1
|
Kasimir M, Wolbeck A, Behrens M, Humpf HU. Intestinal Metabolism of Selected Steroidal Glycoalkaloids in the Pig Cecum Model. ACS OMEGA 2023; 8:18266-18274. [PMID: 37251124 PMCID: PMC10210216 DOI: 10.1021/acsomega.3c01990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Due to the presence of the steroidal glycoalkaloid solanine, the potato was chosen as Germany's poisonous plant of the year 2022. Steroidal glycoalkaloids are secondary plant metabolites which have been reported to induce toxic as well as beneficial health effects. Nevertheless, data regarding occurrence, toxicokinetics, and metabolism of steroidal glycoalkaloids is scarce, and substantially more research is required for a proper risk assessment. Therefore, the intestinal metabolism of solanine, chaconine, solasonine, solamargine, and tomatine was investigated using the ex vivo pig cecum model. All steroidal glycoalkaloids were degraded by the porcine intestinal microbiota, releasing the respective aglycon. Furthermore, the hydrolysis rate was strongly dependent on the linked carbohydrate side chain. Solanine and solasonine, which are linked to a solatriose, were metabolized significantly faster than the chaconine and solamargin, which are linked to a chacotriose. In addition, stepwise cleavage of the carbohydrate side chain and the formation of β- and γ-intermediates were detected by HPLC-HRMS. The results provide valuable insights into the intestinal metabolism of selected steroidal glycoalkaloids and help to reduce uncertainties and improve risk assessment.
Collapse
|
2
|
Tao Y, Yu X, Wu S, Nong G. Synthesis of Luteolin–Selenium Dioxide Complex under Acidic Catalysis. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Kasimir M, Behrens M, Humpf HU. Release of Small Phenolic Metabolites from Isotopically Labeled 13C Lignin in the Pig Cecum Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8317-8325. [PMID: 35770971 DOI: 10.1021/acs.jafc.2c02836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A diet with a high dietary fiber content is often recommended in today's nutrition due to several beneficial health effects related to its intake. Lignin as a part of dietary fiber is the second most abundant natural polymer and considered to be stable during digestion. However, some studies indicate a partial degradation during the intestinal metabolism. To further elucidate this hypothesis, the aim of this study was to investigate whether lignin is metabolized by the gut microbiota using the ex vivo pig cecum model. As potential lignin-derived metabolites might already naturally occur in the pig cecal matrix, an approach using isotopically labeled 13C lignin was chosen for this study. Ten small phenolic lignin degradation products and their time-dependent metabolism were identified via an untargeted HPLC-HRMS approach, and the quantity of the metabolites was estimated. From the results, we conclude that lignin is partially degraded releasing small phenolic metabolites.
Collapse
Affiliation(s)
- Matthias Kasimir
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
4
|
Zhang C, Wang W, Hu Y, Peng Z, Ren S, Xue M, Liu Z, Hou J, Xing M, Liu T. A novel salt-tolerant strain Trichoderma atroviride HN082102.1 isolated from marine habitat alleviates salt stress and diminishes cucumber root rot caused by Fusarium oxysporum. BMC Microbiol 2022; 22:67. [PMID: 35232373 PMCID: PMC8887007 DOI: 10.1186/s12866-022-02479-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background Salt stress threaten the growth of plants, and even aggravate plant disease. In this article, salt-tolerant Trichoderma strain was isolated, and its potential to alleviate salt stress and diminish cucumber root rot caused by Fusarium oxysporum was evaluated. Results Twenty-seven Trichoderma isolates were isolated from samples of sea muds and algae collected from the South Sea of China. Among these, the isolate HN082102.1 showed the most excellent salt tolerance and antagonistic activity against F. oxysporum causing root rot in cucumber and was identified as T. atroviride. Its antagonism ability may be due to mycoparasitism and inhibition effect of volatile substances. The application of Trichoderma mitigated the adverse effects of salt stress and promoted the growth of cucumber under 100 mM and 200 mM NaCl, especially for the root. When T. atroviride HN082102.1 was applied, root fresh weights increased by 92.55 and 84.86%, respectively, and root dry weights increased by 75.71 and 53.31%, respectively. Meanwhile, the application of HN082102.1 reduced the disease index of cucumber root rot by 63.64 and 71.01% under 100- and 0-mM saline conditions, respectively, indicating that this isolate could inhibit cucumber root rot under salt stress. Conclusions This is the first report of salt-tolerant T. atroviride isolated from marine habitat showing antagonistic activity to F. oxysporum, and the results provide evidence for the novel strain T. atroviride HN082102.1 in alleviating salt stress and diminishing cucumber root rot, indicating that T. atroviride strain HN082102.1 can be used as biological control agent in saline alkali land.
