indirectly by reducing its bioavailability through sorption, and to a greater extent than OMWc. BC showed high sorption capacity to remove metalaxyl enantiomers from water, immobilize metalaxyl enantiomers in soil, and mitigate the groundwater contamination problems particularly associated with the high leaching potential of the more persistent enantiomer.
Collapse
Affiliation(s)
- Beatriz Gámiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, P.O. Box 1052, 41080 Sevilla, Spain.
| | - Joseph J Pignatello
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington St., P.O. Box 1106, New Haven, CT 06504-1106, United States
| | - Lucía Cox
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, P.O. Box 1052, 41080 Sevilla, Spain
| | - María C Hermosín
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, P.O. Box 1052, 41080 Sevilla, Spain
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, P.O. Box 1052, 41080 Sevilla, Spain
| |
Collapse
|
12
|
Xing Y, Chen X, Zhuang J, Chen X. What happens when pharmaceuticals meet colloids. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:2100-2114. [PMID: 26427370 DOI: 10.1007/s10646-015-1557-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems).
Collapse
Affiliation(s)
- Yingna Xing
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jie Zhuang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Xin Chen
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
13
|
Chevillard A, Angellier-Coussy H, Guillard V, Bertrand C, Gontard N, Gastaldi E. Biodegradable herbicide delivery systems with slow diffusion in soil and UV protection properties. PEST MANAGEMENT SCIENCE 2014; 70:1697-1705. [PMID: 24323837 DOI: 10.1002/ps.3705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND New herbicidal formulations were designed by combining wheat gluten (WG), two montmorillonites (MMTs) (unmodified and organically modified) and a model pesticide (ethofumesate), and their performances were assessed through an integrative study conducted in soil using an experimental methodology with data modelling. RESULTS All the WG formulations tested were effective in decreasing the apparent diffusivity of ethofumesate in soil in comparison with the non-formulated active substance. The slow-release effect was significantly more pronounced in the presence of the organically modified MMT, confirming the importance of sorption mechanisms to reduce ethofumesate diffusion. The bioassays undertaken on watercress to evaluate herbicidal antigerminating performances showed that all the WG formulations (with or without MMT) were more effective than both the commercial formulation and the non-formulated ethofumesate, whatever the concentration tested. To explain such results, it was proposed that WG formulations would enable ethofumesate to be more available and thus more effective in inhibiting seed germination, as they would be less prone to be leached by water transport due to watering and also less subject to photodegradation. CONCLUSION The use of pesticide formulations based on wheat gluten and nanoclays appeared to be a promising strategy both to reduce the mobility of pesticides in soil and to protect UV-photosensitive pesticides from photodegradation.
Collapse
|
14
|
Controlled release of agrochemicals intercalated into montmorillonite interlayer space. ScientificWorldJournal 2014; 2014:656287. [PMID: 24696655 PMCID: PMC3947761 DOI: 10.1155/2014/656287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/26/2013] [Indexed: 11/17/2022] Open
Abstract
Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil.
Collapse
|
15
|
Paradelo M, Soto-Gómez D, Pérez-Rodríguez P, Pose-Juan E, López-Periago JE. Predicting release and transport of pesticides from a granular formulation during unsaturated diffusion in porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2014; 158:14-22. [PMID: 24412995 DOI: 10.1016/j.jconhyd.2013.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/20/2013] [Accepted: 10/28/2013] [Indexed: 06/03/2023]
Abstract
The release and transport of active ingredients (AIs) from controlled-release formulations (CRFs) have potential to reduce groundwater pesticide pollution. These formulations have a major effect on the release rate and subsequent transport to groundwater. Therefore the influence of CRFs should be included in modeling non-point source pollution by pesticides. We propose a simplified approach that uses a phase transition equation coupled to the diffusion equation that describes the release rate of AIs from commercial CRFs in porous media; the parameters are as follows: a release coefficient, the solubility of the AI, and diffusion transport with decay. The model gives acceptable predictions of the pesticides release from commercial CRFs in diffusion cells filled with quartz sand. This approach can be used to study the dynamics of the CRF-porous media interaction. It also could be implemented in fate of agricultural chemical models to include the effect of CRFs.
