1
|
Zhang Q, Zhu H, Wang R, He J, Ritzoulis C, Liu W, Tang W, Liu J. Fish oil emulsions stabilized by enzymatic hydrolysis, glycation, and fibrillation of β-Lg: Stability and EPA/DHA bioaccessibility. Food Chem 2024; 469:142550. [PMID: 39709919 DOI: 10.1016/j.foodchem.2024.142550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
This study investigated the stabilization mechanism, storage stability, and in vitro digestion characteristics of oil-in-water fish oil emulsions stabilized by β-Lg modified through enzymatic hydrolysis, glycation, and fibrillation. The stabilization mechanism was elucidated by comparing droplet size, ζ-potential, interfacial protein thickness, and microstructure. Results showed that β-Lg modified through these combined processes formed a three-dimensional network, providing superior stabilization, while other modified proteins stabilized emulsions via surface adsorption. Emulsion stabilized by combined modified β-Lg maintained z-average particle sizes below 550 nm, delayed the peroxide value peak by 3 days, reduced TBARS content by 0.5 μg/mL, and remained unstratified for up to 50 days. During simulated in vitro digestion, emulsions exhibited greater stability in the gastric phase but destabilized in the intestinal phase, leading to 10.46 % higher EPA/DHA bioaccessibility than those emulsions stabilized by untreated β-Lg.
Collapse
Affiliation(s)
- Qingchun Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Hao Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Rui Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jianfei He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, Thessaloniki, 57400, Greece
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
2
|
Qi Z, Pan N, Han D, He J, Li JA, Yang L, Wang X, Huang F. Enzymatic response of heparin-protamine complex: Spectroscopic investigation and application for lung adenocarcinoma cells detection. Int J Biol Macromol 2024; 277:134307. [PMID: 39084435 DOI: 10.1016/j.ijbiomac.2024.134307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Though the heparin-protamine complex (HP complex) is a crucial system utilized in clinical settings, the metabolic pathways of this complex remain inadequately understood. Herein, the enzymatic degradation of the heparin-protamine complex by trypsin and its broader implications were investigated. By utilizing fluorescent gold nanoclusters liganded with the HP complex (AuNCs-HP complex), we observed significant morphological and spectral changes during enzymatic degradation. Experiments showed that AuNCs-HP complex could be degraded and cleaved into small fragments by trypsin. Moreover, the AuNCs-HP complex demonstrated its potential as a highly sensitive spectral sensing platform, enabling precise measurement of trypsin activity with an outstanding detection limit (0.34 ng mL-1). Additionally, we explored its utility for specific tumor cell detection, focusing on lung adenocarcinoma cells, and successfully identified their presence through distinctive fluorescence changes. These remarkable findings not only contribute valuable insights into targeted degradation systems but also offer promising opportunities for cancer biomarker detection. The AuNCs-HP complex serves as an innovative tool for real-time trypsin activity monitoring, paving the way for advanced biomedical applications.
Collapse
Affiliation(s)
- Zichun Qi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Nana Pan
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Dongxue Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiahua He
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jin-Ao Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Luqi Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
3
|
Mohan Prakash RL, Ravi DA, Hwang DH, Kang C, Kim E. Identification of New Angiotensin-Converting Enzyme Inhibitory Peptides Isolated from the Hydrolysate of the Venom of Nemopilema nomurai Jellyfish. Toxins (Basel) 2024; 16:410. [PMID: 39330868 PMCID: PMC11435582 DOI: 10.3390/toxins16090410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Recently, jellyfish venom has gained attention as a promising reservoir of pharmacologically active compounds, with potential applications in new drug development. In this investigation, novel peptides, isolated from the hydrolysates of Nemopilema nomurai jellyfish venom (NnV), demonstrate potent inhibitory activities against angiotensin-converting enzyme (ACE). Proteolytic enzymes-specifically, papain and protamex-were utilized for the hydrolysis under optimized enzymatic conditions, determined by assessing the degree of hydrolysis through the ninhydrin test. Comparative analyses revealed that papain treatment exhibited a notably higher degree of NnV hydrolysis compared to protamex treatment. ACE inhibitory activity was quantified using ACE kit-WST, indicating a substantial inhibitory effect of 76.31% for the papain-digested NnV crude hydrolysate, which was validated by captopril as a positive control. The separation of the NnV-hydrolysate using DEAE sepharose weak-anion-exchange chromatography revealed nine peaks under a 0-1 M NaCl stepwise gradient, with peak no. 3 displaying the highest ACE inhibition of 96%. The further purification of peak no. 3 through ODS-C18 column reverse-phase high-performance liquid chromatography resulted in five sub-peaks (3.1, 3.2, 3.3, 3.4, and 3.5), among which 3.2 exhibited the most significant inhibitory activity of 95.74%. The subsequent analysis of the active peak (3.2) using MALDI-TOF/MS identified two peptides with distinct molecular weights of 896.48 and 1227.651. The peptide sequence determined by MS/MS analysis revealed them as IVGRPLANG and IGDEPRHQYL. The docking studies of the two ACE-inhibitory peptides for ACE molecule demonstrated a binding affinity of -51.4 ± 2.5 and -62.3 ± 3.3 using the HADDOCK scoring function.