Collapse
Affiliation(s)
- Chongyuan Zhang
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Hainan University, School of Plant Protection, Ministry of Education, Haikou, Hainan, 570228, PR China
| | - Weiwei Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Hainan University, Ministry of Education, Haikou, Hainan, 570228, PR China.,Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Haikou, Hainan, 570228, PR China
| | - Yihui Hu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Hainan University, School of Plant Protection, Ministry of Education, Haikou, Hainan, 570228, PR China
| | - Zhongpin Peng
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Hainan University, School of Plant Protection, Ministry of Education, Haikou, Hainan, 570228, PR China
| | - Sen Ren
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Hainan University, School of Plant Protection, Ministry of Education, Haikou, Hainan, 570228, PR China.,Engineering Centre of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, Hainan, 570228, PR China
| | - Ming Xue
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Hainan University, School of Plant Protection, Ministry of Education, Haikou, Hainan, 570228, PR China.,Engineering Centre of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, Hainan, 570228, PR China
| | - Zhen Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Hainan University, School of Plant Protection, Ministry of Education, Haikou, Hainan, 570228, PR China
| | - Jumei Hou
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Hainan University, School of Plant Protection, Ministry of Education, Haikou, Hainan, 570228, PR China
| | - Mengyu Xing
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Hainan University, School of Plant Protection, Ministry of Education, Haikou, Hainan, 570228, PR China
| | - Tong Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Hainan University, School of Plant Protection, Ministry of Education, Haikou, Hainan, 570228, PR China. .,Engineering Centre of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, Hainan, 570228, PR China.
| |
Collapse
|
5
|
Jiang Z, Han Z, Qin C, Lai G, Wen M, Ho CT, Zhang L, Wan X. Model Studies on the Reaction Products Formed at Roasting Temperatures from either Catechin or Tea Powder in the Presence of Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11417-11426. [PMID: 34519500 DOI: 10.1021/acs.jafc.1c03771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
During tea processing, roasting significantly affects the transformation pathway of catechins. When (-)-epigallocatechin gallate (EGCG) and glucose were roasted at different pH values, the degree of degradation and isomerization of EGCG was the lowest at pH 7 and the highest at pH 8. Thirty-five products were found in the model reaction of EGCG and glucose under high temperatures, of which four EGCG-glucose adducts were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR). In addition, catechins, gallic acid, and theanine in tea with added glucose were significantly reduced during roasting. The contents of four EGCG-glucose adducts were increased significantly at 150 °C after 30 min and dropped gradually after 60 min. Therefore, based on the present study, EGCG could form crosslinks with glucose under high temperatures in a short time, which provides insight for tea processing and synthesis of catechin-sugar adducts.
Collapse
Affiliation(s)
- Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Guoping Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Kasimir M, Behrens M, Schulz M, Kuchenbuch H, Focke C, Humpf HU. Intestinal Metabolism of α- and β-Glucosylated Modified Mycotoxins T-2 and HT-2 Toxin in the Pig Cecum Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5455-5461. [PMID: 32298583 DOI: 10.1021/acs.jafc.0c00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The type A trichothecene mycotoxins T-2 and HT-2 toxin are fungal secondary metabolites produced by Fusarium fungi, which contaminate food and feed worldwide. Especially as a result of the high toxicity of T-2 toxin and their occurrence together with glucosylated forms in cereal crops, these mycotoxins are of human health concern. Particularly, it is unknown whether and how these modified mycotoxins are metabolized in the gastrointestinal tract and, thus, contribute to the overall toxicity. Therefore, the comparative intestinal metabolism of T-2 and HT-2 toxin glucosides in α and β configuration was investigated using the ex vivo pig cecum model, which mimics the human intestinal metabolism. Regardless of its configuration, the C-3 glycosidic bond was hydrolyzed within 10-20 min, releasing T-2 and HT-2 toxin, which were further metabolized to HT-2 toxin and T-2 triol, respectively. We conclude that T-2 and HT-2 toxin should be evaluated together with their modified forms for risk assessment.