Collapse
Affiliation(s)
- Marcos Paradelo
- Soil Science and Agricultural Chemistry Group, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, E-32004 Ourense, Spain; Department od Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Diego Soto-Gómez
- Soil Science and Agricultural Chemistry Group, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, E-32004 Ourense, Spain
| | - Paula Pérez-Rodríguez
- Soil Science and Agricultural Chemistry Group, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, E-32004 Ourense, Spain
| | - Eva Pose-Juan
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - J Eugenio López-Periago
- Soil Science and Agricultural Chemistry Group, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, E-32004 Ourense, Spain
| |
Collapse
|
16
|
Qin F, Gao YX, Guo BY, Xu P, Li JZ, Wang HL. Environmental behavior of benalaxyl and furalaxyl enantiomers in agricultural soils. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:738-746. [PMID: 25065825 DOI: 10.1080/03601234.2014.929482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The enantioselective environmental behavior of the chiral fungicides benalaxy and furalaxyl in agricultural soils in China was studied. Although sorption onto soils was non-enantioselective, the leaching of benalaxy and furalaxyl was enantioselective in soil columns. The concentrations of the S-enantiomers of both fungicides in the leachates were higher than the R-enantiomers. This can be attributed to enantioselective degradation of the two fungicides in the soil column. Enantioselective degradation of the two fungicides was verified by soil dissipation experiments, and the R-enantiomers degraded faster than the S-enantiomers in partial soils. The half-life was 27.7-57.8 days for S-benalaxyl, 20.4-53.3 days for R-benalaxyl, 19.3-49.5 days for S-furalaxyl and 11.4-34.7 days for R-furalaxyl. The degradation process of the two fungicide enantiomers followed the first-order kinetics (R(2) > 0.96). Compared to furalaxyl, benalaxyl degraded more slowly and degradation was less enantioselective. These results are attributed to the influence of soil physicochemical properties, soil microorganisms, and environmental factors.
Collapse
Affiliation(s)
- Fang Qin
- a Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , China
| | | | | | | | | | | |
Collapse
|
17
|
Bruna F, Celis R, Real M, Cornejo J. Organo/LDH nanocomposite as an adsorbent of polycyclic aromatic hydrocarbons in water and soil-water systems. JOURNAL OF HAZARDOUS MATERIALS 2012; 225-226:74-80. [PMID: 22614027 DOI: 10.1016/j.jhazmat.2012.04.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/23/2012] [Accepted: 04/26/2012] [Indexed: 05/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered as priority pollutants because of their high risk to human health. In this paper, we addressed the issue of using hydrotalcite-based nanocomposites as adsorbents of six low molecular weight PAHs (acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene) to reduce their negative effects on the environment. A nanocomposite (HT-DDS) was prepared by intercalating the organic anion dodecylsulfate (DDS) in a Mg-Al hydrotalcite (HT), and then characterized using several analytical techniques. A Mediterranean soil was selected for being a high-risk scenario of groundwater contamination by leaching of pollutants. The nanocomposite displayed enhanced affinity for the PAHs in water as compared to carbonate-hydrotalcite (HTCO(3)) and its calcined product (HT500), and showed a high irreversibility of the adsorption process (hysteresis coefficient, H<0.15). The results revealed an increase of the pollutants retention in the soil by the addition of the nanocomposite that depended on the nanocomposite application rate and also on the hydrophobicity of each PAH. Accordingly, the use of HT-DDS as an amendment or barrier in contaminated soil is proposed for reducing the mobility of PAHs and, consequently, the adverse effect derived from rapid transport losses of the pollutants to the adjoining environmental compartments.
Collapse
Affiliation(s)
- F Bruna
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Avenida Reina Mercedes 10, Apartado 1052, 41080 Sevilla, Spain
| | | | | | | |
Collapse
|
18
|
Gámiz B, Celis R, Cox L, Hermosín MC, Cornejo J. Effect of olive-mill waste addition to soil on sorption, persistence, and mobility of herbicides used in Mediterranean olive groves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 429:292-299. [PMID: 22591988 DOI: 10.1016/j.scitotenv.2012.04.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/12/2012] [Accepted: 04/12/2012] [Indexed: 05/31/2023]
Abstract
Laboratory and field experiments were conducted to evaluate the effect of olive-mill waste (OMW) addition to a Mediterranean olive grove soil on sorption, persistence, and mobility of two herbicides which are simultaneously applied for weed control in olive groves: terbuthylazine (TA) and fluometuron (FM). Laboratory batch sorption experiments showed that OMW addition to the soil at rates of 5 and 10% (w/w) greatly enhanced the sorption of both herbicides, thus suggesting that amendment with OMW could be useful to enhance the retention and reduce the mobility of FM and TA in the soil. Incubation experiments showed that OMW increased the persistence of FM and had little effect on the long persistence of TA in the soil studied. A demonstration field experiment was also conducted in field plots with a slope of about 5%, either unamended or amended with OMW at a rate of 10 kg m⁻², and then treated with a commercial formulation containing a mixture of TA and FM. Extraction of field soil samples, taken from different soil depths (0-5, 5-10, 10-20, and 20-30 cm) at different times after herbicide application, showed that both TA and FM moved deeper in unamended soil than in OMW-amended soil, and that OMW addition affected the persistence of FM in the toplayer, increasing its half-life from 24 to 58 days, while having little effect on the persistence of TA. Thus, data obtained under real field conditions were consistent with those obtained under controlled laboratory conditions. Preliminary herbicide runoff data indicated that the total herbicide runoff losses were also reduced upon OMW addition. Addition of OMW could be beneficial in reducing the mobility of TA and FM in olive grove soils, and also in increasing the persistence of FM in soils where this herbicide could be rapidly degraded.