Collapse
Affiliation(s)
| | - Deva Asirvatham Ravi
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Du Hyeon Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changkeun Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Euikyung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Mansuri MS, Bathla S, Lam TT, Nairn AC, Williams KR. Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells. J Proteomics 2024; 297:105109. [PMID: 38325732 PMCID: PMC10939724 DOI: 10.1016/j.jprot.2024.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors. There is therefore a need for a more standardized, general-purpose trypsin digestion protocol. Based on a review of the literature we delineate optimal conditions for carrying out trypsin digestions of complex proteomes from bulk samples to limiting amounts of protein extracts. Furthermore, we highlight recent developments and technological advances used in digestion protocols to quantify complex proteomes from single cells. SIGNIFICANCE: Currently, bottom-up MS-based proteomics is the method of choice for global proteome analysis. Since trypsin is the most utilized protease in bottom-up MS proteomics, delineating optimal conditions for carrying out trypsin digestions of complex proteomes in samples ranging from tissues to single cells should positively impact a broad range of biomedical research.
Collapse
Affiliation(s)
- M Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
5
|
Zhou Q, Yang D, Huang X, Chen Y, Tu Y, Yan J. Simple and sensitive fluorescence detection of trypsin with Cu 2+-Bovine serum albumin complex as a peroxidase mimic. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123241. [PMID: 37562212 DOI: 10.1016/j.saa.2023.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Trypsin is a serine protease playing a key role in regulating pancreatic exocrine function and can be applied as a marker for the diagnosis of pancreatitis. In this work, a convenient and sensitive fluorescent assay was developed toward trypsin. Hydrogen peroxide slowly oxidized a non-fluorescent o-phenylenediamine (OPD) into a fluorescent product 2,3-diaminophenothiazine (DAP) under the catalytic from copper ions. After the introduction of bovine serum albumin (BSA), the combination of BSA with copper ions formed a peroxidase mimic and significantly accelerated the reaction rate. As an efficient protease, trypsin cleaved the lysine and arginine residues in BSA. This destroyed the binding between Cu2+ and BSA, and brought in a reduction of the catalytic effect. The accompanying decrease in fluorescence provided a response to trypsin in the range of 0.01-600 ng/mL, with a detection limit of 0.007 ng/mL. The scheme had a good selectivity and was successfully applied to the detection of real samples.
