1
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
2
|
Mohan CD, Shanmugam MK, Gowda SGS, Chinnathambi A, Rangappa KS, Sethi G. c-MET pathway in human malignancies and its targeting by natural compounds for cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155379. [PMID: 38503157 DOI: 10.1016/j.phymed.2024.155379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND c-MET is a receptor tyrosine kinase which is classically activated by HGF to activate its downstream signaling cascades such as MAPK, PI3K/Akt/mTOR, and STAT3. The c-MET modulates cell proliferation, epithelial-mesenchymal transition (EMT), immune response, morphogenesis, apoptosis, and angiogenesis. The c-MET has been shown to serve a prominent role in embryogenesis and early development. The c-MET pathway is deregulated in a broad range of malignancies, due to overexpression of ligands or receptors, genomic amplification, and MET mutations. The link between the deregulation of c-MET signaling and tumor progression has been well-documented. Overexpression or overactivation of c-MET is associated with dismal clinical outcomes and acquired resistance to targeted therapies. Since c-MET activation results in the triggering of oncogenic pathways, abrogating the c-MET pathway is considered to be a pivotal strategy in cancer therapeutics. Herein, an analysis of role of the c-MET pathway in human cancers and its relevance in bone metastasis and therapeutic resistance has been undertaken. Also, an attempt has been made to summarize the inhibitory activity of selected natural compounds towards c-MET signaling in cancers. METHODS The publications related to c-MET pathway in malignancies and its natural compound modulators were obtained from databases such as PubMed, Scopus, and Google Scholar and summarized based on PRISMA guidelines. Some of the keywords used for extracting relevant literature are c-MET, natural compound inhibitors of c-MET, c-MET in liver cancer, c-MET in breast cancer, c-MET in lung cancer, c-MET in pancreatic cancer, c-MET in head and neck cancer, c-MET in bone metastasis, c-MET in therapeutic resistance, and combination of c-MET inhibitors and chemotherapeutic agents. The chemical structure of natural compounds was verified in PubChem database. RESULTS The search yielded 3935 publications, of which 195 reference publications were used for our analysis. Clinical trials were referenced using ClinicalTrials.gov identifier. The c-MET pathway has been recognized as a prominent target to combat the growth, metastasis, and chemotherapeutic resistance in cancers. The key role of the c-MET in bone metastasis as well as therapeutic resistance has been elaborated. Also, suppressive effect of selected natural compounds on the c-MET pathway in clinical/preclinical studies has been discussed.
Collapse
Affiliation(s)
- Chakrabhavi Dhananjaya Mohan
- FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226 001, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | | | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kanchugarakoppal S Rangappa
- Institution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
3
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
4
|
Tolue Ghasaban F, Maharati A, Zangouei AS, Zangooie A, Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in head and neck cancers. Cancer Cell Int 2023; 23:170. [PMID: 37587481 PMCID: PMC10428558 DOI: 10.1186/s12935-023-03010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Although, there is a high rate of good prognosis in early stage head and neck tumors, about half of these tumors are detected in advanced stages with poor prognosis. A combination of chemotherapy, radiotherapy, and surgery is the treatment option in head and neck cancer (HNC) patients. Although, cisplatin (CDDP) as the first-line drug has a significant role in the treatment of HNC patients, CDDP resistance can be observed in a large number of these patients. Therefore, identification of the molecular mechanisms involved in CDDP resistance can help to reduce the side effects and also provides a better therapeutic management. MicroRNAs (miRNAs) as the post-transcriptional regulators play an important role in drug resistance. Therefore, in the present review we investigated the role of miRNAs in CDDP response of head and neck tumors. It has been reported that the miRNAs exerted their roles in CDDP response by regulation of signaling pathways such as WNT, NOTCH, PI3K/AKT, TGF-β, and NF-kB as well as apoptosis, autophagy, and EMT process. The present review paves the way to suggest a non-invasive miRNA based panel marker for the prediction of CDDP response among HNC patients. Therefore, such diagnostic miRNA based panel marker reduces the CDDP side effects and improves the clinical outcomes of these patients following an efficient therapeutic management.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Student research committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Vanauberg D, Schulz C, Lefebvre T. Involvement of the pro-oncogenic enzyme fatty acid synthase in the hallmarks of cancer: a promising target in anti-cancer therapies. Oncogenesis 2023; 12:16. [PMID: 36934087 PMCID: PMC10024702 DOI: 10.1038/s41389-023-00460-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023] Open
Abstract
An accelerated de novo lipogenesis (DNL) flux is a common characteristic of cancer cells required to sustain a high proliferation rate. The DNL enzyme fatty acid synthase (FASN) is overexpressed in many cancers and is pivotal for the increased production of fatty acids. There is increasing evidences of the involvement of FASN in several hallmarks of cancer linked to its ability to promote cell proliferation via membranes biosynthesis. In this review we discuss about the implication of FASN in the resistance to cell death and in the deregulation of cellular energetics by increasing nucleic acids, protein and lipid synthesis. FASN also promotes cell proliferation, cell invasion, metastasis and angiogenesis by enabling the building of lipid rafts and consequently to the localization of oncogenic receptors such as HER2 and c-Met in membrane microdomains. Finally, FASN is involved in immune escape by repressing the activation of pro-inflammatory cells and promoting the recruitment of M2 macrophages and T regulatory cells in the tumor microenvironment. Here, we provide an overview of the involvement of the pro-oncogenic enzyme in the hallmarks of cancer making FASN a promising target in anti-cancer therapy to circumvent resistance to chemotherapies.
Collapse
Affiliation(s)
- Dimitri Vanauberg
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
6
|
Shi XY, Zhang XL, Shi QY, Qiu X, Wu XB, Zheng BL, Jiang HX, Qin SY. IFN-γ affects pancreatic cancer properties by MACC1-AS1/MACC1 axis via AKT/mTOR signaling pathway. Clin Transl Oncol 2022; 24:1073-1085. [PMID: 35037236 DOI: 10.1007/s12094-021-02748-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Metastasis-related in colon cancer 1 (MACC1) is highly expressed in a variety of solid tumours, but its role in pancreatic cancer (PC) remains unknown. Interferon gamma (IFN-γ) affecting MACC1 expression was explored as the potential mechanism following its intervention. METHODS Expressions of MACC1 treated with IFN-γ gradient were confirmed by quantitative real-time PCR (qRT-PCR) and western blot (WB). Proliferation, migration, and invasion abilities of PC cells treated with IFN-γ were analysed by CCK8, EDU, colony formation, Transwell (with or without matrix gel) and wound-healing assays. Expression of antisense long non-coding RNA of MACC1, MACC1-AS1, and proteins of AKT/mTOR pathway, (pho-)AKT, and (pho-)mTOR was also assessed by qRT-PCR and WB. SiRNA kit and lentiviral fluid were conducted for transient expression of MACC1 and stable expression of MACC1-AS1, respectively. Rescue assays of cells overexpressing MACC1-AS1 and of cells silencing MACC1 were performed and cellular properties and proteins were assessed by the above-mentioned assays as well. RESULTS IFN-γ inhibited MACC1 expression in a time- and dose-dependent manner; 100 ng/mL IFN-γ generally caused downregulation of most significant (p ≤ 0.05). In vitro experiments revealed that IFN-γ decreased cellular proliferation, migration, and invasion abilities and downregulated the expression of pho-AKT and pho-mTOR (p ≤ 0.05). Conversely, overexpression of MACC1-AS1 upregulated pho-AKT and pho-mTOR proteins, and reversed cellular properties (p ≤ 0.05). Rescue assays alleviated the above changes of pho-AKT/ mTOR and cellular properties. CONCLUSION IFN-γ affected PC properties by MACC1-AS1/MACC1 axis via AKT/mTOR signaling pathway, which provides novel insight for candidate targets for treating PC.
Collapse
Affiliation(s)
- X-Y Shi
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - X-L Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Q-Y Shi
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - X Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - X-B Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - B-L Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - H-X Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - S-Y Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China.
| |
Collapse
|
7
|
Chen YQ, Song HY, Zhou ZY, Ma J, Luo ZY, Zhou Y, Wang JY, Liu S, Han XH. Osthole inhibits the migration and invasion of highly metastatic breast cancer cells by suppressing ITGα3/ITGβ5 signaling. Acta Pharmacol Sin 2022; 43:1544-1555. [PMID: 34426644 PMCID: PMC9160248 DOI: 10.1038/s41401-021-00757-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the leading cause of death in breast cancer patients. Osthole, as an active compound detected in the traditional Chinese medicine Wenshen Zhuanggu Formula, has shown a promising anti-metastatic activity in human breast cancer cells, but the underlying mechanisms remain ambiguous. In this study we elucidated the anti-metastatic mechanisms of osthole in highly metastatic breast cancer cells and a zebrafish xenograft model. We showed that the expression of integrin α3 (ITGα3) and integrin β5 (ITGβ5) was upregulated in highly metastatic MDA-MB-231, MDA-MB-231BO breast cancer cell lines but was downregulated in poorly metastatic MCF-7 breast cancer cell line, which might be the key targets of osthole's anti-metastatic action. Furthermore, we showed that knockdown of ITGα3 and ITGβ5 attenuated breast cancer cell migration and invasion possibly via suppression of FAK/Src/Rac1 pathway, whereas overexpression of ITGα3 and ITGβ5 caused the opposite effects. Consistently, osthole significantly inhibited breast cancer metastasis by downregulating ITGα3/ITGβ5 signaling in vitro and in vivo. These results provide new evidence that osthole may be developed as a candidate therapeutic drug for metastatic breast cancer.