Collapse
Affiliation(s)
- Matthias Kasimir
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Mareike Schulz
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Henning Kuchenbuch
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Christine Focke
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
7
|
Peron G, Hidalgo-Liberona N, González-Domínguez R, Garcia-Aloy M, Guglielmetti S, Bernardi S, Kirkup B, Kroon PA, Cherubini A, Riso P, Andrés-Lacueva C. Exploring the Molecular Pathways Behind the Effects of Nutrients and Dietary Polyphenols on Gut Microbiota and Intestinal Permeability: A Perspective on the Potential of Metabolomics and Future Clinical Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1780-1789. [PMID: 31083905 DOI: 10.1021/acs.jafc.9b01687] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The gut microbiota is involved in the regulation of the intestinal permeability (IP), whose disruption is a frequent condition in older people and is associated with the development of several diseases. The diet can affect the gut microbiota and IP, although the molecular mechanisms involved are unclear. Metabolomics is one of the suitable approaches to study the effects of diet on gut microbiota and IP, although, up to now, the research has focused only on a few dietary components. The aim here was to review the most recent literature concerning the application of metabolomics to the study of the diet-induced alterations of gut microbiota and the effects on IP, with a particular focus on the molecular pathways involved. An additional aim was to give a perspective on the future research involving dietary polyphenols, because despite their potential use in the management of increased IP, few studies have been reported to date.
Collapse
Affiliation(s)
- Gregorio Peron
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Nicole Hidalgo-Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Stefano Bernardi
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Benjamin Kirkup
- Quadram Institute Bioscience , Norwich Research Park, Norwich NR4 7UQ , United Kingdom
| | - Paul Antony Kroon
- Quadram Institute Bioscience , Norwich Research Park, Norwich NR4 7UQ , United Kingdom
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per l'Invecchiamento , Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-l'Istituto Nazionale Ricovero e Cura Anziani (INRCA) , 60127 Ancona , Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| |
Collapse
|
8
|
Wei B, Wang YK, Qiu WH, Wang SJ, Wu YH, Xu XW, Wang H. Discovery and mechanism of intestinal bacteria in enzymatic cleavage of C-C glycosidic bonds. Appl Microbiol Biotechnol 2020; 104:1883-1890. [PMID: 31932892 DOI: 10.1007/s00253-019-10333-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022]
Abstract
C-Glycosides, a special type of glycoside, are frequently distributed in many kinds of medicinal plants, such as puerarin and mangiferin, showing various and significant bioactivities. C-Glycosides are usually characterized by the C-C bond that forms between the anomeric carbon of sugar moieties and the carbon atom of aglycon, which is usually resistant against acidic hydrolysis and enzymatic treatments. Interestingly, C-glycosides could be cleaved by several intestinal bacteria, but whether the enzymatic cleavage of C-C glycosidic bond is reduction or hydrolysis has been controversial; furthermore, whether existence of a "C-glycosidase" directly catalyzing the cleavage is not clear. Here we review research advances about the discovery and mechanism of intestinal bacteria in enzymatic cleavage of C-C glycosidic bond with an emphasis on the identification of enzymes manipulation the deglycosylation. Finally, we give a brief conclusion about the mechanism of C-glycoside deglycosylation and perspectives for future study in this field.
Collapse
Affiliation(s)
- Bin Wei
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, People's Republic of China.,College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, People's Republic of China
| | - Ya-Kun Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, People's Republic of China
| | - Wen-Hui Qiu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, People's Republic of China
| | - Si-Jia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, People's Republic of China.,Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA, 90024, USA
| | - Yue-Hong Wu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, People's Republic of China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, People's Republic of China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, People's Republic of China.
| |
Collapse
|
9
|
Mendoza-Wilson AM, Balandrán-Quintana RR. Computational and Experimental Progress on the Structure and Chemical Reactivity of Procyanidins: Their Potential as Metalloproteinases Inhibitors. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666180828114021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Matrix metalloproteinases (MMPs) are enzymes involved in various physiological
processes essential for living beings, but the loss of the regulatory control by endogenous
inhibitors of MMPs, leads to the development of serious diseases such as cardiovascular
system affections, cancer, and metastasis. For these reasons, exogenous inhibitors
are required for these enzymes, which are able to control the proteolytic activity
and are selective towards the different MMPs, besides properties which, from the
pharmacological point of view, are necessary to be effective under physiological
conditions. Based on these expectations, some bioactive compounds that are abundant in
the human diet, like procyanidins (PCs) have emerged as potential exogenous inhibitors
of MMPs. This review presents the advances of experimental and computational investigations
carried out to date on the structure and chemical reactivity of PCs, to support the basis of their potential
use as MMP inhibitors. For such purpose, specific sites among MMPs identified for a selective inhibition, the
role of PCs in the regulation of MMPs by posttranscriptional mechanisms at the level of microRNAs, modulation
of reactive oxygen species (ROS), effects on tissue inhibitors of MMPs (TIMPs), the crosslinking of PCs
with the extracellular matrix proteins, as well as direct interaction between PCs and MMPs, are discussed.
Methods for isolation and synthesis of PCs, as well as hydrophilicity properties, bioavailability, and susceptibility
to be metabolized in oral intake, are also addressed. The information gathered in this review could additionally
help to visualize future research related to this topic.