Collapse
Affiliation(s)
- Qi Zhou
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Deyuan Yang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Xiujuan Huang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Yuanyuan Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Yifeng Tu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jilin Yan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|
6
|
Rodzik A, Railean V, Pomastowski P, Buszewski B, Szumski M. Immobilized enzyme microreactors for analysis of tryptic peptides in β-casein and β-lactoglobulin. Sci Rep 2023; 13:16551. [PMID: 37783762 PMCID: PMC10545664 DOI: 10.1038/s41598-023-43521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
In this study, our primary objective was to develop an effective analytical method for studying trypsin-digested peptides of two proteins commonly found in cow's milk: β-casein (βCN) and β-lactoglobulin (βLG). To achieve this, we employed two distinct approaches: traditional in-gel protein digestion and protein digestion using immobilized enzyme microreactors (μ-IMER). Both methods utilized ZipTip pipette tips filled with C18 reverse phase media for sample concentration. The μ-IMER was fabricated through a multi-step process that included preconditioning the capillary, modifying its surface, synthesizing a monolithic support, and further surface modification. Its performance was evaluated under HPLC chromatography conditions using a small-molecule trypsin substrate (BAEE). Hydrolysates from both digestion methods were analyzed using MALDI-TOF MS. Our findings indicate that the μ-IMER method demonstrated superior sequence coverage for oxidized molecules in βCN (33 ± 1.5%) and βLG (65 ± 3%) compared to classical in-gel digestion (20 ± 2% for βCN; 49 ± 2% for βLG). The use of ZipTips further improved sequence coverage in both classical in-gel digestion (26 ± 1% for βCN; 60 ± 4% for βLG) and μ-IMER (41 ± 3% for βCN; 80 ± 5% for βLG). Additionally, phosphorylations were identified. For βCN, no phosphorylation was detected using classical digestion, but the use of ZipTips showed a value of 27 ± 4%. With μ-IMER and μ-IMER-ZipTip, the values increased to 30 ± 2% and 33 ± 1%, respectively. For βLG, the use of ZipTip enabled the detection of a higher percentage of modified peptides in both classical (79 ± 2%) and μ-IMER (79 ± 4%) digestions. By providing a comprehensive comparison of traditional in-gel digestion and μ-IMER methods, this study offers valuable insights into the advantages and limitations of each approach, particularly in the context of complex biological samples. The findings set a new benchmark in protein digestion and analysis, highlighting the potential of μ-IMER systems for enhanced sequence coverage and post-translational modification detection.
Collapse
Affiliation(s)
- Agnieszka Rodzik
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland.
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland.
| | - Viorica Railean
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Michał Szumski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland.
| |
Collapse
|
7
|
Cavalcante KN, Feitor J, Morais ST, Nassu RT, Ahrné L, Cardoso DR. Impact of UV-C pretreatment on β-lactoglobulin hydrolysis by trypsin: production and bioavailability of bioactive peptides. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
8
|
Zhao M, Aweya JJ, Feng Q, Zheng Z, Yao D, Zhao Y, Chen X, Zhang Y. Ammonia stress affects the structure and function of hemocyanin in Penaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113827. [PMID: 36068754 DOI: 10.1016/j.ecoenv.2022.113827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic factors and climate change have serious effects on the aquatic ecosystem and aquaculture. Among water pollutants, ammonia has the greatest impact on aquaculture organisms such as penaeid shrimp because it makes them more susceptible to infections. In this study, we explored the effects of ammonia stress (0, 50, 100, and 150 mg/L) on the molecular structure and functions of the multifunctional respiratory protein hemocyanin (HMC) in Penaeus vannamei. While the mRNA expression of Penaeus vannamei hemocyanin (PvHMC) was up-regulated after ammonia stress, both plasma hemocyanin protein and oxyhemocyanin (OxyHMC) levels decreased. Moreover, ammonia stress changed the molecular structure of hemocyanin, modulated the expression of protein phosphatase 2 A (PP2A) and casein kinase 2α (CK2α) to regulate the phosphorylation modification of hemocyanin, and enhanced its degradation into fragments by trypsin. Under moderate ammonia stress conditions, hemocyanin also undergoes glycosylation to improve its in vitro antibacterial activity and binding with Gram-negative (Vibrio parahaemolyticus) and Gram-positive (Staphylococcus aureus) bacteria, albeit differently. The current findings indicate that P. vannamei hemocyanin undergoes adaptive molecular modifications under ammonia stress enabling the shrimp to survive and counteract the consequences of the stress.