Collapse
Affiliation(s)
- Yue-qiang Chen
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Hai-yan Song
- grid.411480.80000 0004 1799 1816Institute of Digestive Diseases, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Zhong-yan Zhou
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Jiao Ma
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Zhan-yang Luo
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Ying Zhou
- grid.412540.60000 0001 2372 7462Shanghai TCM-integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200082 China
| | - Jian-yi Wang
- grid.412585.f0000 0004 0604 8558Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Sheng Liu
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Xiang-hui Han
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| |
Collapse
|
8
|
Nascimento J, Mariot C, Vianna DRB, Kliemann LM, Chaves PS, Loda M, Buffon A, Beck RCR, Pilger DA. Fatty acid synthase as a potential new therapeutic target for cervical cancer. AN ACAD BRAS CIENC 2022; 94:e20210670. [PMID: 35507982 DOI: 10.1590/0001-3765202220210670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Fatty acid synthase (FASN) is the rate-limiting enzyme for the de novo synthesis of fatty acids in the cytoplasm of tumour cells. Many tumour cells express high levels of FASN, and its expression is associated with a poorer prognosis. Cervical cancer is a major public health problem, representing the fourth most common cancer affecting women worldwide. To date, only a few in silico studies have correlated FASN expression with cervical cancer. This study aimed to investigate in vitro FASN expression in premalignant lesions and cervical cancer samples and the effects of a FASN inhibitor on cervical cancer cells. FASN expression was observed in all cervical cancer samples with increased expression at more advanced cervical cancer stages. The FASN inhibitor (orlistat) reduced the in vitro cell viability of cervical cancer cells (C-33A, ME-180, HeLa and SiHa) in a time-dependent manner and triggered apoptosis. FASN inhibitor also led to cell cycle arrest and autophagy. FASN may be a potential therapeutic target for cervical cancer, and medicinal chemists, pharmaceutical researchers and formulators should consider this finding in the development of new treatment approaches for this cancer type.
Collapse
Affiliation(s)
- Jéssica Nascimento
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Camila Mariot
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Débora R B Vianna
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Lúcia M Kliemann
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre e Faculdade de Medicina, Departamento de Patologia, Rua Ramiro Barcelos, 2400, 90035-002 Porto Alegre, RS, Brazil
| | - Paula S Chaves
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Massimo Loda
- Weil Cornell Medicine, Department of Pathology and Laboratory Medicine, 1300 York Avenue, New York Presbyterian-Weill Cornell Campus, New York, NY, 10065, USA.,New York Genome Center Affiliate Member, 101 Avenue of the Americas, New York, NY, 10013, USA.,Broad Institute of MIT and Harvard University, 415 Main Street, Cambridge, MA, 2142, USA
| | - Andréia Buffon
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Ruy C R Beck
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Diogo A Pilger
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Borah B, Dwivedi KD, Kumar B, Chowhan LR. Recent advances in the microwave- and ultrasound-assisted green synthesis of coumarin-heterocycles. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103654] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
10
|
Lee SJ, Choi KM, Bang G, Park SG, Kim EB, Choi JW, Chung YH, Kim J, Lee SG, Kim E, Kim JY. Identification of Nucleolin as a Novel AEG-1-Interacting Protein in Breast Cancer via Interactome Profiling. Cancers (Basel) 2021; 13:cancers13112842. [PMID: 34200450 PMCID: PMC8201222 DOI: 10.3390/cancers13112842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is one of the most common malignant diseases worldwide. Astrocyte elevated gene-1 (AEG-1) is upregulated in breast cancer and regulates breast cancer cell proliferation and invasion. However, the molecular mechanisms by which AEG-1 promotes breast cancer have yet to be fully elucidated. In order to delineate the function of AEG-1 in breast cancer development, we mapped the AEG-1 interactome via affinity purification followed by LC-MS/MS. We identified nucleolin (NCL) as a novel AEG-1 interacting protein, and co-immunoprecipitation experiments validated the interaction between AEG-1 and NCL in breast cancer cells. The silencing of NCL markedly reduced not only migration/invasion, but also the proliferation induced by the ectopic expression of AEG-1. Further, we found that the ectopic expression of AEG-1 induced the tyrosine phosphorylation of c-Met, and NCL knockdown markedly reduced this AEG-1 mediated phosphorylation. Taken together, our report identifies NCL as a novel mediator of the oncogenic function of AEG-1, and suggests that c-Met could be associated with the oncogenic function of the AEG-1-NCL complex in the context of breast cancer.
Collapse
Affiliation(s)
- Seong-Jae Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Kyoung-Min Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (G.B.); (Y.-H.C.); (J.K.)
| | - Seo-Gyu Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Eun-Bi Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Jin-Woong Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Young-Ho Chung
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (G.B.); (Y.-H.C.); (J.K.)
| | - Jinyoung Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (G.B.); (Y.-H.C.); (J.K.)
| | - Seok-Geun Lee
- Bionanocomposite Research Center, Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Eunjung Kim
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Correspondence: (E.K.); (J.-Y.K.)
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
- Correspondence: (E.K.); (J.-Y.K.)
| |
Collapse
|
11
|
Interplay between Metabolism Reprogramming and Epithelial-to-Mesenchymal Transition in Cancer Stem Cells. Cancers (Basel) 2021; 13:cancers13081973. [PMID: 33923958 PMCID: PMC8072988 DOI: 10.3390/cancers13081973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Tumor cells display important plasticity potential. Notably, tumor cells have the ability to change toward immature cells called cancer stem cells under the influence of the tumor environment. Importantly, cancer stem cells are a small subset of relatively quiescent cells that, unlike rapidly dividing differentiated tumor cells, escape standard chemotherapies, causing relapse or recurrence of cancer. Interestingly, these cells adopt a specific metabolism. Most often, they mainly rely on glucose uptake and metabolism to sustain their energy needs. This metabolic reprogramming is set off by environmental factors such as pro-inflammatory signals or catecholamine hormones (epinephrine, norepinephrine). A better understanding of this process could provide opportunities to kill cancer stem cells. Indeed, it would become possible to develop drugs that act specifically on metabolic pathways used by these cells. These new drugs could be used to strengthen the effects of current chemotherapies and overcome cancers with poor prognoses. Abstract Tumor cells display important plasticity potential, which contributes to intratumoral heterogeneity. Notably, tumor cells have the ability to retrodifferentiate toward immature states under the influence of their microenvironment. Importantly, this phenotypical conversion is paralleled by a metabolic rewiring, and according to the metabostemness theory, metabolic reprogramming represents the first step of epithelial-to-mesenchymal transition (EMT) and acquisition of stemness features. Most cancer stem cells (CSC) adopt a glycolytic phenotype even though cells retain functional mitochondria. Such adaptation is suggested to reduce the production of reactive oxygen species (ROS), protecting CSC from detrimental effects of ROS. CSC may also rely on glutaminolysis or fatty acid metabolism to sustain their energy needs. Besides pro-inflammatory cytokines that are well-known to initiate the retrodifferentiation process, the release of catecholamines in the microenvironment of the tumor can modulate both EMT and metabolic changes in cancer cells through the activation of EMT transcription factors (ZEB1, Snail, or Slug (SNAI2)). Importantly, the acquisition of stem cell properties favors the resistance to standard care chemotherapies. Hence, a better understanding of this process could pave the way for the development of therapies targeting CSC metabolism, providing new strategies to eradicate the whole tumor mass in cancers with unmet needs.
Collapse
|
12
|
Osthole Inhibits Breast Cancer Progression through Upregulating Tumor Suppressor GNG7. JOURNAL OF ONCOLOGY 2021; 2021:6610511. [PMID: 33727922 PMCID: PMC7937475 DOI: 10.1155/2021/6610511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Osthole (OST) is a plant-derived compound that can inhibit the proliferation of tumor cells and has a tumor-suppressive effect in multiple types of cancers. However, the mechanisms of OST-mediated breast cancer (BrCa) inhibition were still largely unknown. In this study, we made full use of the GSE85871 dataset to identify potential targets of OST in BrCa via multiple bioinformatics analysis. Next, a series of in vitro experiments were conducted to check the role of GNG7 in BrCa and the relationship between OST and GNG7. Through a series of bioinformatics analyses, GNG7 was identified as a potential target of OST, which could be significant upregulated by OST exposure in BrCa cells. Besides, GNG7 was lowly expressed in BrCa tissues compared with normal breast tissues, and BrCa patients with low GNG7 expression had shorter overall survival (OS) and relapse-free survival (RFS) compared with those with high GNG7 expression. Moreover, GNG7 silencing significantly enhanced cell proliferation and inhibited apoptosis, and exogenous overexpression of GNG7 showed reverse effects on BrCa cells. Last but not least, GNG7 inhibition could notably rescue OST-mediated cytotoxic effects. In summary, we identified GNG7 as a novel target for OST in BrCa and a potential tumor suppressor. Thus, OST could be therapeutically beneficial for BrCa through a GNG7-dependent mechanism.