Collapse
Affiliation(s)
- Ana María Mendoza-Wilson
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Coordinacion de Tecnologia de Alimentos de Origen Vegetal, Carretera a La Victoria km 0.6, 83304, Hermosillo, Son, Mexico
| | - René Renato Balandrán-Quintana
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Coordinacion de Tecnologia de Alimentos de Origen Vegetal, Carretera a La Victoria km 0.6, 83304, Hermosillo, Son, Mexico
| |
Collapse
|
10
|
Zheng S, Geng D, Liu S, Wang Q, Liu S, Wang R. A newly isolated human intestinal bacterium strain capable of deglycosylating flavone C-glycosides and its functional properties. Microb Cell Fact 2019; 18:94. [PMID: 31138294 PMCID: PMC6537369 DOI: 10.1186/s12934-019-1144-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/20/2019] [Indexed: 11/10/2022] Open
Abstract
Background Flavone C-glycosides are difficult to be deglycosylated using traditional chemical methods due to their solid carbon–carbon bond between sugar moieties and aglycones; however, some bacteria may easily cleave this bond because they generate various specific enzymes. Results A bacterial strain, named W12-1, capable of deglycosylating orientin, vitexin, and isovitexin to their aglycones, was isolated from human intestinal bacteria in this study and identified as Enterococcus faecalis based on morphological examination, physiological and biochemical identification, and 16S rDNA sequencing. The strain was shown to preferentially deglycosylate the flavone C-glycosides on condition that the culture medium was short of carbon nutrition sources such as glucose and starch, and its deglycosylation efficiency was negatively correlated with the content of the latter two substances. Conclusion This study provided a new bacterial resource for the cleavage of C-glycosidic bond of flavone C-glycosides and reported the carbon nutrition sources reduction induced deglycosylation for the first time. Electronic supplementary material The online version of this article (10.1186/s12934-019-1144-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiqi Zheng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Di Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuangyue Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qingqing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Siqi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
11
|
Le Bourvellec C, Bagano Vilas Boas P, Lepercq P, Comtet-Marre S, Auffret P, Ruiz P, Bott R, Renard CMGC, Dufour C, Chatel JM, Mosoni P. Procyanidin-Cell Wall Interactions within Apple Matrices Decrease the Metabolization of Procyanidins by the Human Gut Microbiota and the Anti-Inflammatory Effect of the Resulting Microbial Metabolome In Vitro. Nutrients 2019; 11:E664. [PMID: 30893845 PMCID: PMC6471247 DOI: 10.3390/nu11030664] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022] Open
Abstract
B-type oligomeric procyanidins in apples constitute an important source of polyphenols in the human diet. Their role in health is not known, although it is suggested that they generate beneficial bioactive compounds upon metabolization by the gut microbiota. During apple processing, procyanidins interact with cell-wall polysaccharides and form stable complexes. These interactions need to be taken into consideration in order to better assess the biological effects of fruit constituents. Our objectives were to evaluate the impact of these interactions on the microbial metabolization of cell walls and procyanidins, and to investigate the potential anti-inflammatory activity of the resulting metabolome, in addition to analyzing the taxonomical changes which the microbiota undergo. In vitro fermentation of three model apple matrices with microbiota from 4 healthy donors showed that the binding of procyanidins to cell-wall polysaccharides, whether covalently or non-covalently, substantially reduced procyanidin degradation. Although cell wall-unbound procyanidins negatively affected carbohydrate fermentation, they generated more hydroxyphenylvaleric acid than bound procyanidins, and increased the abundance of Adlercreutzia and Gordonibacter genera. The best results in terms of production of anti-inflammatory bioactive metabolites were observed from the apple matrix with no bonds between procyanidins and cell wall polysaccharides, although the matrix with non-covalent bonds was not far behind.
Collapse
Affiliation(s)
- Carine Le Bourvellec
- UMR408 SQPOV «Sécurité et Qualité des Produits d'Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France.
| | | | - Pascale Lepercq
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
| | - Pauline Auffret
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
- Ifremer, UMR 241 EIO, F-98702 Tahiti, French Polynesia.
| | - Philippe Ruiz
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
| | - Romain Bott
- UMR408 SQPOV «Sécurité et Qualité des Produits d'Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France.
| | - Catherine M G C Renard
- UMR408 SQPOV «Sécurité et Qualité des Produits d'Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France.
| | - Claire Dufour
- UMR408 SQPOV «Sécurité et Qualité des Produits d'Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France.
| | - Jean-Marc Chatel
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, F-7800 Jouy-en-Josas, France.