Collapse
Affiliation(s)
- Mingming Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian, China
| | - Qian Feng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
9
|
Li H, Li T, Wang Y, Zhang S, Sheng H, Fu L. Liquid chromatography coupled to tandem mass spectrometry for comprehensive quantification of crustacean tropomyosin and arginine kinase in food matrix. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
High voltage electrical treatments can eco-efficiently promote the production of high added value peptides during chymotryptic hydrolysis of β-lactoglobulin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Zhang GY, Wang YW, Guo LY, Lin LR, Niu SP, Xiong CH, Wei JY. PEGylation and antioxidant effects of a human glutathione peroxidase 1 mutant. Aging (Albany NY) 2022; 14:443-461. [PMID: 35020600 PMCID: PMC8791217 DOI: 10.18632/aging.203822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
Human glutathione peroxidase1 (hGPx1) is a good antioxidant and potential drug, but the limited availability and poor stability of hGPx1 have affected its development and application. To solve this problem, we prepared a hGPx1 mutant (GPx1M) with high activity in an Escherichia coli BL21(DE3)cys auxotrophic strain using a single protein production (SPP) system. In this study, the GPx1M was conjugated with methoxypolyethylene glycol-succinimidyl succinate (SS-mPEG, Mw = 5 kDa) chains to enhance its stability. SS-mPEG-GPx1M and GPx1M exhibited similar enzymatic activity and stability toward pH and temperature change, and in a few cases, SS-mPEG-GPx1M was discovered to widen the range of pH stability and increase the temperature stability. Lys 38 was confirmed as PEGylated site by liquid-mass spectrometry. H9c2 cardiomyoblast cells and Sprague-Dawley (SD) rats were used to evaluate the effects of GPx1M and SS-mPEG-GPx1M on preventing or alleviating adriamycin (ADR)-mediated cardiotoxicity, respectively. The results indicated that GPx1M and SS-mPEG-GPx1M had good antioxidant effects in vitro and in vivo, and the effect of SS-mPEG-GPx1M is more prominent than GPx1M in vivo. Thus, PEGylation might be a promising method for the application of GPx1M as an important antioxidant and potential drug.
Collapse
Affiliation(s)
- Guang-Yuan Zhang
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Yan-Wei Wang
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Li-Ying Guo
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Liang-Ru Lin
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Shao-Peng Niu
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Chang-Hao Xiong
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Jing-Yan Wei
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130000, PR China
| |
Collapse
|
12
|
Amalia S, Angga SC, Iftitah ED, Septiana D, Anggraeny BOD, Warsito, Hasanah AN, Sabarudin A. Immobilization of trypsin onto porous methacrylate-based monolith for flow-through protein digestion and its potential application to chiral separation using liquid chromatography. Heliyon 2021; 7:e07707. [PMID: 34401587 PMCID: PMC8350527 DOI: 10.1016/j.heliyon.2021.e07707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/11/2021] [Accepted: 07/26/2021] [Indexed: 10/27/2022] Open
Abstract
Monolithic columns for analytical applications have attracted the researcher's attention. In this work, the laboratory-made organic-polymer monolithic column is modified with trypsin and further applied as a nanobiocatalyst microreactor and a stationary phase for separating chiral compounds by liquid chromatography. The monolith was synthesized by in-situ copolymerization of glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EDMA) or trimethylolpropane trimethacrylate (TRIM) as a crosslinking agent, with porogen of 1,4-butanediol/propanol/water (4:7:1 v/v) and AIBN as the radical polymerization initiator inside PEEK and silicosteel tubings (1.0 mm i.d × 100 mm) at 60 °C for 12 h. A total monomer ratio (%T) and crosslinking agent (%C) of 40:25 and 28:12 were applied to prepare poly-(GMA-co-EDMA) and poly-(GMA-co-TRIM), respectively. The produced monoliths were further modified by introducing trypsin (10 mg/L) through the ring-opening reaction of the epoxide group existing in the monolithic column. The trypsin-immobilized poly-(GMA-co-EDMA) monolithic column was applied as the nanobiocatalyst microreactor for online/flow-through and rapid digestion of β-casein sample into its peptide fragments. The trypsin-immobilized poly-(GMA-co-TRIM) column has potential application to be used as the HPLC stationary phase for the separation of R/S-citronellal enantiomers.