Collapse
|
13
|
Fan Y, Wei J, Guo L, Zhao S, Xu C, Sun H, Guo T. Osthole Reduces Mouse IOP Associated With Ameliorating Extracellular Matrix Expression of Trabecular Meshwork Cell. Invest Ophthalmol Vis Sci 2021; 61:38. [PMID: 32821914 PMCID: PMC7445364 DOI: 10.1167/iovs.61.10.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Elevation of IOP in POAG is thought to involve excessive accumulation of extracellular matrix in the trabecular meshwork (TM), leading to an increase in outflow resistance of the aqueous humor. Osthole, a coumarin derivative extracted from the fruit of a variety of plants, such as Cnidium monnieri, is reported to prevent profibrotic responses by inhibiting Smad signaling pathway activated by TGF-β in liver, kidney, and cardiac tissues. We tested if osthole can (1) inhibit TGF-β2–induced extracellular matrix expression in cultured human TM (HTM) cells, and (2) lower TGF-β2–induced ocular hypertension in the mouse. Methods Cultured HTM cells were treated with 5 ng/mL TGF-β2 for 48 hours, then with osthole for 24 hours. The expressions of fibronectin, collagen type IV, and laminin were assessed by quantitative PCR, Western blot, and immunocytochemistry. BALB/cJ mice were injected intravitreally with an adenoviral vector encoding a bioactive mutant of TGF-β2 (Ad.hTGF-β2226/228) in one eye to induce ocular hypertension, with the uninjected contralateral or Ad.Empty-injected eye serving as controls. Mice were then treated with a daily intraperitoneal injection of 30 mg/kg osthole. Conscious mouse IOP values were measured using a TonoLab rebound tonometer. Results In cultured HTM cells, stimulation with TGF-β2 increased expressions of fibronectin, collagen IV, and laminin. These in vitro changes were significantly and completely mitigated by osthole (10 µM). Daily intraperitoneal injections of 30 mg/kg osthole, starting either at day 0 (same day as Ad.hTGF-β2226/228 injection) or at day 14, significantly decreased TGF-β2–induced ocular hypertension in the mouse. In contrast, osthole did not affect IOP of control eyes. Conclusions These results demonstrated that osthole is capable of reducing TGF-β2–induced extracellular matrix expression in cultured HTM cells. It also reduced TGF-β2–induced ocular hypertension in the mouse. These findings indicate that this natural product may be useful as a novel treatment for POAG.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.,Department of Ophthalmology, the First Affiliated Hospital of Bengbu Medicine College, Bengbu, Anhui, China
| | - Jiahong Wei
- Bengbu Medicine College, Bengbu, Anhui, China
| | - Li Guo
- Department of Ophthalmology, Luan Affiliated Hospital of Anhui Medicine University, Luan, Anhui, China
| | - Siyu Zhao
- Bengbu Medicine College, Bengbu, Anhui, China
| | - Chenyu Xu
- Bengbu Medicine College, Bengbu, Anhui, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tao Guo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
14
|
Greenlee JD, Subramanian T, Liu K, King MR. Rafting Down the Metastatic Cascade: The Role of Lipid Rafts in Cancer Metastasis, Cell Death, and Clinical Outcomes. Cancer Res 2021; 81:5-17. [PMID: 32999001 PMCID: PMC7952000 DOI: 10.1158/0008-5472.can-20-2199] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Lipid rafts are tightly packed, cholesterol- and sphingolipid-enriched microdomains within the plasma membrane that play important roles in many pathophysiologic processes. Rafts have been strongly implicated as master regulators of signal transduction in cancer, where raft compartmentalization can promote transmembrane receptor oligomerization, shield proteins from enzymatic degradation, and act as scaffolds to enhance intracellular signaling cascades. Cancer cells have been found to exploit these mechanisms to initiate oncogenic signaling and promote tumor progression. This review highlights the roles of lipid rafts within the metastatic cascade, specifically within tumor angiogenesis, cell adhesion, migration, epithelial-to-mesenchymal transition, and transendothelial migration. In addition, the interplay between lipid rafts and different modes of cancer cell death, including necrosis, apoptosis, and anoikis, will be described. The clinical role of lipid raft-specific proteins, caveolin and flotillin, in assessing patient prognosis and evaluating metastatic potential of various cancers will be presented. Collectively, elucidation of the complex roles of lipid rafts and raft components within the metastatic cascade may be instrumental for therapeutic discovery to curb prometastatic processes.
Collapse
Affiliation(s)
- Joshua D Greenlee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Tejas Subramanian
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Kevin Liu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
15
|
Zhu M, Shi W, Chen K, Hu H, Ye X, Jiang Y. Pulsatilla saponin E suppresses viability, migration, invasion and promotes apoptosis of NSCLC cells through negatively regulating Akt/FASN pathway via inhibition of flotillin-2 in lipid raft. J Recept Signal Transduct Res 2020; 42:23-33. [PMID: 33243063 DOI: 10.1080/10799893.2020.1839764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Pulsatilla saponins from pulsatilla chinensis (Bunge) Regel have potential anti-tumor activities to certain human cancers. However, the roles of pulsatilla saponin E separated from pulsatilla saponins in non-small cell lung cancer (NSCLC) have not been reported. MATERIALS AND METHODS After treating NSCLC cells by pulsatilla saponin E at different concentrations, cell viability was measured by MTT and CCK-8 assays, and cell migration, invasion and apoptosis were detected by scratch wound-healing, transwell and flow cytometry assays. The contents of free cholesterol (FC) and total cholesterol (TC) were measured by high performance liquid chromatography (HPLC). The expression levels of flotillin-1, flotillin-2, Akt, fatty acid synthase (FASN) were detected by qRT-PCR and Western blot assays. RESULTS Pulsatilla saponin E suppressed viability, migration, invasion and promoted apoptosis of NSCLC cells followed by regulation of apoptosis-related proteins, reduced contents of FC and TC, and the expression levels of flotillin-1, flotillin-2, Akt, and FASN in a concentration-dependent manner. However, the inhibitory effects of pulsatilla saponin E on viability, migration, invasion of A549 cells and the expression levels of flotillin-1, flotillin-2, Akt, and FASN were reversed by flotillin-2 overexpression. CONCLUSIONS Our study revealed that pulsatilla saponin E suppressed migration, invasion and promoted apoptosis of NSCLC cells through negatively regulating Akt/FASN signaling pathway via the inhibition of flotillin-2 in lipid raft (LR). The current findings could be explored for developing a novel therapeutic drug for NSCLC treatment.
Collapse
Affiliation(s)
- Minghua Zhu
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Wei Shi
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Ke Chen
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Huiqun Hu
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Xiangqing Ye
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Yinfang Jiang
- Department of Cardiovascular Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| |
Collapse
|
16
|
Sumorek-Wiadro J, Zając A, Langner E, Skalicka-Woźniak K, Maciejczyk A, Rzeski W, Jakubowicz-Gil J. Antiglioma Potential of Coumarins Combined with Sorafenib. Molecules 2020; 25:E5192. [PMID: 33171577 PMCID: PMC7664656 DOI: 10.3390/molecules25215192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Coumarins, which occur naturally in the plant kingdom, are diverse class of secondary metabolites. With their antiproliferative, chemopreventive and antiangiogenetic properties, they can be used in the treatment of cancer. Their therapeutic potential depends on the type and location of the attachment of substituents to the ring. Therefore, the aim of our study was to investigate the effect of simple coumarins (osthole, umbelliferone, esculin, and 4-hydroxycoumarin) combined with sorafenib (specific inhibitor of Raf (Rapidly Accelerated Fibrosarcoma) kinase) in programmed death induction in human glioblastoma multiforme (T98G) and anaplastic astrocytoma (MOGGCCM) cells lines. Osthole and umbelliferone were isolated from fruits: Mutellina purpurea L. and Heracleum leskowii L., respectively, while esculin and 4-hydroxycoumarin were purchased from Sigma Aldrich (St. Louis, MO, USA). Apoptosis, autophagy and necrosis were identified microscopically after straining with specific fluorochromes. The level of caspase 3, Beclin 1, PI3K (Phosphoinositide 3-kinase), and Raf kinases were estimated by immunoblotting. Transfection with specific siRNA (small interfering RNA) was used to block Bcl-2 (B-cell lymphoma 2), Raf, and PI3K expression. Cell migration was tested with the wound healing assay. The present study has shown that all the coumarins eliminated the MOGGCCM and T98G tumor cells mainly via apoptosis and, to a lesser extent, via autophagy. Osthole, which has an isoprenyl moiety, was shown to be the most effective compound. Sorafenib did not change the proapoptotic activity of this coumarin; however, it reduced the level of autophagy. At the molecular level, the induction of apoptosis was associated with a decrease in the expression of PI3K and Raf kinases, whereas an increase in the level of Beclin 1 was observed in the case of autophagy. Inhibition of the expression of this protein by specific siRNA eliminated autophagy. Moreover, the blocking of the expression of Bcl-2 and PI3K significantly increased the level of apoptosis. Osthole and sorafenib successfully inhibited the migration of the MOGGCCM and T98G cells.
Collapse
Affiliation(s)
- Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (A.M.); (W.R.)
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (A.M.); (W.R.)
| | - Ewa Langner
- Department of Medical Biology, Institute of Rural Health, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (A.M.); (W.R.)
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (A.M.); (W.R.)
- Department of Medical Biology, Institute of Rural Health, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (A.M.); (W.R.)
| |
Collapse
|
17
|
Lin FJ, Lin XD, Xu LY, Zhu SQ. Long Noncoding RNA HOXA11-AS Modulates the Resistance of Nasopharyngeal Carcinoma Cells to Cisplatin via miR-454-3p/c-Met. Mol Cells 2020; 43:856-869. [PMID: 33115978 PMCID: PMC7604026 DOI: 10.14348/molcells.2020.0133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
To elucidate the mechanism of action of HOXA11-AS in modulating the cisplatin resistance of nasopharyngeal carcinoma (NPC) cells. HOXA11-AS and miR-454-3p expression in NPC tissue and cisplatin-resistant NPC cells were measured via quantitative reverse transcriptase polymerase chain reaction. NPC parental cells (C666-1 and HNE1) and cisplatin-resistant cells (C666-1/DDP and HNE1/DDP) were transfected and divided into different groups, after which the MTT method was used to determine the inhibitory concentration 50 (IC50) of cells treated with different concentrations of cisplatin. Additionally, a clone formation assay, flow cytometry and Western blotting were used to detect DDP-induced changes. Thereafter, xenograft mouse models were constructed to verify the in vitro results. Obviously elevated HOXA11-AS and reduced miR-454-3p were found in NPC tissue and cisplatin-resistant NPC cells. Compared to the control cells, cells in the si-HOXA11-AS group showed sharp decreases in cell viability and IC50, and these results were reversed in the miR-454-3p inhibitor group. Furthermore, HOXA11-AS targeted miR-454-3p, which further targeted c-Met. In comparison with cells in the control group, HNE1/DDP and C666-1/DDP cells in the si-HOXA11-AS group demonstrated fewer colonies, with an increase in the apoptotic rate, while the expression levels of c-Met, p-Akt/Akt and p-mTOR/mTOR decreased. Moreover, the si-HOXA11-AS-induced enhancement in sensitivity to cisplatin was abolished by miR-454-3p inhibitor transfection. The in vivo experiment showed that DDP in combination with si-HOXA11-AS treatment could inhibit the growth of xenograft tumors. Silencing HOXA11-AS can inhibit the c-Met/AKT/mTOR pathway by specifically upregulating miR-454-3p, thus promoting cell apoptosis and enhancing the sensitivity of cisplatin-resistant NPC cells to cisplatin.
