1
|
Yuan L, Liu C, Li B, Wang S, Zhang H, Sun J, Mao X. A green extraction method for agar with improved thermal stability and water holding capacity. Int J Biol Macromol 2024; 278:134663. [PMID: 39134202 DOI: 10.1016/j.ijbiomac.2024.134663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/23/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The conventional agar extraction method has drawbacks such as high energy consumption, low yield, poor quality, and possible residual harmful factors, which greatly limit its application in high-end fields such as biomedicine and high-end materials. This work explored a new freezing-thawing-high-temperature coupling technique for agar extraction. It increased the yield and the strength of agar by 10.6 % and 13.7 %, respectively, as compared to direct high-temperature extraction of agar (HA). The greater molecular weight and lower sulfate content of agar obtained from freeze-thaw cycles combined with high temperature extraction (FA) may be attributed to the desulfurization effect caused by freeze-thaw cycles and the preservation of the molecular chain structure. The reduction in sulfate content decreases the steric hindrance resistance of the polysaccharide chains, enhances their interactions, and promotes the regularity and density of the agar structure, while also improving its water retention and thermal stability. In conclusion, this research can offer a theoretical basis and guidance for the eco-friendly extraction of agar with improved agar characteristics and expended its applications.
Collapse
Affiliation(s)
- Long Yuan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Bolun Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
2
|
Yahyaoui K, Traikia M, Rihouey C, Picton L, Gardarin C, Ksouri WM, Laroche C. Chemical characterization of polysaccharides from Gracilaria gracilis from Bizerte (Tunisia). Int J Biol Macromol 2024; 266:131127. [PMID: 38527684 DOI: 10.1016/j.ijbiomac.2024.131127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Polysaccharides were extracted from Gracilaria gracilis collected from Manzel Jemil Lake in Bizerte Tunisia, with two different solvents (water and NaOH 0.3 M). Different assays were performed on samples (total sugars, neutral sugars, uronic acids, anhydrogalactose, proteins, sulphates, pyruvates), followed by high performance anion-exchange chromatography (HPAEC) to observe the monosaccharide composition, high pressure size exclusion chromatography with multi-angle laser light scattering (HPSEC-MALS) to obtain the molecular mass, Fourier transform infrared spectroscopy (FTIR), and 1D and 2D nuclear magnetic resonance (NMR) to access to structural data. Results have shown that the polysaccharide extracted from Gracilaria gracilis collected from Manzel Jemil Lake in Bizerte Tunisia, is of agar type but with high molecular mass and some original structural features. Hence, the sample was found to contain 9 % of pyruvate groups and is partly sulphated at the C4 of β-d-galactose and methylated on C2 of anhydro-α-l-galactose. The polymer from G. gracilis from Bizerte thus presents a never described structure that could be interesting for further rheological or biological activities applications.
Collapse
Affiliation(s)
- K Yahyaoui
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj-Cedria, Hammam-Lif, Tunisia
| | - M Traikia
- Université Clermont Auvergne, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - C Rihouey
- Université de Rouen, Laboratoire Polymères Biopolymères Surfaces, F-76821 Mont Saint Aignan, France
| | - L Picton
- Université de Rouen, Laboratoire Polymères Biopolymères Surfaces, F-76821 Mont Saint Aignan, France
| | - C Gardarin
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - W Megdiche Ksouri
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj-Cedria, Hammam-Lif, Tunisia
| | - C Laroche
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
3
|
Gomes-Dias JS, Teixeira-Guedes CI, Teixeira JA, Rocha CMR. Red seaweed biorefinery: The influence of sequential extractions on the functional properties of extracted agars and porphyrans. Int J Biol Macromol 2024; 257:128479. [PMID: 38040161 DOI: 10.1016/j.ijbiomac.2023.128479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Red seaweeds are exploited for their hydrocolloids, but other fractions are usually overlooked. In a novel approach, this study aimed to evaluate cold-water (CWE), ethanolic (EE), and alkaline (SE) extractions, alone and in sequence, to simultaneously: i) decrease the hydrocolloid extraction waste (valorizing bioactive side-streams and/or increasing extraction yield); and ii) increase the hydrocolloids' texturizing properties. It is the first time these extractions' synergetic and/or antagonistic effects will be accessed. For Porphyra dioica, a combination of CWE and EE was optimal: a positive influence on the melting temperature (increasing 5 °C to 74 °C) and sulphate content (a 3-fold reduction to 5 %) was observed, compared to a direct porphyran extraction. The same was observed for Gracilaria vermiculophyla, recovering two additional bioactive fractions without impacting the hydrocolloid's extraction (agar with 220 g/cm2 gelling strength and 14 % yield was obtained). The sequential use of CWE, EE, and SE was the most beneficial in Gelidium corneum processing: it enhanced agar's texturizing capacity (reaching 1150 g/cm2, a 1.5-fold increase when compared to a direct extraction), without affecting its 22 % yield or over 88 % purity. Ultimately, these findings clarified the effects of cascading biorefinery approaches from red seaweeds and their pertinence.