Collapse
Affiliation(s)
- Suci Amalia
- Department of Chemistry, Faculty of Science, Brawijaya University, Malang, 65154, Indonesia.,Department of Chemistry, Faculty of Science and Technology, Maulana Malik Ibrahim Islamic State University, Malang, 65144, Indonesia
| | - Stevin Carolius Angga
- Department of Chemistry, Faculty of Science, Brawijaya University, Malang, 65154, Indonesia
| | - Elvina Dhiaul Iftitah
- Department of Chemistry, Faculty of Science, Brawijaya University, Malang, 65154, Indonesia
| | - Dias Septiana
- Department of Chemistry, Faculty of Science, Brawijaya University, Malang, 65154, Indonesia
| | | | - Warsito
- Department of Chemistry, Faculty of Science, Brawijaya University, Malang, 65154, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Akhmad Sabarudin
- Department of Chemistry, Faculty of Science, Brawijaya University, Malang, 65154, Indonesia.,Research Center for Advanced System and Material Technology (ASMAT), Brawijaya University, Malang, 65145, Indonesia
| |
Collapse
|
13
|
Hinnenkamp C, Ismail BP. A proteomics approach to characterizing limited hydrolysis of whey protein concentrate. Food Chem 2021; 350:129235. [PMID: 33610844 DOI: 10.1016/j.foodchem.2021.129235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/14/2023]
Abstract
Whey Protein Concentrate was hydrolyzed by trypsin and Protease M, a novel endo/exopeptidase mix from Aspergillus oryzae. Protein peptide profiling demonstrated that Protease M preferentially hydrolyzedα-lactalbumin (α-la), while trypsin targeted β-lactoglobulin (β-lg). Peptide fractions were analyzed by liquid chromatography coupled with tandem mass-spectrometry to characterize differences in enzyme specificity, peptide hydrophobicity, and bioactivity, using bioinformatics tools. While trypsin cleaved at the C-terminal end of lysine and arginine, Protease M contributed to pepsin-like endopeptidase activity coupled with carboxyl, amino, and leucine exopeptidase activity, resulting in relatively more hydrophilic peptides compared to those released by trypsin hydrolysis. While trypsin and Protease M had varying specificity, 9 bioactive peptides were common among the hydrolysates, which was attributed to the exopeptidase activity of Protease M. The proteomics coupled with bioinformatics approach provided fundamental knowledge needed to optimize whey protein hydrolysis in a direct and efficient manner for targeted applications.
Collapse
Affiliation(s)
- Chelsey Hinnenkamp
- Food Science and Nutrition Department, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN, 55108, USA.
| | - Baraem P Ismail
- Food Science and Nutrition Department, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN, 55108, USA.
| |
Collapse
|
14
|
Lee TJ, Wu T, Kim YJ, Park JH, Lee DS, Bhang SH. Alternative method for trypsin-based cell dissociation using poly (amino ester) coating and pH 6.0 PBS. J BIOACT COMPAT POL 2021. [DOI: 10.1177/0883911520981710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To maintain the cellular functions of a stem cells for therapeutic tissue engineering, an advanced cell culture method for safe cell dissociation is necessary. We developed a novel cell dissociation method by applying pH-responsive bioreducible polymer on the surface of tissue culture plates (TCPs). We applied acid-responsive bioreducible poly (amino ester) (PAE) as a new candidate for surface coating method to develop alternative cell dissociation method against conventional enzyme (trypsin-ethylene diamine tetra acetic acid (EDTA)) treatment. Human adipose derived stem cells (hADSCs) were cultured on and dissociated from PAE-coated TCPs to compare cell adhesion, cell proliferation, cell viability, and functionality to those of the cells cultured on and dissociated with trypsin-EDTA from normal TCPs without PAE coating. To confirm the in vivo therapeutic efficacy of the hADSCs retrieved from PAE-coated TCPs compared to that of the cells retrieved from normal TCPs with trypsin-EDTA, we induced skin defects at the dorsal area of mice and injected the cells collected from both conditions. With the PAE coating method, cell adhesion, cell proliferation, cell viability, and functionality, especially the angiogenic efficacy, were well preserved when compared to those of the cells treated with trypsin-EDTA. In addition to in vitro results, injecting hADSCs retrieved from PAE-coated TCPs showed similar in vivo angiogenesis and wound closing efficiency compared to those of injecting hADSCs retrieved from normal TCPs with trypsin-EDTA treatment at 2 weeks after the transplantation into mouse skin wound models. We proposed the alternative method for the cell dissociation with pH-responsive bioreducible polymer, PAE. This PAE coating method may lead to the development of alternative cell dissociation method without using enzyme for future regenerative medicine and stem cell therapy.