Collapse
Affiliation(s)
- Feng-Jie Lin
- Department of Head & Neck Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Xian-Dong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Lu-Ying Xu
- Department of Head & Neck Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Shi-Quan Zhu
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| |
Collapse
|
18
|
Kumar A, Rajpoot A, Imroze F, Maddala S, Dutta S, Venkatakrishnan P. Linear Coumarinacenes Beyond Benzo[
g
]coumarins: Synthesis and Promising Characteristics. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Abhinav Kumar
- Department of Chemistry Indian Institute of Technology Madras 600 036 Chennai – Tamil Nadu India
| | - Anuj Rajpoot
- Department of Electrical Engineering Indian Institute of Technology Madras 600 036 Chennai – Tamil Nadu India
| | - Fiheon Imroze
- Department of Electrical Engineering Indian Institute of Technology Madras 600 036 Chennai – Tamil Nadu India
| | - Sudhakar Maddala
- Department of Chemistry Indian Institute of Technology Madras 600 036 Chennai – Tamil Nadu India
| | - Soumya Dutta
- Department of Electrical Engineering Indian Institute of Technology Madras 600 036 Chennai – Tamil Nadu India
| | | |
Collapse
|
19
|
Zhang WL, Wang SS, Jiang YP, Liu Y, Yu XH, Wu JB, Wang K, Pang X, Liao P, Liang XH, Tang YL. Fatty acid synthase contributes to epithelial-mesenchymal transition and invasion of salivary adenoid cystic carcinoma through PRRX1/Wnt/β-catenin pathway. J Cell Mol Med 2020; 24:11465-11476. [PMID: 32820613 PMCID: PMC7576276 DOI: 10.1111/jcmm.15760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
Fatty acid synthase (FASN) has been shown to be selectively up‐regulated in cancer cells to drive the development of cancer. However, the role and associated mechanism of FASN in regulating the malignant progression of salivary adenoid cystic carcinoma (SACC) still remains unclear. In this study, we demonstrated that FASN inhibition attenuated invasion, metastasis and EMT of SACC cells as well as the expression ofPRRX1, ZEB1, Twist, Slug and Snail, among which the level of PRRX1 changed the most obviously. Overexpression of PRRX1 restored migration and invasion in FASN knockdown cells, indicating that PRRX1 is an important downstream target of FASN signalling. Levels of cyclin D1 and c‐Myc, targets of Wnt/β‐catenin pathway, were significantly decreased by FASN silencing and restored by PRRX1 overexpression. In addition, FASN expression was positively associated with metastasis and poor prognosis of SACC patients as well as with the expression of PRRX1, cyclin D1 and c‐Myc in SACC tissues. Our findings revealed that FASN in SACC progression may induce EMT in a PRRX1/Wnt/β‐catenin dependent manner.
Collapse
Affiliation(s)
- Wei-Long Zhang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Sha-Sha Wang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Ping Jiang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China.,Department of Implant, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Liu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xiang-Hua Yu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Jing-Biao Wu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ke Wang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin Pang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Peng Liao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin-Hua Liang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Ling Tang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| |
Collapse
|
20
|
Liang J, Zhou J, Xu Y, Huang X, Wang X, Huang W, Li H. Osthole inhibits ovarian carcinoma cells through LC3-mediated autophagy and GSDME-dependent pyroptosis except for apoptosis. Eur J Pharmacol 2020; 874:172990. [PMID: 32057718 DOI: 10.1016/j.ejphar.2020.172990] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Ovarian carcinoma (OC) begins in the ovaries and remains a highly lethal malignancy. Despite great efforts have been made to fight against OC, there still remain limited therapeutic options owing to chemotherapy drug resistance and serious side effects. Osthole is a derivative of coumarin and extracted from Cnidium monnieri (L.) Cusson, which has been drawn more attention due to its high biological activity in various disease. However, the underlying mechanism of osthole in OC is still unclear. In this study, we aim to evaluate the mechanism of osthole against OC cells. Methodologically, Cell Counting Kit-8 (CCK-8) and LIVE/DEAD™ Cell Imaging experiments were employed to assess cell viability. 2',7'-Dichlorofluorescin diacetate (DCFH-DA) staining, flow cytometry, Hoechst staining, JC-1 staining assay and western blotting were performed to study apoptosis. Transmission electron microscopy, western blotting and monodansyl cadaverine (MDC) staining assay were used to study autophagy. Western blotting and microscopy image were employed to determine pyroptosis. Our results demonstrated that osthole could significantly suppress OC cells growth in a dose-dependent manner. We further proved that osthole could inhibit OC cells growth by mitochondria-mediated apoptosis. Meanwhile, we also discovered that osthole could trigger cell autophagy and lead to cell death. Furthermore, our study revealed that osthole could lead to pyroptosis through inducing the cleavage of gasdermin E (c-GSDME) level. Taken together, Osthole could significantly suppress the growth of OC cells and induce OC cells death via apoptosis, pyroptosis and autophagy, which is a promising new drug for the treatment of OC.
Collapse
Affiliation(s)
- Jing Liang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianlong Zhou
- School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Youqin Xu
- School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaofei Huang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xuefei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wenhua Huang
- School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Hui Li
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Lu K, Lin J, Jiang J. Osthole inhibited cell proliferation and induced cell apoptosis through decreasing CPEB2 expression via up-regulating miR-424 in endometrial carcinoma. J Recept Signal Transduct Res 2020; 40:89-96. [PMID: 31971049 DOI: 10.1080/10799893.2019.1710846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Endometrial carcinoma (EC) was the fourth female malignancies in developed countries. Given that the prognosis of EC is extremely poor, it is vital to investigate its pathogenesis and effective therapeutic targets. However, the mechanism of osthole in EC remains unknown.Materials and methods: Firstly, the different doses of osthole (0, 50, 100, and 200 μM) were used to treat the Ishikawa and KLE cells. The cell proliferation, apoptosis, and cell cycle were measured by cell counting kit-8 (CCK-8), Annexin V-FITC/PI, and cell cycle assays. The apoptosis-related protein levels were examined by western blot. The miR-424 levels in Ishikawa and KLE cells were assessed by quantitative RT-PCR (qRT-PCR). Also, the binding of miR-424 and cytoplasmic polyadenylation element binding protein 2 (CEPB2) was detected by the luciferase reporter assay.Results: In this study, the increasing dose of osthole inhibited proliferation and induced apoptosis of Ishikawa and KLE cells. Moreover, the increasing dose of osthole up-regulated miR-424 and down-regulated the expression of CPEB2. CPEB2 was proved to be the target gene of miR-424. Interestingly, the over-expression of CPEB2 could reverse the changes of osthole-induced proliferation and apoptosis of Ishikawa and KLE cells.Conclusions: In summary, we provided first evidences that osthole inhibited proliferation and induced apoptosis through up-regulating miR-424 to inhibit expression of CPEB2 in EC. Our findings indicated that osthole might act as a novel and potential therapeutic agent for the treatment of EC.
Collapse
Affiliation(s)
- Kena Lu
- Department of Gynecology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi Zhuang Autonomous Region, Nanning City, China
| | - Jiajing Lin
- Department of Gynecology, Liuzhou Worker's Hospital, Guangxi Zhuang Autonomous Region, Liuzhou City, China
| | - Jun Jiang
- Department of Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, China
| |
Collapse
|
22
|
Yadav D, Ansari MA, Kumar M, Singh MS. Metal‐ and Catalyst‐Free One‐Pot Cascade Coupling of α‐Enolic Dithioesters with in situ Generated 4‐Chloro‐3‐formylcoumarin: Access to Thioxothiopyrano[3,2‐
c
]chromen‐5(2
H
)‐ones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Dhananjay Yadav
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Monish A. Ansari
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Mitilesh Kumar
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
23
|
Lee CH. Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids. Cancers (Basel) 2019; 11:E1841. [PMID: 31766574 PMCID: PMC6966475 DOI: 10.3390/cancers11121841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a key process in the progression of malignant cancer. Therefore, blocking the EMT can be a critical fast track for the development of anticancer drugs. In this paper, we update recent research output of EMT and we explore suppression of EMT by natural anti-inflammatory compounds and pro-resolving lipids.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Korea
| |
Collapse
|
24
|
Tong G, Cheng B, Li J, Wu X, Nong Q, He L, Li X, Li L, Wang S. MACC1 regulates PDL1 expression and tumor immunity through the c-Met/AKT/mTOR pathway in gastric cancer cells. Cancer Med 2019; 8:7044-7054. [PMID: 31557409 PMCID: PMC6853821 DOI: 10.1002/cam4.2542] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/19/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Immunotherapy and its mechanisms are being studied in a wide variety of cancers. Programmed cell death ligand 1 (PDL1) is associated with immune evasion in numerous tumor types. Here, we aimed to assess the relationship between metastasis associated in colon cancer‐1 (MACC1) and PDL1 and examine their effects on gastric cancer (GC) tumor immunity. Methods The expression of MACC1, c‐Met, and PDL1 in human GC tissues was first assessed using quantitative RT‐PCR (qRT‐PCR) and immunohistochemistry. We then focused on the relationships among MACC1, c‐Met, and PDL1 using RT‐PCR and western blotting after cell transfection and inhibitor treatment in vitro and on the identification of their roles in immune killing in vitro and in vivo. Results We found that expression of MACC1, c‐Met, and PDL1 was upregulated in human GC tissues, and there was a positive correlation between the expression levels. In addition, we found that ectopic expression of MACC1 (silencing and overexpression by transfection) resulted in corresponding changes in c‐Met and PDL1 expression levels, and c‐Met/AKT/mTOR pathway inhibitors (SU11274, MK2206, and rapamycin) blocked the regulation of PDL1 expression by MACC1. Furthermore, silencing of MACC1 led to an increase in antitumor and immune killing in vitro and in vivo, and overexpression of MACC1 resulted in a decrease in tumor immunity in vitro and in vivo. Conclusions From these data, we infer that MACC1 regulates PDL1 expression and tumor immunity through the c‐Met/AKT/mTOR pathway in GC cells and suggest that MACC1 may be a therapeutic target for GC immunotherapy.