| | - Pascale Mosoni
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
12
|
Wu H, Xi H, Lai F, Ma J, Chen W, Liu H. Cellular antioxidant activity and Caco-2 cell uptake characteristics of flavone extracts fromLabisia pumila. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hui Wu
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Hongru Xi
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Furao Lai
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Juanjuan Ma
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Wenbo Chen
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Huifan Liu
- College of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| |
Collapse
|
13
|
Jang S, Sun J, Chen P, Lakshman S, Molokin A, Harnly JM, Vinyard BT, Urban JF, Davis CD, Solano-Aguilar G. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs. J Nutr 2016; 146:673-80. [PMID: 26936136 PMCID: PMC4807644 DOI: 10.3945/jn.115.222968] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/12/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. OBJECTIVE The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. METHODS Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. RESULTS O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (P< 0.01) in the urine (35- to 204-fold), serum (6- to 186-fold), and adipose tissue (34- to 1144-fold) of pigs fed cocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75-85%,P< 0.05). Compared with the unsupplemented pigs, the abundance ofLactobacillusspecies was greater in the feces (7-fold,P= 0.005) and that ofBifidobacteriumspecies was greater in the proximal colon contents (9-fold,P= 0.01) in pigs fed only 20 or 10 g cocoa powder/d, respectively. Moreover, consumption of cocoa powder reducedTLR9gene expression in ileal Peyer's patches (67-80%,P< 0.05) and mesenteric lymph nodes (43-71%,P< 0.05) of pigs fed 2.5-20 g cocoa powder/d compared with pigs not supplemented with cocoa powder. CONCLUSION This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance ofLactobacillusandBifidobacteriumspecies and modulating markers of localized intestinal immunity.
Collapse
Affiliation(s)
| | - Jianghao Sun
- Food Composition and Methods Development Laboratory
| | - Pei Chen
- Food Composition and Methods Development Laboratory
| | | | | | | | - Bryan T Vinyard
- Biometrical Consulting Services, USDA, Northeast Area, Beltsville Human Nutrition Research Center, Beltsville, MD; and
| | | | | | | |
Collapse
|
14
|
Chen J, Xu Z, Zhu W, Nie R, Li CM. Novel proanthocyanidin dimer analogues with the C-ring-opened diaryl-propan-2-gallate structural unit and enhanced antioxidant activities. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Ge ZZ, Dong XQ, Zhu W, Zhang Y, Li CM. Metabolites and Changes in Antioxidant Activity of A-Type and B-Type Proanthocyanidin Dimers after Incubation with Rat Intestinal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8991-8998. [PMID: 26420512 DOI: 10.1021/acs.jafc.5b03657] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Metabolism of B-type EC dimer, A-type EC dimer, A-type ECG dimer, and A-type EGCG dimer was compared in vitro after incubation with rat intestinal microbiota for 0-24 h. A "dimeric" catabolite (m/z 815.6) was detected in four procyanthocyanidin dimers. Although the early cleavage of the C4-C8 interflavan bond and the reductive cleavage of the C-ring occurred in both B-type and A-type dimers, the degradation routes of these two types of dimers might somewhat differ. A dimeric catabolite C1 and more low molecular weight phenolic acids were detected in the metabolites of A-type EC dimer, but not in B-type EC dimer. The antioxidant capabilities of the A-type dimers were enhanced significantly after incubation for 6 h, whereas the antioxidant capacity of B-type EC dimer decreased. The results suggested that changes in antioxidant activity of procyanidin dimers after bioconversion by rat intestinal microbiota were not only structure dependent but also incubation condition dependent.
Collapse
Affiliation(s)
- Zhen-zhen Ge
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, China 430070
| | - Xiao-qian Dong
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, China 430070
| | - Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, China 430070
| | - Ying Zhang
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, China 430070
| | - Chun-mei Li
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan, China 430070
- Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education , Wuhan, China 430070
| |
Collapse
|
16
|
Feliciano RP, Krueger CG, Reed JD. Methods to determine effects of cranberry proanthocyanidins on extraintestinal infections: Relevance for urinary tract health. Mol Nutr Food Res 2015; 59:1292-306. [PMID: 25917127 DOI: 10.1002/mnfr.201500108] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/31/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Urinary tract infections (UTI) are one of the most frequent extraintestinal infections caused by Escherichia coli (ExPEC). Cranberry juice has been used for decades to alleviate symptoms and prevent recurrent UTI. The putative compounds in cranberries are proanthocyanidins (PAC), specifically PAC with "A-type" bonds. Since PAC are not absorbed, their health benefits in UTI may occur through interactions at the mucosal surface in the gastrointestinal tract. Recent research showed that higher agglutination of ExPEC and reduced bacterial invasion are correlated with higher number of "A-type" bonds and higher degree of polymerization of PAC. An understanding of PAC structure-activity relationship is becoming feasible due to advancements, not only in obtaining purified PAC fractions that allow accurate estimation, but also in high-resolution MS methodologies, specifically, MALDI-TOF MS. A recent MALDI-TOF MS deconvolution method allows quantification of the ratios of "A-type" to "B-type" bonds enabling characteristic fingerprints. Moreover, the generation of fluorescently labeled PAC allows visualization of the interaction between ExPEC and PAC with microscopy. These tools can be used to establish structure-activity relationships between PAC and UTI and give insight on the mechanism of action of these compounds in the gut without being absorbed.