Collapse
Affiliation(s)
- Joana S Gomes-Dias
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | | | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Portugal
| | - Cristina M R Rocha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Portugal.
| |
Collapse
|
4
|
Mohibbullah M, Talha MA, Baten MA, Newaz AW, Choi J. Yield optimization, physicochemical characterizations, and antioxidant properties of food grade agar from Gracilaria tenuistipitata of Cox's Bazar coast, Bangladesh. Food Sci Nutr 2023; 11:2852-2863. [PMID: 37324870 PMCID: PMC10261750 DOI: 10.1002/fsn3.3265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 02/02/2023] [Indexed: 09/01/2023] Open
Abstract
The present study was aimed at investigating the optimization of extraction variables for food grade quality agar from Gracilaria tenuistipitata, so far, the first study on Bangladeshi seaweed. Water (native)- and NaOH (alkali)-pretreated agars were comparatively analyzed by several physicochemical parameters. All extraction variables significantly affected the agar yield in both extraction conditions. Alkali-pretreated agar provided a better yield (12-13% w/w) and gel strength (201 g/cm2) in extraction conditions as followed by 2% NaOH pretreatment at 30°C for 3 h, seaweed to water ratio at 1:150, and extraction temperature at 100°C for 2 h. Gelling and melting temperatures, color, and pH values of both agars were found to be comparable with commercial agar. Significantly higher sulfate contents including organic and inorganic and total carotenoids were reported in native (3.14% and 1.29 μg/mL) than that in alkali-pretreated agar (1.27% and 0.62 μg/mL). FTIR spectrum demonstrated the purity of the agar as characterized by the stronger relative intensity with higher degree of conversion of L-galactose 6-sulfate to 3,6-anhydrogalactose in alkali pretreatment group than that of native ones. Moreover, antioxidant activity (% DPPH scavenging) was observed and confirmed by IC50 values of 5.42 and 9.02 mg/mL in water- and alkali-pretreated agars, respectively. The results suggested that agar from G. tenuistipitata with optimized alkali extraction conditions could promote cost-effective yield with improved physicochemical characteristics and biofunctional values upon consumption by the consumers as food materials.
Collapse
Affiliation(s)
- Md. Mohibbullah
- Department of Fishing and Post Harvest TechnologySher‐e‐Bangla Agricultural UniversityDhakaBangladesh
- Seafood Research CenterSilla UniversityBusanSouth Korea
- Department of Seafood Science and Technology, The Institute of Marine IndustryGyeongsang National UniversityTongyeong‐siSouth Korea
| | - Md. Abu Talha
- Department of Fishing and Post Harvest TechnologySher‐e‐Bangla Agricultural UniversityDhakaBangladesh
| | - Md. Abdul Baten
- Department of Fishing and Post Harvest TechnologySher‐e‐Bangla Agricultural UniversityDhakaBangladesh
| | - Asif Wares Newaz
- Department of Fishing and Post Harvest TechnologySher‐e‐Bangla Agricultural UniversityDhakaBangladesh
| | - Jae‐Suk Choi
- Seafood Research CenterSilla UniversityBusanSouth Korea
- Department of Seafood Science and Technology, The Institute of Marine IndustryGyeongsang National UniversityTongyeong‐siSouth Korea
| |
Collapse
|
5
|
Pereira SG, Gomes-Dias JS, Pereira RN, Teixeira JA, Rocha CM. Innovative processing technology in agar recovery: Combination of subcritical water extraction and moderate electric fields. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
6
|
Development of a novel agar extraction method using calcium hydroxide and carbon dioxide. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Ferreira M, Salgado JM, Fernandes H, Peres H, Belo I. Potential of Red, Green and Brown Seaweeds as Substrates for Solid State Fermentation to Increase Their Nutritional Value and to Produce Enzymes. Foods 2022; 11:foods11233864. [PMID: 36496673 PMCID: PMC9741140 DOI: 10.3390/foods11233864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Seaweeds are valuable feedstocks with the potential to be used as ingredients in aquafeeds. However, their use are still limited, given their recalcitrant polysaccharide structure. To break this structure, a biotechnological approach such as solid-state fermentation (SSF) by filamentous fungi can be used, which simultaneously increases the nutritional value of the biomass. However, SSF has hardly been studied in seaweeds; thus, in this study, five different seaweeds (Gracilaria sp., Porphyra dioica, Codium tomentosum, Ulva rigida, and Alaria esculenta) were used as substrates in SSF with Aspergillus ibericus MUM 03.49 and A. niger CECT 2915. Firstly, the seaweeds were fully characterized, and, then, changes in the crude protein and carbohydrate contents were assessed in the fermented biomass, as well as any carbohydrases production. The SSF of U. rigida with both fungi resulted in the maximum xylanase and β-glucosidase activities. The maximum cellulase activity was achieved using Gracilaria sp. and U. rigida in the SSF with A. niger. The protein content increased in C. tomentosum after SSF with A. ibericus and in U. rigida after SSF with both fungi. Moreover, U. rigida's carbohydrate content decreased by 54% and 62% after SSF with A. ibericus and A. niger, respectively. Seaweed bioprocessing using SSF is a sustainable and cost-effective strategy that simultaneously produces high-value enzymes and nutritionally enhanced seaweeds to be included in aquafeeds.