Collapse
Affiliation(s)
- Gangling Tong
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Boran Cheng
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jingzhang Li
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, China
| | - Xuan Wu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qiaohong Nong
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lirui He
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xi Li
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Laiqing Li
- Guangzhou Youdi Bio-technology Co., Ltd, Guangzhou, China
| | - Shubin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
25
|
Revilla G, Corcoy R, Moral A, Escolà-Gil JC, Mato E. Cross-Talk between Inflammatory Mediators and the Epithelial Mesenchymal Transition Process in the Development of Thyroid Carcinoma. Int J Mol Sci 2019; 20:ijms20102466. [PMID: 31109060 PMCID: PMC6566886 DOI: 10.3390/ijms20102466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
There is strong association between inflammatory processes and their main metabolic mediators, such as leptin, adiponectin secretion, and low/high-density lipoproteins, with the cancer risk and aggressive behavior of solid tumors. In this scenario, cancer cells (CCs) and cancer stem cells (CSCs) have important roles. These cellular populations, which come from differentiated cells and progenitor stem cells, have increased metabolic requirements when it comes to maintaining or expanding the tumors, and they serve as links to some inflammatory mediators. Although the molecular mechanisms that are involved in these associations remain unclear, the two following cellular pathways have been suggested: 1) the mesenchymal-epithelial transition (MET) process, which permits the differentiation of adult stem cells throughout the acquisition of cell polarity and the adhesion to epithelia, as well to new cellular lineages (CSCs); and, 2) a reverse process, termed the epithelial-mesenchymal transition (EMT), where, in pathophysiological conditions (tissue injury, inflammatory process, and oxidative stress), the differentiated cells can acquire a multipotent stem cell-like phenotype. The molecular mechanisms that regulate both EMT and MET are complex and poorly understood. Especially, in the thyroid gland, little is known regarding MET/EMT and the role of CCs or CSCs, providing an exciting, new area of knowledge to be investigated. This article reviews the progress to date in research on the role of inflammatory mediators and metabolic reprogramming during the carcinogenesis process of the thyroid gland and the EMT pathways.
Collapse
Affiliation(s)
- Giovanna Revilla
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau (HSCSP), 08041 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Rosa Corcoy
- Department of Endocrinology, Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Antonio Moral
- Department of General Surgery-Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Departament de Cirugia, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau (HSCSP), 08041 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Eugenia Mato
- Department of Endocrinology, Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
26
|
Patidar K, Panwar U, Vuree S, Sweta J, Sandhu MK, Nayarisseri A, Singh SK. An In silico Approach to Identify High Affinity Small Molecule
Targeting m-TOR Inhibitors for the Clinical Treatment of
Breast Cancer. Asian Pac J Cancer Prev 2019; 20:1229-1241. [PMID: 31030499 PMCID: PMC6948900 DOI: 10.31557/apjcp.2019.20.4.1229] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most frequent malignancy among women. It is a heterogeneous disease with different subtypes defined by its hormone receptor. A hormone receptor is mainly concerned with the progression of the PI3K/AKT/mTOR pathway which is often dysregulated in breast cancer. This is a major signaling pathway that controls the activities such as cell growth, cell division, and cell proliferation. The present study aims to suppress mTOR protein by its various inhibitors and to select one with the highest binding affinity to the receptor protein. Out of 40 inhibitors of mTOR against breast cancer, SF1126 was identified to have the best docking score of -8.705, using Schrodinger Suite which was further subjected for high throughput screening to obtain best similar compound using Lipinski’s filters. The compound obtained after virtual screening, ID: ZINC85569445 is seen to have the highest affinity with the target protein mTOR. The same result based on the binding free energy analysis using MM-GBSA showed that the compound ZINC85569445 to have the the highest binding free energy. The next study of interaction between the ligand and receptor protein with the pharmacophore mapping showed the best conjugates, and the ZINC85569445 can be further studied for future benefits of treatment of breast cancer.
Collapse
Affiliation(s)
- Khushboo Patidar
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India. ,
| | - Umesh Panwar
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi,Tamil Nadu, India
| | - Sugunakar Vuree
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Jajoriya Sweta
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India. ,
| | - Manpreet Kaur Sandhu
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India. ,
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India. , ,Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi,Tamil Nadu, India.,Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd., Indore, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi,Tamil Nadu, India
| |
Collapse
|
27
|
Kang H, Kim H, Lee S, Youn H, Youn B. Role of Metabolic Reprogramming in Epithelial⁻Mesenchymal Transition (EMT). Int J Mol Sci 2019; 20:ijms20082042. [PMID: 31027222 PMCID: PMC6514888 DOI: 10.3390/ijms20082042] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Activation of epithelial–mesenchymal transition (EMT) is thought to be an essential step for cancer metastasis. Tumor cells undergo EMT in response to a diverse range of extra- and intracellular stimulants. Recently, it was reported that metabolic shifts control EMT progression and induce tumor aggressiveness. In this review, we summarize the involvement of altered glucose, lipid, and amino acid metabolic enzyme expression and the underlying molecular mechanisms in EMT induction in tumor cells. Moreover, we propose that metabolic regulation through gene-specific or pharmacological inhibition may suppress EMT and this treatment strategy may be applied to prevent tumor progression and improve anti-tumor therapeutic efficacy. This review presents evidence for the importance of metabolic changes in tumor progression and emphasizes the need for further studies to better understand tumor metabolism.
Collapse
Affiliation(s)
- Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
28
|
Yang Y, Ren F, Tian Z, Song W, Cheng B, Feng Z. Osthole Synergizes With HER2 Inhibitor, Trastuzumab in HER2-Overexpressed N87 Gastric Cancer by Inducing Apoptosis and Inhibition of AKT-MAPK Pathway. Front Pharmacol 2018; 9:1392. [PMID: 30538636 PMCID: PMC6277458 DOI: 10.3389/fphar.2018.01392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023] Open
Abstract
Background and Purpose: Although trastuzumab has shown considerable activity in the treatment of HER2-positive breast and gastric cancers, a significant proportion of patients do not respond to trastuzumab. Recent studies revealed that osthole, an active coumarin isolated from Cnidium monnieri (L.) Cusson possesses potent anti-tumor activity. Here, we for the first time investigated the anti-tumor activity of trastuzumab in combination with osthole in HER2-overexpressing cancers. Materials and Methods: N87 and SK-BR-3 cell lines, which were HER2-overexpressing cancer cells were used in our study. Cell Counting Kit-8 (CCK-8) assay was utilized to test the inhibitory effects of trastuzumab plus osthole. Combination index (CI) values were calculated using the Chou-Talalay method. Fluorescence-Activated Cell Sorter (FACS) assay was used to examine the cell cycle change and apoptosis upon combinatorial treatment. N87 tumor xenografts were established to evaluate in vivo effects of trastuzumab plus osthole. In addition, molecular mechanisms were analyzed by Western blot in vitro and in vivo. Results: As shown in our study, osthole alone exhibited effective anti-tumor activity against HER2-overexpressed N87 gastric cancer cells and SK-BR-3 breast cancer cells, which may be attributed to cell cycle arrest on G2/M phase and apoptosis. More importantly, our data demonstrated that trastuzumab plus osthole was much more potent than either agent alone in inhibiting the growth of N87 cancer cells in vitro and in vivo, which may be partly explained by the enhanced apoptosis upon the combinatorial treatment. Besides these, we also observed a significant decrease on the phosphorylation of AKT and MAPK in N87 cells when treated with trastuzumab plus osthole compared to either agent alone. Further data from N87 tumor xenografts revealed that trastuzumab plus osthole exerted their synergistic effects mainly on AKT signaling pathway. Conclusion: Collectively, these results support the clinical development of combination osthole with trastuzumab for the treatment of HER2-overexpressed gastric cancer.
Collapse
Affiliation(s)
- Yun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, China
| | - Feng Ren
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ziyin Tian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Wei Song
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Binfeng Cheng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
29
|
Yu XH, Ren XH, Liang XH, Tang YL. Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review). Mol Med Rep 2018; 18:5307-5316. [PMID: 30365095 DOI: 10.3892/mmr.2018.9577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/19/2018] [Indexed: 02/05/2023] Open
Abstract
Fatty acid (FA) metabolism, including the uptake, de novo synthesis and oxidation of FAs, is critical for the survival, proliferation, differentiation and metastasis of cancer cells. Several bodies of evidence have confirmed the metabolic reprogramming of FAs that occurs during cancer development. The present review aimed to evaluate FAs in terms of how the hallmarks of cancer are gradually established in tumourigenesis and tumour progression, and consider the auxo‑action and exact mechanisms of FA metabolism in these processes. In addition, this interaction in the tumour microenvironment was also discussed. Based on the role of FA metabolism in tumour development, targeting FA metabolism may effectively target cancer, affecting a number of important characteristics of cancer progression and survival.
Collapse
Affiliation(s)
- Xiang-Hua Yu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Hua Ren
- Department of Stomatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Xin-Hua Liang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
30
|
Liu JC, Zhou L, Wang F, Cheng ZQ, Rong C. Osthole decreases collagen I/III contents and their ratio in TGF-β1-overexpressed mouse cardiac fibroblasts through regulating the TGF-β/Smad signaling pathway. Chin J Nat Med 2018; 16:321-329. [PMID: 29860992 DOI: 10.1016/s1875-5364(18)30063-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Indexed: 01/05/2023]
Abstract
The present study was designed to elucidate whether the mechanism by which osthole decreases collagenI/III contents and their ratio is regulating the TGF-β/Smad signaling pathway in TGF-β1-overexpressed mouse cardiac fibroblasts (CFs). These CFs were cultured and treated with different concentrations of osthole. Our results showed that the TGF-β1 expression in the CFs transfected with that the recombinant expression plasmids pcDNA3.1(+)-TGF-β1 was significantly enhanced. After the CFs were treated with 1.25-5 μg·mL-1 of osthole for 24 h, the mRNA and protein expression levels of collagensIand III were reduced. The collagen I/III ratio was also reduced. The mRNA and protein expression levels of TGF-β1, TβRI, Smad2/3, P-Smad2/3, Smad4, and α-SMA were decreased, whereas the expression level of Smad7 was increased. These effects suggested that osthole could inhibit collagen I and III expression and reduce their ratio via the TGF-β/Smad signaling pathway in TGF-β1 overexpressed CFs. These effects of osthole may play beneficial roles in the prevention and treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Jin-Cheng Liu
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lei Zhou
- Laboratory Department, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China
| | - Feng Wang
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zong-Qi Cheng
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chen Rong
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
31
|
Wu N, Zhang J, Zhao J, Mu K, Zhang J, Jin Z, Yu J, Liu J. Precision medicine based on tumorigenic signaling pathways for triple-negative breast cancer. Oncol Lett 2018; 16:4984-4996. [PMID: 30250564 PMCID: PMC6144355 DOI: 10.3892/ol.2018.9290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
As a clinically heterogeneous subtype of breast cancer, triple-negative breast cancer (TNBC) is associated with a poor clinical outcome and a high relapse rate. Conventional chemotherapy and radiotherapy are effective treatments for patients with TNBC. However, the prognosis of TNBC remains unsatisfactory. Therefore, a large volume of research has explored the molecular markers and oncogenic signaling pathways associated with TNBC, including the cell cycle, DNA damage response and androgen receptor (AR) signaling pathways, to identify more efficient targeted therapies. However, whether these predicted pathways are effective targets has yet to be confirmed. In the present review, potentially carcinogenic signaling pathways in TNBCs from previous reports were considered, and ultimately five tumorigenic signaling pathways were selected, specifically receptor tyrosine kinases and downstream signaling pathways, the epithelial-to-mesenchymal transition and associated pathways, the immunoregulatory tumor microenvironment, DNA damage repair pathways, and AR and coordinating pathways. The conclusions of the preclinical and clinical trials of each pathway were then consolidated. Although a number of signaling pathways in TNBC have been considered in preclinical and clinical trials, the aforementioned pathways account for the majority of the malignant behaviors of TNBC. Identifying the alterations to different carcinogenic signaling pathways and their association with the heterogeneity of TNBC may facilitate the development of optimal precision medical approaches for patients with TNBC, potentially improving the efficiency of anticancer therapy.