Collapse
Affiliation(s)
- Tae-Jin Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Division of Medical Biotechnology, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Tepeng Wu
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung-Hwan Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
15
|
De Oliveira TV, Polêto MD, De Oliveira MR, Silva TJ, Barros E, Guimarães VM, Baracat-Pereira MC, Eller MR, Coimbra JSDR, De Oliveira EB. Casein-Derived Peptides with Antihypertensive Potential: Production, Identification and Assessment of Complex Formation with Angiotensin I-Converting Enzyme (ACE) through Molecular Docking Studies. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09616-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Sáez L, Murphy E, FitzGerald RJ, Kelly P. Exploring the Use of a Modified High-Temperature, Short-Time Continuous Heat Exchanger with Extended Holding Time (HTST-EHT) for Thermal Inactivation of Trypsin Following Selective Enzymatic Hydrolysis of the β-Lactoglobulin Fraction in Whey Protein Isolate. Foods 2019; 8:foods8090367. [PMID: 31455046 PMCID: PMC6770502 DOI: 10.3390/foods8090367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/03/2023] Open
Abstract
Tryptic hydrolysis of whey protein isolate under specific incubation conditions including a relatively high enzyme:substrate (E:S) ratio of 1:10 is known to preferentially hydrolyse β-lactoglobulin (β-LG), while retaining the other major whey protein fraction, i.e., α-lactalbumin (α-LA) mainly intact. An objective of the present work was to explore the effects of reducing E:S (1:10, 1:30, 1:50, 1:100) on the selective hydrolysis of β-LG by trypsin at pH 8.5 and 25 °C in a 5% (w/v) WPI solution during incubation periods ranging from 1 to 7 h. In addition, the use of a pilot-scale continuous high-temperature, short-time (HTST) heat exchanger with an extended holding time (EHT) of 5 min as a means of inactivating trypsin to terminate hydrolysis was compared with laboratory-based acidification to <pH 3 by the addition of HCl, and batch sample heating in a water bath at 85 °C. An E:S of 1:10 resulted in 100% and 30% of β-LG and α-LA hydrolysis, respectively, after 3 h, while an E:S reduction to 1:30 and 1:50 led >90% β-LG hydrolysis after respective incubation periods of 4 and 6 h, with <5% hydrolysis of α-LA in the case of 1:50. Continuous HTST-EHT treatment was shown to be an effective inactivation process allowing for the maintenance of substrate selectivity. However, HTST-EHT heating resulted in protein aggregation, which negatively impacts the downstream recovery of intact α-LA. An optimum E:S was determined to be 1:50, with an incubation time ranging from 3 h to 7 h leading to 90% β-LG hydrolysis and minimal degradation of α-LA. Alternative batch heating by means of a water bath to inactivate trypsin caused considerable digestion of α-LA, while acidification to <pH 3.0 restricted subsequent functional applications of the protein.
Collapse
Affiliation(s)
- Laura Sáez
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Food for Health Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Eoin Murphy
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
- Food for Health Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Richard J FitzGerald
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Phil Kelly
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland.