Collapse
Affiliation(s)
- Rodrigo P Feliciano
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian G Krueger
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Complete Phytochemical Solutions LLC, Cambridge, WI, USA
| | - Jess D Reed
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Complete Phytochemical Solutions LLC, Cambridge, WI, USA
| |
Collapse
|
17
|
Braune A, Engst W, Blaut M. Identification and functional expression of genes encoding flavonoid O- and C-glycosidases in intestinal bacteria. Environ Microbiol 2015; 18:2117-29. [PMID: 25845411 DOI: 10.1111/1462-2920.12864] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022]
Abstract
Gut bacteria play a crucial role in the metabolism of dietary flavonoids and thereby influence the bioactivity of these compounds in the host. The intestinal Lachnospiraceae strain CG19-1 and Eubacterium cellulosolvens are able to deglycosylate C- and O-coupled flavonoid glucosides. Growth of strain CG19-1 in the presence of the isoflavone C-glucoside puerarin (daidzein 8-C-glucoside) led to the induction of two proteins (DfgC, DfgD). Heterologous expression of the encoding genes (dfgC, dfgD) in Escherichia coli revealed no C-deglycosylating activity in the resulting cell extracts but cleavage of flavonoid O-glucosides such as daidzin (daidzein 7-O-glucoside). The recombinant DfgC and DfgD proteins were purified and characterized with respect to their quaternary structure, substrate and cofactor specificity. The products of the corresponding genes (dfgC, dfgD) from E. cellulosolvens also catalysed the O-deglycosylation of daidzin following their expression in E. coli. In combination with three recombinant proteins encoded by adjacent genes in E. cellulosolvens (dfgA, dfgB, dfgE), DfgC and DfgD from E. cellulosolvens catalysed the deglycosylation of the flavone C-glucosides homoorientin (luteolin 6-C-glucoside) and isovitexin (apigenin 6-C-glucoside). Even intact cells of E. coli expressing the five E. cellulosolvens genes cleaved these flavone C-glucosides and, also, flavonoid O-glucosides to the corresponding aglycones.
Collapse
Affiliation(s)
- Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, D-14558, Germany
| | - Wolfram Engst
- Analytics Group, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, D-14558, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, D-14558, Germany
| |
Collapse
|
18
|
Bittner K, Kemme T, Peters K, Kersten S, Dänicke S, Humpf HU. Systemic absorption and metabolism of dietary procyanidin B4 in pigs. Mol Nutr Food Res 2014; 58:2261-73. [DOI: 10.1002/mnfr.201400435] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/19/2014] [Accepted: 09/23/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Katharina Bittner
- Institute of Food Chemistry; Westfälische Wilhelms-Universität Münster; Münster; Germany
| | - Theresa Kemme
- Institute of Food Chemistry; Westfälische Wilhelms-Universität Münster; Münster; Germany
| | - Katharina Peters
- Institute of Food Chemistry; Westfälische Wilhelms-Universität Münster; Münster; Germany
| | - Susanne Kersten
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| | - Sven Dänicke
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry; Westfälische Wilhelms-Universität Münster; Münster; Germany
| |
Collapse
|
19
|
Fernández-Millán E, Ramos S, Alvarez C, Bravo L, Goya L, Martín MÁ. Microbial phenolic metabolites improve glucose-stimulated insulin secretion and protect pancreatic beta cells against tert-butyl hydroperoxide-induced toxicity via ERKs and PKC pathways. Food Chem Toxicol 2014; 66:245-53. [PMID: 24491264 DOI: 10.1016/j.fct.2014.01.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/26/2022]
Abstract
Oxidative stress is accepted as one of the causes of beta cell failure in type 2 diabetes. Therefore, identification of natural antioxidant agents that preserve beta cell mass and function is considered an interesting strategy to prevent or treat diabetes. Recent evidences indicated that colonic metabolites derived from flavonoids could possess beneficial effects on various tissues. The aim of this work was to establish the potential anti-diabetic properties of the microbial-derived flavonoid metabolites 3,4-dihydroxyphenylacetic acid (DHPAA), 2,3-dihydroxybenzoic acid (DHBA) and 3-hydroxyphenylpropionic acid (HPPA). To this end, we tested their ability to influence beta cell function and to protect against tert-butyl hydroperoxide-induced beta cell toxicity. DHPAA and HPPA were able to potentiate glucose-stimulated insulin secretion (GSIS) in a beta cell line INS-1E and in rat pancreatic islets. Moreover, pre-treatment of cells with both compounds protected against beta cell dysfunction and death induced by the pro-oxidant. Finally, experiments with pharmacological inhibitors indicate that these effects were mediated by the activation of protein kinase C and the extracellular regulated kinases pathways. Altogether, these findings strongly suggest that the microbial-derived flavonoid metabolites DHPAA and HPPA may have anti-diabetic potential by promoting survival and function of pancreatic beta cells.