Collapse
Affiliation(s)
- Nan Wu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinghua Zhang
- Department of Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China
| | - Jing Zhao
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Kun Mu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jun Zhang
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhao Jin
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinpu Yu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Biotherapy Center, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Juntian Liu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
32
|
Liao M, Song G, Cheng X, Diao X, Sun Y, Zhang L. Simultaneous Determination of Six Coumarins in Rat Plasma and Metabolites Identification of Bergapten in Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4602-4613. [PMID: 29663811 DOI: 10.1021/acs.jafc.7b05637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Coumarins are abundant in Umbelliferae and Rutaceae plants possessing varied pharmacological activities. The objectives of this study are to develop and validate the method for determination of six coumarins in rat plasma by liquid chromatography coupled with tandem mass spectrometry (LC-MS) and identify the metabolites of bergapten by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS), respectively. Data-dependent acquisition mode (DDA) was applied to trigger enhanced product ion (EPI) scans by analyzing multiple reaction monitoring (MRM) signals. An efficient data processing method "key product ions (KPIs)" was used for rapid detection and identification of metabolites as an assistant tool. The time to reach the maximum plasma concentration ( Tmax) for the six compounds ranged from 1 to 6 h. A total of 24 metabolites of bergapten were detected in vitro and in vivo. The results could provide a basis for absorption and metabolism of coumarins.
Collapse
Affiliation(s)
- Man Liao
- Department of Pharmaceutical Analysis, School of Pharmacy , Hebei Medical University , 361 East Zhongshan Road , Shijiazhuang , Hebei 050017 , P. R. China
| | - Gengshen Song
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd. , Yongchangbahao Tech Plaza No. 3, Yongchang North Road BDA , Beijing , 100176 , P. R. China
| | - Xiaoye Cheng
- Department of Pharmaceutical Analysis, School of Pharmacy , Hebei Medical University , 361 East Zhongshan Road , Shijiazhuang , Hebei 050017 , P. R. China
| | - Xinpeng Diao
- Department of Pharmaceutical Analysis, School of Pharmacy , Hebei Medical University , 361 East Zhongshan Road , Shijiazhuang , Hebei 050017 , P. R. China
| | - Yupeng Sun
- Department of Pharmaceutical Analysis, School of Pharmacy , Hebei Medical University , 361 East Zhongshan Road , Shijiazhuang , Hebei 050017 , P. R. China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy , Hebei Medical University , 361 East Zhongshan Road , Shijiazhuang , Hebei 050017 , P. R. China
| |
Collapse
|
33
|
Bhandari A, Xia E, Zhou Y, Guan Y, Xiang J, Kong L, Wang Y, Yang F, Wang O, Zhang X. ITGA7 functions as a tumor suppressor and regulates migration and invasion in breast cancer. Cancer Manag Res 2018; 10:969-976. [PMID: 29760566 PMCID: PMC5937492 DOI: 10.2147/cmar.s160379] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Breast cancer is the most common malignancy in women and the underlying mechanism of breast cancer cell metastasis is still far from uncover. Integrin subunit alpha 7 (ITGA7) is a functioning protein. It has been detected in many malignancies. But the function of ITGA7 in breast cancer is not clear. Our aim is to explore ITGA7 expression and its role in breast cancer. Methods Real-time PCR was performed to determine ITGA7 expression in BC tissues and normal adjacent tissues. The specific functions of ITGA7 in breast cancer cell lines (MDA-MB-231 and BT-549) transfected with small interfering RNA were determined through migration, invasion assays. Western blot assays were performed to determine the expression of c-met and vimentin. Results ITGA7 was down-regulated in breast cancer tissues compared to the adjacent normal tissues (T:N =7.68±27.38: 41.01± 31.47, P<0.001) and this observation was consistent with the TCGA cohort (T:N =4.51±0.45:5.40±0.61, P<0.0001). In vitro experiments showed that knocking down ITGA7 significantly inhibited the migration and invasion of the breast cancer cell lines (MDA-MB-231 and BT-549). Meanwhile, knockdown of ITGA7 promoted c-met and vimentin expression, which may induce invasion and migration. Conclusion ITGA7 plays an important tumorigenic function and acts as a suppress gene in breast cancer. Our findings indicate that ITGA7 was the gene associated with breast cancer.
Collapse
Affiliation(s)
- Adheesh Bhandari
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Erjie Xia
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yuying Zhou
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yaoyao Guan
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jingjing Xiang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lingguo Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinghao Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Fan Yang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
34
|
A FASN-TGF-β1-FASN regulatory loop contributes to high EMT/metastatic potential of cisplatin-resistant non-small cell lung cancer. Oncotarget 2018; 7:55543-55554. [PMID: 27765901 PMCID: PMC5342435 DOI: 10.18632/oncotarget.10837] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022] Open
Abstract
Cisplatin-resistant A549CisR and H157CisR cell lines were developed by treating parental A549 (A549P) and H157 (H157P) cells. These cisplatin-resistant cells showed slight growth retardation, but exhibited higher epithelial-mesenchymal transition (EMT) and increased metastatic potential compared to parental cells. We observed a highly up-regulated fatty acid synthase (FASN) level in A549CisR and H157CisR cells compared to parental cells and the up-regulation of FASN was also detected in A549P and H157P cells after short time treatment with cisplatin, suggesting that the high level of FASN in cisplatin-resistant cells may be from the accumulated cellular responses during cisplatin-resistance developmental process. We next investigated whether the inhibition of FASN by using a specific FASN inhibitor, cerulenin, can influence growth and EMT/metastatic potential of A549CisR and H157CisR cells. There was slight growth inhibition, but significantly reduced EMT/metastatic potential in cisplatin-resistant cells upon inhibitor treatment. The in vitro result was further investigated in orthotopic xenograft mouse models established with luciferase-tagged H157P and H157CisR cells. Mice were injected with cerulenin or vehicle after tumors were developed. No significant tumor regression was detected at the end of cerulenin treatment, but IHC staining showed higher expression of EMT/metastasis markers in H157CisR cell-derived tumors than H157P cell-derived tumors, and showed dramatic reduction of these markers in tumor tissues of cerulenin-treated mice, confirming the in vitro results. In mechanism dissection studies, we revealed the existence of the FASN-TGF-β1-FASN positive loop in A549CisR and H157CisR cells, but not in parental cells, which is believed to augment the FASN function in cisplatin-resistant cells.
Collapse
|
35
|
Shokoohinia Y, Jafari F, Mohammadi Z, Bazvandi L, Hosseinzadeh L, Chow N, Bhattacharyya P, Farzaei MH, Farooqi AA, Nabavi SM, Yerer MB, Bishayee A. Potential Anticancer Properties of Osthol: A Comprehensive Mechanistic Review. Nutrients 2018; 10:E36. [PMID: 29301373 PMCID: PMC5793264 DOI: 10.3390/nu10010036] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 01/13/2023] Open
Abstract
Cancer is caused by uncontrolled cell proliferation which has the potential to occur in different tissues and spread into surrounding and distant tissues. Despite the current advances in the field of anticancer agents, rapidly developing resistance against different chemotherapeutic drugs and significantly higher off-target effects cause millions of deaths every year. Osthol is a natural coumarin isolated from Apiaceaous plants which has demonstrated several pharmacological effects, such as antineoplastic, anti-inflammatory and antioxidant properties. We have attempted to summarize up-to-date information related to pharmacological effects and molecular mechanisms of osthol as a lead compound in managing malignancies. Electronic databases, including PubMed, Cochrane library, ScienceDirect and Scopus were searched for in vitro, in vivo and clinical studies on anticancer effects of osthol. Osthol exerts remarkable anticancer properties by suppressing cancer cell growth and induction of apoptosis. Osthol's protective and therapeutic effects have been observed in different cancers, including ovarian, cervical, colon and prostate cancers as well as chronic myeloid leukemia, lung adenocarcinoma, glioma, hepatocellular, glioblastoma, renal and invasive mammary carcinoma. A large body of evidence demonstrates that osthol regulates apoptosis, proliferation and invasion in different types of malignant cells which are mediated by multiple signal transduction cascades. In this review, we set spotlights on various pathways which are targeted by osthol in different cancers to inhibit cancer development and progression.
Collapse
Affiliation(s)
- Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran.
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran.
| | - Fataneh Jafari
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran.
| | - Zeynab Mohammadi
- Students Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran.
| | - Leili Bazvandi
- Students Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran.
| | - Leila Hosseinzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran.
| | - Nicholas Chow
- Department of Clinical and Administrative Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA.
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran.