| |
Collapse
|
17
|
Production of Antioxidant and ACEI Peptides from Cheese Whey Discarded from Mexican White Cheese Production. Antioxidants (Basel) 2019; 8:antiox8060158. [PMID: 31163620 PMCID: PMC6617266 DOI: 10.3390/antiox8060158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 01/16/2023] Open
Abstract
Cheese whey, a byproduct of the cheese-making industry, is discarded in many countries in the environment, causing pollution. This byproduct contains high-quality proteins containing encrypted biologically active peptides. The objective of this work was to evaluate the suitability of using this waste to produce bioactive peptides by enzymatic hydrolysis with a digestive enzyme. Cheese whey from white cheese (Panela cheese) was concentrated to increase total protein and hydrolyzed with trypsin. A central composite design was used to find the best conditions of pH and temperature, giving the higher antioxidant capacity and Δ Angiotensin-converting enzyme inhibition (Δ ACEI) activity. Higher biological activities were found when hydrolysis was performed at 52 °C and a pH of 8.2. The maximum value for the 2,2- diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity was 26%, while the higher Δ ACE inhibition was 0.89. Significant correlations were found between these biological activities and the peptides separated by HPLC. The hydrophilic fraction (HI) showed highly significant correlations with the antioxidant capacity (r = 0.770) and with Δ ACE inhibition (r = 0.706). Antioxidant capacity showed a significant positive correlation with 34 peaks and Δ ACE inhibition with 33 peaks. The cheese whey was successfully used as raw material to produce peptides showing antioxidant capacity and ACEI activity.
Collapse
|
18
|
Chen H, Hong Q, Zhong J, Zhou L, Liu W, Luo S, Liu C. The enhancement of gastrointestinal digestibility of β‐LG by dynamic high‐pressure microfluidization to reduce its antigenicity. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hao Chen
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| | - Qitong Hong
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| | - Junzhen Zhong
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| | - Lei Zhou
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| | - Wei Liu
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| | - Shunjing Luo
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| | - Chengmei Liu
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| |
Collapse
|
19
|
Mao Y, Krischke M, Hengst C, Kulozik U. Comparison of the influence of pH on the selectivity of free and immobilized trypsin for β-lactoglobulin hydrolysis. Food Chem 2018; 253:194-202. [DOI: 10.1016/j.foodchem.2018.01.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 01/23/2018] [Indexed: 01/03/2023]
|
20
|
Dullius A, Goettert MI, de Souza CFV. Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.063] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
21
|
Li C, Wang F, Aweya JJ, Yao D, Zheng Z, Huang H, Li S, Zhang Y. Trypsin of Litopenaeus vannamei is required for the generation of hemocyanin-derived peptides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:95-104. [PMID: 29079148 DOI: 10.1016/j.dci.2017.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Hemocyanin is a copper containing respiratory glycoprotein in arthropods and mollusks, which also have multiple functions in vivo. Recent studies have shown that hemocyanin could generate several peptides, which play important roles in shrimp innate immunity. However, how these hemocyanin-derived peptides are generated is still largely unknown. In this study, we report for the first time that the generation of hemocyanin-derived peptides was closely correlated with trypsin expression in shrimp hepatopancreas following infection with different bacteria. RNA interference (RNAi) mediated knockdown of trypsin or treatment with the serine protease inhibitor, aprotinin, resulted in significant decrease in the levels of hemocyanin-derived peptides. Moreover, recombinant trypsin (rTrypsin) was able to hydrolyse hemocynin in vitro with the hydrolysate having a high bacterial agglutination activity while the denatured hemocynin untreated with rTrypsin lost its agglutination activity. Taken together, our current results showed that the generation of hemocyanin-derived peptides correlates with an increase trypsin expression.
Collapse
Affiliation(s)
- Changping Li
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Fan Wang
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Defu Yao
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhou Zheng
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - He Huang
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Yueling Zhang
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
22
|
Cheison SC, Kulozik U. Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: A review. Crit Rev Food Sci Nutr 2017; 57:418-453. [PMID: 25976220 DOI: 10.1080/10408398.2014.959115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proteins in solution are subject to myriad forces stemming from interactions with each other as well as with the solvent media. The role of the environmental conditions, namely pH, temperature, ionic strength remains under-estimated yet it impacts protein conformations and consequently its interaction with, and susceptibility to, the enzyme. Enzymes, being proteins are also amenable to the environmental conditions because they are either activated or denatured depending on the choice of the conditions. Furthermore, enzyme specificity is restricted to a narrow regime of optimal conditions while opportunities outside the optimum conditions remain untapped. In addition, the composition of protein substrate (whether mixed or single purified) have been underestimated in previous studies. In addition, protein pre-treatment methods like heat denaturation prior to hydrolysis is a complex phenomenon whose progression is influenced by the environmental conditions including the presence or absence of sugars like lactose, ionic strength, purity of the protein, and the molecular structure of the mixed proteins particularly presence of free thiol groups. In this review, we revisit protein hydrolysis with a focus on the impact of the hydrolysis environment and show that preference of peptide bonds and/or one protein over another during hydrolysis is driven by the environmental conditions. Likewise, heat-denaturing is a process which is dependent on not only the environment but the presence or absence of other proteins.