Collapse
Affiliation(s)
- Elisa Fernández-Millán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sonia Ramos
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen Alvarez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Bravo
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis Goya
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Ángeles Martín
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
20
|
Hemmersbach S, Brauer SS, Hüwel S, Galla HJ, Humpf HU. Transepithelial permeability studies of flavan-3-ol-C-glucosides and procyanidin dimers and trimers across the Caco-2 cell monolayer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7932-7940. [PMID: 23885956 DOI: 10.1021/jf402019f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study the permeability of two flavanol-C-glucosides (FCglcs) and five dimeric and trimeric flavan-3-ols, namely, procyanidins (PCs), was investigated with the human colon carcinoma cell line (Caco-2) model. These compounds can be found especially in cocoa, and they are of great interest due to their assumed beneficial health effects. Transepithelial electrical resistance (TEER) and capacitance were measured online with a CellZscope device prior to and during the whole experiment to guarantee the maintenance of the barrier properties. The transport experiments with pure, single compounds (50-300 μM) from apical to basolateral side showed slight permeation of PCs A2, B2, and B5 and cinnamtannin B1 (CB1) as well as (-)-catechin-6-C-glucoside (C6Cglc) and (-)-catechin-8-C-glucoside (C8Cglc) of about 0.02-0.2% after 24 h. Transport of PC C1 could not be detected. Inhibition of P-glycoprotein (Pgp) increased the permeation of PC B2 and CB1 to the basolateral side, which indicates that Pgp counteracts the transport of these compounds. Metabolites (epicatechin, 3'- and 4'-O-epicatechin) in very small amounts were detectable only for PC B2. These are the first data concerning the permeability of flavan-3-ol-C-glucosides across the Caco-2 cell monolayer.
Collapse
Affiliation(s)
- Sarah Hemmersbach
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | | | | | | |
Collapse
|
21
|
von Bargen C, Hübner F, Cramer B, Rzeppa S, Humpf HU. Systematic approach for structure elucidation of polyphenolic compounds using a bottom-up approach combining ion trap experiments and accurate mass measurements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11274-11282. [PMID: 23101583 DOI: 10.1021/jf3030369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polyphenols are a group of plant secondary metabolites with a wide range of structural differences. In many cases, in vitro and in vivo studies of polyphenols revealed beneficial health effects. The mass spectrometric characterization of polyphenols can be the key to understanding the metabolism and resorption of this group of substances. For structure elucidation of polyphenolic compounds nuclear magnectic resonance spectroscopy is the method of choice. Due to the broad structure variability and the sometimes relatively low concentrations of polyphenols and/or their metabolites in foods as well as physiological samples, mass spectrometry could be an alternative for structure elucidation. Especially high-resolution mass spectrometry, for example, Fourier transformation mass spectrometry (FTMS), is a valuable tool. Using a FTMS system, a systematic approach to the fragmentation behavior of phenolic and polyphenolic compounds was chosen to verify the influence of the structure on the fragmentation pattern of the different substances. Depending on the structure, specific fragment ions could be detected. Therefore, it is possible to gain reliable information about the structure of the pseudomolecular ion from its fragmentation spectrum, which is of great aid in the structure elucidation of unknown polyphenols and/or their metabolites.