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore 54000, Pakistan.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran.
| | - Mükerrem Betül Yerer
- Department of Pharmacology, Faculty of Pharmacy, University of Erciyes, 38039 Kayseri, Turkey.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA.
| |
Collapse
|
36
|
Li L, Liu CC, Chen X, Xu S, Hernandez Cortes-Manno S, Cheng SH. Mechanistic Study of Bakuchiol-Induced Anti-breast Cancer Stem Cell and in Vivo Anti-metastasis Effects. Front Pharmacol 2017; 8:746. [PMID: 29093680 PMCID: PMC5651275 DOI: 10.3389/fphar.2017.00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells are involved in cancer establishment, progression, and resistance to current treatments. We demonstrated the in vitro and in vivo anti-breast cancer effect of bakuchiol in a previous study. However, the ability of bakuchiol to target breast cancer stem cells (BCSCs) and inhibit breast cancer metastasis remains unknown. In the current study, we used the cell surface markers CD44 and CD24 to distinguish BCSCs from MCF-7 cells. Bakuchiol inhibited mammosphere formation and aldehyde dehydrogenase activity in BCSCs. Moreover, bakuchiol induced apoptosis and suppressed the mitochondrial membrane potential of BCSCs. Bakuchiol upregulated the expression levels of pro-apoptotic genes, BNIP3 and DAPK2. Bakuchiol induced oxidative stress and altered lipogenesis in BCSCs. In zebrafish xenografts, bakuchiol inhibited breast cancer cell metastasis in vivo. In addition, bakuchiol altered the expression levels of metastasis-related genes through upregulating CK18 and downregulating Notch3, FASN, TGFBR1, and ACVR1B. Our study provides evidence for the anti-breast cancer potential of bakuchiol.
Collapse
Affiliation(s)
- Li Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chi C Liu
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xueping Chen
- Vitargent (International) Biotechnology Limited, Sha Tin, Hong Kong
| | - Shisan Xu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Shuk H Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
37
|
Fatty acid synthase affects expression of ErbB receptors in epithelial to mesenchymal transition of breast cancer cells and invasive ductal carcinoma. Oncol Lett 2017; 14:5934-5946. [PMID: 29113229 PMCID: PMC5661422 DOI: 10.3892/ol.2017.6954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 06/09/2017] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to investigate changes in the expression of ErbBs during epithelial-mesenchymal transition (EMT) of breast cancer cells and its association with the expression of fatty acid synthase (FASN). MCF-7-MEK5 cells were used as the experimental model, while MCF-7 cells were used as a control. Tumor cells were implanted into nude mice for in vivo analysis. Cerulenin was used as a FASN inhibitor. Reverse transcription-polymerase chain reaction and western blot analysis were used to detect expression levels of FASN and ErbB1-4. Immunohistochemistry was used to detect the expression of FASN and ErbB1-4 in 58 invasive ductal carcinomas (IDC), as well as their association with clinicopathological characteristics. The expression of FASN and ErbB1-4 in MCF-7-MEK5 cells and tumor tissues increased significantly compared with controls (P<0.001). Inhibition of FASN by cerulenin resulted in a significant decrease in expression of ErbB1, 2 and 4 (P<0.001), whereas there was no evident change in ErbB3. In IDC samples, the expression of FASN and ErbB1-4 increased considerably in lymph node metastases compared with non-lymph node metastases (P<0.05). ErbB2 expression increased in advanced clinical stages (II, III and IV) of IDC and in tumors with larger diameters (P<0.05). The expression of ErbB3 increased in ER-positive tumors (P<0.05). Additionally, a positive association between the expression of FASN and ErbB1, 2 and 4 was observed (P<0.05). FASN activates ErbB1, 2 and 4, and their dimers, which are polymerized via the microstructural domain of the cell membrane. This may initiate EMT and consequentlyincrease the invasion and migration of cancer cells. However, ErbB3 may also affect tumor progression via a FASN-independent pathway.
Collapse
|
38
|
Su F, Zhao Z, Ma S, Wang R, Li Y, Liu Y, Li Y, Li L, Qu J, Yu S. Cnidimonins A-C, Three Types of Hybrid Dimer from Cnidium monnieri: Structural Elucidation and Semisynthesis. Org Lett 2017; 19:4920-4923. [PMID: 28858518 DOI: 10.1021/acs.orglett.7b02290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three pairs of racemic dimers, (±)-cnidimonins A-C (1-3), were isolated from the fruits of Cnidium monnieri. They represent novel hybrid-dimerization patterns of coumarin skeleton with structurally diverse units (flavonol, benzofuran, and chromone) via an unprecedented terminal chiral carbon of prenyl. The absolute configurations of the enantiomers were determined by electronic circular dichroism (ECD). To investigate their bioactivities in depth, (±)-cnidimonins A-C (1-3) were synthesized. The racemic mixture (±)-1 exhibited stronger antiviral activity against HSV-1 (IC50: 1.23 μM) than its corresponding optically pure enantiomers.
Collapse
Affiliation(s)
- Fangyi Su
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| | - Zheng Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| | - Shuanggang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| | - Rubing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| | - Yunbao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| | - Jing Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| | - Shishan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, China
| |
Collapse
|
39
|
Morandi A, Taddei ML, Chiarugi P, Giannoni E. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors. Front Oncol 2017; 7:40. [PMID: 28352611 PMCID: PMC5348536 DOI: 10.3389/fonc.2017.00040] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 01/06/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) process allows the trans-differentiation of a cell with epithelial features into a cell with mesenchymal characteristics. This process has been reported to be a key priming event for tumor development and therefore EMT activation is now considered an established trait of malignancy. The transcriptional and epigenetic reprogramming that governs EMT has been extensively characterized and reviewed in the last decade. However, increasing evidence demonstrates a correlation between metabolic reprogramming and EMT execution. The aim of the current review is to gather the recent findings that illustrate this correlation to help deciphering whether metabolic changes are causative or just a bystander effect of EMT activation. The review is divided accordingly to the catabolic and anabolic pathways that characterize carbohydrate, aminoacid, and lipid metabolism. Moreover, at the end of each part, we have discussed a series of potential metabolic targets involved in EMT promotion and execution for which drugs are either available or that could be further investigated for therapeutic intervention.
Collapse
Affiliation(s)
- Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence , Florence , Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence , Florence , Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Excellence Centre for Research, Transfer and High Education DenoTHE, University of Florence, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence , Florence , Italy
| |
Collapse
|
40
|
Feng H, Lu JJ, Wang Y, Pei L, Chen X. Osthole inhibited TGF β-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated Snail activation in lung cancer A549 cells. Cell Adh Migr 2017; 11:464-475. [PMID: 28146373 DOI: 10.1080/19336918.2016.1259058] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), the transdifferentiation of epithelial cells into mesenchymal cells, has been implicated in the metastasis and provides novel strategies for cancer therapy. Osthole (OST), a dominant active constituent of Chinese herb Cnidium monnieri, has been reported to inhibit cancer metastasis while the mechanisms remains unclear. Here, we studied the inhibitory effect and mechanisms of OST on TGF-β1-induced EMT in A549 cells. Cells were treated with TGF-β1 in the absence and presence of OST. The morphological alterations were observed with a microscopy. The protein and mRNA expressions were determined by Western blotting and real-time PCR. The protein localization was detected with immunofluorescence. The adhesion, migration, and invasion were determined by Matrigel, wound-healing, and Transwell assays. TGF-β1 treatment induced spindle-shaped alterations of cells, upregulation of N-cadherin, Vimentin, NF-κB p65, and downregulation of E-cadherin. Dysregulated membrane expression and mRNA expression of E-cadherin and N-cadherin were observed after TGF-β1 treatment. TGF-β1 increased abilities of migration and invasion and triggered the nuclear translocation of NF-κB p65. These alterations were dramatically inhibited by OST. Furthermore, PDTC, a NF-κB inhibitor, showed similar effects. In addition, TGF-β1-induced expression of Snail was significantly inhibited by OST and silenced Snail partially reversed TGF-β1-induced EMT biomarkers without affecting NF-κB p-65. In conclusion, OST inhibited TGF-β1-induced EMT, adhesion, migration, and invasion through inactivation of NF-κB-Snail pathways in A549 cells. This study provides novel molecular mechanisms for the anti-metastatic effect of OST.
Collapse
Affiliation(s)
- Haitao Feng
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Jin-Jian Lu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Lixia Pei
- b Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Xiuping Chen
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau , China
| |
Collapse
|
41
|
Liu JC, Wang F, Xie ML, Cheng ZQ, Qin Q, Chen L, Chen R. Osthole inhibits the expressions of collagen I and III through Smad signaling pathway after treatment with TGF-β1 in mouse cardiac fibroblasts. Int J Cardiol 2017; 228:388-393. [DOI: 10.1016/j.ijcard.2016.11.202] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/06/2016] [Indexed: 02/06/2023]
|
42
|
Lin ZK, Liu J, Jiang GQ, Tan G, Gong P, Luo HF, Li HM, Du J, Ning Z, Xin Y, Wang ZY. Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells. Oncol Rep 2017; 37:1611-1618. [DOI: 10.3892/or.2017.5403] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/09/2017] [Indexed: 11/06/2022] Open
|
43
|
RETRACTED ARTICLE: Casticin inhibits epithelial-mesenchymal transition of EBV-infected human retina pigmental epithelial cells through the modulation of intracellular lipogenesis. Graefes Arch Clin Exp Ophthalmol 2016; 255:557. [PMID: 27838737 DOI: 10.1007/s00417-016-3551-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022] Open
|
44
|
Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Sci Rep 2016; 6:20484. [PMID: 26857837 PMCID: PMC4746674 DOI: 10.1038/srep20484] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
Activation of the AKT/mTOR cascade and overexpression of c-Met have been implicated in the development of human hepatocellular carcinoma (HCC). To elucidate the functional crosstalk between the two pathways, we generated a model characterized by the combined expression of activated AKT and c-Met in the mouse liver. Co-expression of AKT and c-Met triggered rapid liver tumor development and mice required to be euthanized within 8 weeks after hydrodynamic injection. At the molecular level, liver tumors induced by AKT/c-Met display activation of AKT/mTOR and Ras/MAPK cascades as well as increased lipogenesis and glycolysis. Since a remarkable lipogenic phenotype characterizes liver lesions from AKT/c-Met mice, we determined the requirement of lipogenesis in AKT/c-Met driven hepatocarcinogenesis using conditional Fatty Acid Synthase (FASN) knockout mice. Of note, hepatocarcinogenesis induced by AKT/c-Met was fully inhibited by FASN ablation. In human HCC samples, coordinated expression of FASN, activated AKT, and c-Met proteins was detected in a subgroup of biologically aggressive tumors. Altogether, our study demonstrates that co-activation of AKT and c-Met induces HCC development that depends on the mTORC1/FASN pathway. Suppression of mTORC1 and/or FASN might be highly detrimental for the growth of human HCC subsets characterized by concomitant induction of the AKT and c-Met cascades.