Collapse
Affiliation(s)
- Marta Ferreira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - José Manuel Salgado
- Biotecnia Group, Department of Chemical Engineering, Campus Agua, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
| | - Helena Fernandes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Helena Peres
- CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
8
|
Gomes-Dias JS, Pereira SG, Teixeira JA, Rocha C. Hydrothermal treatments – A quick and efficient alternative for agar extraction from Gelidium sesquipedale. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Contributions of Women in Recent Research on Biopolymer Science. Polymers (Basel) 2022; 14:polym14071420. [PMID: 35406293 PMCID: PMC9003506 DOI: 10.3390/polym14071420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Nowadays, biopolymers are playing a fundamental role in our society because of the environmental issues and concerns associated with synthetic polymers. The aim of this Special Issue entitled ‘Women in Polymer Science and Technology: Biopolymers’ is highlighting the work designed and developed by women on biopolymer science and technology. In this context, this short review aims to provide an introduction to this Special Issue by highlighting some recent contributions of women around the world on the particular topic of biopolymer science and technology during the last 20 years. In the first place, it highlights a selection of important works performed on a number of well-studied natural polymers, namely, agar, chitin, chitosan, cellulose, and collagen. Secondly, it gives an insight into the discovery of new polysaccharides and enzymes that have a role in their synthesis and in their degradation. These contributions will be paving the way for the next generation of female and male scientists on this topic.
Collapse
|
10
|
Dang BT, Bui XT, Tran DPH, Hao Ngo H, Nghiem LD, Hoang TKD, Nguyen PT, Nguyen HH, Vo TKQ, Lin C, Yi Andrew Lin K, Varjani S. Current application of algae derivatives for bioplastic production: A review. BIORESOURCE TECHNOLOGY 2022; 347:126698. [PMID: 35026424 DOI: 10.1016/j.biortech.2022.126698] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 05/18/2023]
Abstract
Improper use of conventional plastics poses challenges for sustainable energy and environmental protection. Algal derivatives have been considered as a potential renewable biomass source for bioplastic production. Algae derivatives include a multitude of valuable substances, especially starch from microalgae, short-chain length polyhydroxyalkanoates (PHAs) from cyanobacteria, polysaccharides from marine and freshwater macroalgae. The algae derivatives have the potential to be used as key ingredients for bioplastic production, such as starch and PHAs or only as an additive such as sulfated polysaccharides. The presence of distinctive functional groups in algae, such as carboxyl, hydroxyl, and sulfate, can be manipulated or tailored to provide desirable bioplastic quality, especially for food, pharmaceutical, and medical packaging. Standardizing strains, growing conditions, harvesting and extracting algae in an environmentally friendly manner would be a promising strategy for pollution control and bioplastic production.
Collapse
Affiliation(s)
- Bao-Trong Dang
- HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam.
| | - Duyen P H Tran
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Long D Nghiem
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Thi-Khanh-Dieu Hoang
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam
| | - Phuong-Thao Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam
| | - Hai H Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thi-Kim-Quyen Vo
- Faculty of Environment - Natural Resources and Climate Change, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh city 700000, Vietnam
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Kun Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| |
Collapse
|
11
|
Belattmania Z, Bhaby S, Nadri A, Khaya K, Bentiss F, Jama C, Reani A, Vasconcelos V, Sabour B. Gracilaria gracilis (Gracilariales, Rhodophyta) from Dakhla (Southern Moroccan Atlantic Coast) as Source of Agar: Content, Chemical Characteristics, and Gelling Properties. Mar Drugs 2021; 19:md19120672. [PMID: 34940671 PMCID: PMC8703883 DOI: 10.3390/md19120672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/14/2023] Open
Abstract
Agar is a sulfated polysaccharide extracted from certain marine red algae, and its gel properties depend on the seaweed source and extraction conditions. In the present study, the seaweed Gracilaria gracilis (Gracilariales, Rhodophyta) from Dakhla (Moroccan Atlantic Coast) was investigated for its agar content, structure, and gel properties. The agar yields of G. gracilis were 20.5% and 15.6% from alkaline pretreatment and native extraction, respectively. Agar with alkaline pretreatment showed a better gelling property supported by higher gel strength (377 g·cm-2), gelling (35.4 °C), and melting (82.1 °C) temperatures with a notable increase in 3,6-anhydro-galactose (11.85%) and decrease in sulphate (0.32%) contents. The sulfate falling subsequent to alkaline pretreatment was verified through FT-IR spectroscopy. The 13C NMR spectroscopy showed that alkaline-pretreated agar has a typical unsubstituted agar pattern. However, native agar had a partially methylated agarose structure. Overall, this study suggested the possibility of the exploitation of G. gracilis to produce a fine-quality agar. Yet, further investigation may need to determine the seasonal variability of this biopolymer according to the life cycle of G. gracilis.