Collapse
Affiliation(s)
- B Gámiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla-IRNAS, CSIC, Avenida Reina Mercedes 10, P.O. Box 1052, 41080 Sevilla, Spain
| | | | | | | | | |
Collapse
|
19
|
Celis R, Adelino MA, Hermosín MC, Cornejo J. Montmorillonite-chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. JOURNAL OF HAZARDOUS MATERIALS 2012; 209-210:67-76. [PMID: 22284171 DOI: 10.1016/j.jhazmat.2011.12.074] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/05/2011] [Accepted: 12/25/2011] [Indexed: 05/31/2023]
Abstract
Montmorillonite (SWy-2)-chitosan bionanocomposites (SW-CH) were prepared following different methodologies, characterized, and assayed as adsorbents of the herbicide clopyralid (3,6-dichloropyridine-2-carboxylic acid) in aqueous solution and soil/water suspensions, to assess the potential of the materials to prevent and remediate soil and water contamination by anionic pesticides. The SW-CH bionanocomposites were good adsorbents for the herbicide at pH levels where both the anionic form of the herbicide (pK(a)=2.3) and the cationic form of CH (pK(a)=6.3) predominated. The performance of the SW-CH bionanocomposites as adsorbents of clopyralid depended on the amount and arrangement of chitosan in the samples. Clopyralid adsorption was rapid and mostly linear up to herbicide concentrations as high as 0.5mM. High salt concentrations (0.1M NaCl) promoted desorption of the adsorbed pesticide from SW-CH, strongly suggesting that adsorption of clopyralid occurred primarily through an ion exchange mechanism on positively charged CH sites at the montmorillonite surface. Amendment of an acidic soil (pH=4.5) with SW-CH at rates of 5% and 10% led to a significant increase in clopyralid adsorption, whereas this effect was negligible when SW-CH was added to an alkaline soil (pH=8.0), reflecting the absence of positively charged sites in SW-CH at high pH values. Montmorillonite-CH bionanocomposites can be useful as adsorbents for the removal and/or immobilization of anionic pesticides in soil and water under mild acidic conditions.
Collapse
Affiliation(s)
- R Celis
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, Apartado 1052, 41080 Sevilla, Spain.
| | | | | | | |
Collapse
|
20
|
Cabrera A, Cox L, Spokas KA, Celis R, Hermosín MC, Cornejo J, Koskinen WC. Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12550-12560. [PMID: 22023336 DOI: 10.1021/jf202713q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Biochar, the solid residual remaining after the thermochemical transformation of biomass for carbon sequestration, has been proposed to be used as a soil amendment, because of its agronomic benefits. The effect of amending soil with six biochars made from different feedstocks on the sorption and leaching of fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) was compared to the effect of other sorbents: an activated carbon, a Ca-rich Arizona montmorillonite modified with hexadecyltrimethylammonium organic cation (SA-HDTMA), and an agricultural organic residue from olive oil production (OOW). Soil was amended at 2% (w/w), and studies were performed following a batch equilibration procedure. Sorption of both herbicides increased in all amended soils, but decreased in soil amended with a biochar produced from macadamia nut shells made with fast pyrolysis. Lower leaching of the herbicides was observed in the soils amended with the biochars with higher surface areas BC5 and BC6 and the organoclay (OCl). Despite the increase in herbicide sorption in soils amended with two hardwood biochars (BC1 and BC3) and OOW, leaching of fluometuron and MCPA was enhanced with the addition of these amendments as compared to the unamended soil. The increased leaching is due to some amendments' soluble organic compounds, which compete or associate with herbicide molecules, enhancing their soil mobility. Thus, the results indicate that not all biochar amendments will increase sorption and decrease leaching of fluometuron and MCPA. Furthermore, the amount and composition of the organic carbon (OC) content of the amendment, especially the soluble part (DOC), can play an important role in the sorption and leaching of these herbicides.
Collapse
Affiliation(s)
- Alegria Cabrera
- Department of Soil, Water, and Climate, University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, Minnesota 55108, United States.
| | | | | | | | | | | | | |
Collapse
|