Collapse
|
45
|
Hu HJ, Lin XL, Liu MH, Fan XJ, Zou WW. Curcumin mediates reversion of HGF-induced epithelial-mesenchymal transition via inhibition of c-Met expression in DU145 cells. Oncol Lett 2015; 11:1499-1505. [PMID: 26893768 DOI: 10.3892/ol.2015.4063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
The hepatocyte growth factor (HGF)/c-Met signaling pathway results in cancer cell scattering and invasion, and has been reported to participate in several types of cancer, including prostate and colorectal cancer. The downstream phosphorylation cascade of HGF, particularly the mitogen-activated protein kinase and phosphoinositide 3-kinase/AKT signaling pathway, regulates epithelial-mesenchymal transition (EMT). However, the mechanism by which these signaling pathways govern EMT, and whether certain kinases are able to respond to specific EMT effectors, remains to be elucidated. In the present study, an increase in the levels of vimentin, rather than co-regulation of certain EMT marker proteins, was observed in response to HGF-induced EMT in DU145 prostate cancer cells. In addition, it was observed that curcumin abrogated HGF-induced DU145 cell scattering and invasion. Furthermore, curcumin was able to effectively inhibit the HGF-induced increase in the levels of vimentin by downregulating the expression of phosphorylated c-Met, extracellular signal-regulated kinase and Snail. In conclusion, the results of the present study demonstrated that curcumin was able to reverse HGF-induced EMT, possibly by inhibiting c-Met expression in DU145 prostate cancer cells.
Collapse
Affiliation(s)
- Hui-Jun Hu
- Department of Pathology, The Third People's Hospital of Huizhou, Affiliated Huizhou Hospital, Guangzhou Medical University, Huizhou, Guangdong 516002, P.R. China
| | - Xiao-Long Lin
- Department of Pathology, The Third People's Hospital of Huizhou, Affiliated Huizhou Hospital, Guangzhou Medical University, Huizhou, Guangdong 516002, P.R. China
| | - Mi-Hua Liu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Juan Fan
- Department of Pathology, The Third People's Hospital of Huizhou, Affiliated Huizhou Hospital, Guangzhou Medical University, Huizhou, Guangdong 516002, P.R. China
| | - Wei-Wen Zou
- Department of Pathology, The Third People's Hospital of Huizhou, Affiliated Huizhou Hospital, Guangzhou Medical University, Huizhou, Guangdong 516002, P.R. China
| |
Collapse
|
46
|
Medina FG, Marrero JG, Macías-Alonso M, González MC, Córdova-Guerrero I, Teissier García AG, Osegueda-Robles S. Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat Prod Rep 2015; 32:1472-507. [PMID: 26151411 DOI: 10.1039/c4np00162a] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review highlights the broad range of science that has arisen from the synthesis of coumarin-linked and fused heterocycle derivatives. Specific topics include their synthesis and biological activity.
Collapse
Affiliation(s)
- Fernanda G Medina
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Av. Mineral de Valenciana, No. 200, Col. Fracc. Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico.
| | | | | | | | | | | | | |
Collapse
|
47
|
Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:919616. [PMID: 26246843 PMCID: PMC4515521 DOI: 10.1155/2015/919616] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/28/2015] [Indexed: 12/17/2022]
Abstract
This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one), a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP) and cyclic adenosine monophosphate (cGMP) level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine.
Collapse
|
48
|
Cao HH, Cheng CY, Su T, Fu XQ, Guo H, Li T, Tse AKW, Kwan HY, Yu H, Yu ZL. Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion. Mol Cancer 2015; 14:103. [PMID: 25971889 PMCID: PMC4435529 DOI: 10.1186/s12943-015-0367-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
Background Melanoma is notorious for its propensity to metastasize, which makes treatment extremely difficult. Receptor tyrosine kinase c-Met is activated in human melanoma and is involved in melanoma progression and metastasis. Hepatocyte growth factor (HGF)-mediated activation of c-Met signaling has been suggested as a therapeutic target for melanoma metastasis. Quercetin is a dietary flavonoid that exerts anti-metastatic effect in various types of cancer including melanoma. In a previous report, we demonstrated that quercetin inhibited melanoma cell migration and invasion in vitro, and prevented melanoma cell lung metastasis in vivo. In this study, we sought to determine the involvement of HGF/c-Met signaling in the anti-metastatic action of quercetin in melanoma. Methods Transwell chamber assay was conducted to determine the cell migratory and invasive abilities. Western blotting was performed to determine the expression levels and activities of c-Met and its downstream molecules. And immunoblotting was performed in BS3 cross-linked cells to examine the homo-dimerization of c-Met. Quantitative real-time PCR analysis was carried out to evaluate the mRNA expression level of HGF. Transient transfection was used to overexpress PAK or FAK in cell models. Student’s t-test was used in analyzing differences between two groups. Results Quercetin dose-dependently suppressed HGF-stimulated melanoma cell migration and invasion. Further study indicated that quercetin inhibited c-Met phosphorylation, reduced c-Met homo-dimerization and decreased c-Met protein expression. The effect of quercetin on c-Met expression was associated with a reduced expression of fatty acid synthase. In addition, quercetin suppressed the phosphorylation of c-Met downstream molecules including Gab1 (GRB2-associated-binding protein 1), FAK (Focal Adhesion Kinase) and PAK (p21-activated kinases). More importantly, overexpression of FAK or PAK significantly reduced the inhibitory effect of quercetin on the migration of the melanoma cells. Conclusions Our findings suggest that suppression of the HGF/c-Met signaling pathway contributes to the anti-metastatic action of quercetin in melanoma. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0367-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui-Hui Cao
- Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, China.
| | - Chi-Yan Cheng
- Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, China.
| | - Tao Su
- Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, China.
| | - Xiu-Qiong Fu
- Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, China.
| | - Hui Guo
- Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, China.
| | - Ting Li
- Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, China.
| | - Anfernee Kai-Wing Tse
- Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, China.
| | - Hiu-Yee Kwan
- Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, China.
| | - Hua Yu
- Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, China.
| | - Zhi-Ling Yu
- Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, China.
| |
Collapse
|
49
|
Ho-Yen CM, Jones JL, Kermorgant S. The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res 2015; 17:52. [PMID: 25887320 PMCID: PMC4389345 DOI: 10.1186/s13058-015-0547-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/05/2015] [Indexed: 02/05/2023] Open
Abstract
c-Met is a receptor tyrosine kinase that upon binding of its ligand, hepatocyte growth factor (HGF), activates downstream pathways with diverse cellular functions that are important in organ development and cancer progression. Anomalous c-Met signalling has been described in a variety of cancer types, and the receptor is regarded as a novel therapeutic target. In breast cancer there is a need to develop new treatments, particularly for the aggressive subtypes such as triple-negative and basal-like cancer, which currently lack targeted therapy. Over the last two decades, much has been learnt about the functional role of c-Met signalling in different models of breast development and cancer. This work has been complemented by clinical studies, establishing the prognostic significance of c-Met in tissue samples of breast cancer. While the clinical trials of anti-c-Met therapy in advanced breast cancer progress, there is a need to review the existing evidence so that the potential of these treatments can be better appreciated. The aim of this article is to examine the role of HGF/c-Met signalling in in vitro and in vivo models of breast cancer, to describe the mechanisms of aberrant c-Met signalling in human tissues, and to give a brief overview of the anti-c-Met therapies currently being evaluated in breast cancer patients. We will show that the HGF/c-Met pathway is associated with breast cancer progression and suggest that there is a firm basis for continued development of anti-c-Met treatment, particularly for patients with basal-like and triple-negative breast cancer.
Collapse
Affiliation(s)
- Colan M Ho-Yen
- Department of Cellular Pathology, St George's Healthcare NHS Trust, Blackshaw Road, Tooting, London, SW17 0QT, UK.
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Stephanie Kermorgant
- Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
50
|
Lin YC, Lin JC, Hung CM, Chen Y, Liu LC, Chang TC, Kao JY, Ho CT, Way TD. Osthole inhibits insulin-like growth factor-1-induced epithelial to mesenchymal transition via the inhibition of PI3K/Akt signaling pathway in human brain cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5061-5071. [PMID: 24828835 DOI: 10.1021/jf501047g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal types of tumors and highly metastatic and invasive. The epithelial-to-mesenchymal transition (EMT) is the crucial step for cancer cells to initiate the metastasis and could be induced by many growth factors. In this study, we found that GBM8401 cells were converted to fibroblastic phenotype and the space between the cells became expanded in response to insulin-like growth factor-1 (IGF-1) treatment. Epithelial markers were downregulated and mesenchymal markers were upregulated simultaneously after IGF-1 treatment. Our results illustrate that IGF-1 was able to induce EMT in GBM8401 cells. Osthole would reverse IGF-1-induced morphological changes, upregulated the expression of epithelial markers, and downregulated the expression of mesenchymal markers. Moreover, wound-healing assay also showed that osthole could inhibit IGF-1-induced migration of GBM8401 cells. By using dual-luciferase reporter assay and real-time PCR, we demonstrated that osthole inhibited IGF-1-induced EMT at the transcriptional level. Our study found that osthole decreased the phosphorylation of Akt and GSK3β and recovered the GSK3β bioactivity in inhibiting EMT transcription factor Snail and Twist expression. These results showed that osthole inhibited IGF-1-induced EMT by blocking PI3K/Akt pathway. We hope that osthole can be used in anticancer therapy and be a new therapeutic medicine for GBM in the future.
Collapse
Affiliation(s)
- Ying-Chao Lin
- Division of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch , Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|