Collapse
Affiliation(s)
| | - Ulrich Kulozik
- b Chair for Food Process Engineering and Dairy Technology Department , ZIEL Technology Section, Technische Universität München , Weihenstephaner Berg 1, Freising , Germany
| |
Collapse
|
23
|
Blayo C, Vidcoq O, Lazennec F, Dumay E. Effects of high pressure processing (hydrostatic high pressure and ultra-high pressure homogenisation) on whey protein native state and susceptibility to tryptic hydrolysis at atmospheric pressure. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Hidaka T, Shimada A, Nakata Y, Kodama H, Kurihara H, Tokihiro T, Ihara S. Simple model of pH-induced protein denaturation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012709. [PMID: 26274205 DOI: 10.1103/physreve.92.012709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 06/04/2023]
Abstract
The pH-induced conformational changes of proteins are systematically studied in the framework of a hydrophobic-polar (HP) model, in which proteins are dramatically simplified as chains of hydrophobic (H) and polar (P) beads on a lattice. We express the electrostatic interaction, the principal driving force of pH-induced unfolding that is not included in the conventional HP model, as the repulsive energy term between P monomers. As a result of the exact enumeration of all of the 14- to 18-mers, it is found that lowest-energy states in many sequences change from single "native" conformations to multiple sets of "denatured" conformations with an increase in the electrostatic repulsion. The switching of the lowest-energy states occurs in quite a similar way to real proteins: it is almost always between two states, while in a small fraction of ≥16-mers it is between three states. We also calculate the structural fluctuations for all of the denatured states and find that the denatured states contain a broad range of incompletely unfolded conformations, similar to "molten globule" states referred to in acid or alkaline denatured real proteins. These results show that the proposed model provides a simple physical picture of pH-induced protein denaturation.
Collapse
Affiliation(s)
- T Hidaka
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - A Shimada
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Y Nakata
- Institute for Biology and Mathematics of Dynamic Cellular Processes (iBMath), The University of Tokyo, Komaba, Tokyo 153-8904, Japan
- Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - H Kodama
- Institute for Biology and Mathematics of Dynamic Cellular Processes (iBMath), The University of Tokyo, Komaba, Tokyo 153-8904, Japan
- Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - H Kurihara
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
- Institute for Biology and Mathematics of Dynamic Cellular Processes (iBMath), The University of Tokyo, Komaba, Tokyo 153-8904, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - T Tokihiro
- Institute for Biology and Mathematics of Dynamic Cellular Processes (iBMath), The University of Tokyo, Komaba, Tokyo 153-8904, Japan
- Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - S Ihara
- Institute for Biology and Mathematics of Dynamic Cellular Processes (iBMath), The University of Tokyo, Komaba, Tokyo 153-8904, Japan
- Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo 153-8904, Japan
| |
Collapse
|
25
|
Teng Z, Li Y, Niu Y, Xu Y, Yu L, Wang Q. Cationic β-lactoglobulin nanoparticles as a bioavailability enhancer: Comparison between ethylenediamine and polyethyleneimine as cationizers. Food Chem 2014; 159:333-42. [DOI: 10.1016/j.foodchem.2014.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/31/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
|
26
|
Mitropoulos V, Mütze A, Fischer P. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins. Adv Colloid Interface Sci 2014; 206:195-206. [PMID: 24332621 DOI: 10.1016/j.cis.2013.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/07/2013] [Accepted: 11/06/2013] [Indexed: 01/18/2023]
Abstract
Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates.
Collapse
|