Collapse
Affiliation(s)
- Christoph von Bargen
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 45, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
22
|
Rzeppa S, Bittner K, Döll S, Dänicke S, Humpf HU. Urinary excretion and metabolism of procyanidins in pigs. Mol Nutr Food Res 2012; 56:653-65. [PMID: 22495989 PMCID: PMC3494987 DOI: 10.1002/mnfr.201100471] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SCOPE Aim of this study was to investigate urinary excretion and metabolism of procyanidins a group of secondary plant metabolites with many beneficial health effects described in literature. METHODS AND RESULTS To investigate the metabolism of procyanidins in the absence of flavan-3-ols, centrifugal partition chromatography was used for their reduction in a grape seed extract to a level of almost zero. After administration of the monomer reduced grape seed extract (mredGSE) containing procyanidins B1, B2, B3, B4, C1 to pigs flavan-3-ols, their methyl derivatives, dimeric and trimeric procyanidins were determined in urine by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Maximal concentrations of procyanidins 6 h after administration vary from 5 to 30 ng/mg creatinine. Total excretion of flavan-3-ols and their methyl derivatives indicates an increasing trend for pigs given mredGSE in comparison to pigs of the control group. Flavan-3-ols were conjugated and methylated to a great extent in comparison to dimeric and trimeric procyanidins. In the case of low molecular weight metabolites, an increasing trend was observed for hippuric acid, not for phenolic acids. CONCLUSIONS Ratios of total excretion of procyanidins to administrated amounts between 0.004% (C1) and 0.019% (B4) suggest a poor urinary excretion by pigs. A transfer of these results to humans is possible due to their similar gastrointestinal tract.
Collapse
Affiliation(s)
- Sebastian Rzeppa
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | | | | | | |
Collapse
|
23
|
Intestinal metabolism of T-2 toxin in the pig cecum model. Mycotoxin Res 2012; 28:191-8. [DOI: 10.1007/s12550-012-0134-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
24
|
Muñoz-González C, Moreno-Arribas MV, Rodríguez-Bencomo JJ, Cueva C, Martín Álvarez PJ, Bartolomé B, Pozo-Bayón MA. Feasibility and application of liquid-liquid extraction combined with gas chromatography-mass spectrometry for the analysis of phenolic acids from grape polyphenols degraded by human faecal microbiota. Food Chem 2012; 133:526-35. [PMID: 25683429 DOI: 10.1016/j.foodchem.2012.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 11/08/2011] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
In this study the feasibility of a LLE-GC-EI-MS method for the analysis of 43 phenolic acids belonging to different chemical structure families which have been described in the literature as microbial-derived metabolites after consumption of dietary polyphenols was proved. In addition, the method was applied for the characterisation of phenolic metabolites resulting from the incubation, in anaerobic conditions, of a commercial grape seed extract (GSE) and their corresponding flavan-3-ol monomeric (GSE-M) and oligomeric (GSE-O) fractions with human faeces from healthy volunteers (n=3). The method showed average values of repeatability and reproducibility of 5.0% and 6.3%, respectively, adequate and low detection (1.8-30.8 μg L(-1)) and quantification limits (6.0-102.8 μg L(-1)) and good recovery values (95%, as average value). A total of 27 phenolic acids were identified in the faecal solutions after incubation with the grape seed extracts. In general, faecal samples incubated with GSE and GSE-M (monomeric fraction) yield a higher formation of phenolic acids compared to the samples incubated with the oligomer fraction (GSE-O).
Collapse
Affiliation(s)
- C Muñoz-González
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M V Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - J J Rodríguez-Bencomo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - C Cueva
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - P J Martín Álvarez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - B Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M A Pozo-Bayón
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
25
|
Engemann A, Hübner F, Rzeppa S, Humpf HU. Intestinal metabolism of two A-type procyanidins using the pig cecum model: detailed structure elucidation of unknown catabolites with Fourier transform mass spectrometry (FTMS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:749-757. [PMID: 22175758 DOI: 10.1021/jf203927g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Procyanidins, as important secondary plant metabolites in fruits, berries, and beverages such as cacao and tea, are supposed to have positive health impacts, although their bioavailability is yet not clear. One important aspect for bioavailability is intestinal metabolism. The investigation of the microbial catabolism of A-type procyanidins is of great importance due to their more complex structure in comparison to B-type procyanidins. A-type procyanidins exhibit an additional ether linkage between the flavan-3-ol monomers. In this study two A-type procyanidins, procyanidin A2 and cinnamtannin B1, were incubated in the pig cecum model to mimic the degradation caused by the microbiota. Both A-type procyanidins were degraded by the microbiota. Procyanidin A2 as a dimer was degraded by about 80% and cinnamtannin B1 as a trimer by about 40% within 8 h of incubation. Hydroxylated phenolic compounds were quantified as degradation products. In addition, two yet unknown catabolites were identified, and the structures were elucidated by Fourier transform mass spectrometry.
Collapse
Affiliation(s)
- Anna Engemann
- NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| | | | | | | |
Collapse
|