Collapse
Affiliation(s)
- Zahira Belattmania
- Phycology, Blue Biodiversity and Biotechnology RU, Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—CNRST Labeled Research Unit N°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (Z.B.); (S.B.); (A.N.); (K.K.); (A.R.); (B.S.)
| | - Sanaa Bhaby
- Phycology, Blue Biodiversity and Biotechnology RU, Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—CNRST Labeled Research Unit N°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (Z.B.); (S.B.); (A.N.); (K.K.); (A.R.); (B.S.)
| | - Amal Nadri
- Phycology, Blue Biodiversity and Biotechnology RU, Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—CNRST Labeled Research Unit N°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (Z.B.); (S.B.); (A.N.); (K.K.); (A.R.); (B.S.)
| | - Khaoulaa Khaya
- Phycology, Blue Biodiversity and Biotechnology RU, Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—CNRST Labeled Research Unit N°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (Z.B.); (S.B.); (A.N.); (K.K.); (A.R.); (B.S.)
| | - Fouad Bentiss
- Laboratory of Catalysis and Corrosion of Materials, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco;
- Materials and Transformations Unit, University of Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, F-59000 Lille, France;
| | - Charafeddine Jama
- Materials and Transformations Unit, University of Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, F-59000 Lille, France;
| | - Abdeltif Reani
- Phycology, Blue Biodiversity and Biotechnology RU, Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—CNRST Labeled Research Unit N°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (Z.B.); (S.B.); (A.N.); (K.K.); (A.R.); (B.S.)
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: ; Tel.: +351-223-401-817
| | - Brahim Sabour
- Phycology, Blue Biodiversity and Biotechnology RU, Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—CNRST Labeled Research Unit N°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (Z.B.); (S.B.); (A.N.); (K.K.); (A.R.); (B.S.)
| |
Collapse
|
12
|
Xiao Q, Wang X, Zhang J, Zhang Y, Chen J, Chen F, Xiao A. Pretreatment Techniques and Green Extraction Technologies for Agar from Gracilaria lemaneiformis. Mar Drugs 2021; 19:md19110617. [PMID: 34822488 PMCID: PMC8619328 DOI: 10.3390/md19110617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Optimizing the alkali treatment process alone without tracking the changes of algae and agar quality with each pretreatment process will not achieve the optimal agar yield and final quality. In this study, we monitored the changes of the morphology and weight of algae with each treatment process, and comprehensively analyzed the effects of each pretreatment process on the quality of agar by combining the changes of the physicochemical properties of agar. In conventional alkali-extraction technology, alkali treatment (7%, w/v) alone significantly reduced the weight of algae (52%), but hindered the dissolution of algae, resulting in a lower yield (4%). Acidification could solve the problem of algal hardening after alkali treatment to improve the yield (12%). In enzymatic extraction technology, agar with high purity cannot be obtained by enzyme treatment alone, but low gel strength (405 g/cm2) and high sulfate content (3.4%) can be obtained by subsequent acidification and bleaching. In enzyme-assisted extraction technology, enzyme damage to the surface fiber of algae promoted the penetration of low-concentration alkali (3%, w/v), which ensured a high desulfurization efficiency and a low gel degradation rate, thus improving yield (24.7%) and gel strength (706 g/cm2), which has the potential to replace the traditional alkali-extraction technology.
Collapse
Affiliation(s)
- Qiong Xiao
- Department of Bioengineering, Jimei University, Xiamen 361021, China; (Q.X.); (X.W.); (J.Z.); (Y.Z.); (J.C.); (F.C.)
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Xinyi Wang
- Department of Bioengineering, Jimei University, Xiamen 361021, China; (Q.X.); (X.W.); (J.Z.); (Y.Z.); (J.C.); (F.C.)
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Jiabin Zhang
- Department of Bioengineering, Jimei University, Xiamen 361021, China; (Q.X.); (X.W.); (J.Z.); (Y.Z.); (J.C.); (F.C.)
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Yonghui Zhang
- Department of Bioengineering, Jimei University, Xiamen 361021, China; (Q.X.); (X.W.); (J.Z.); (Y.Z.); (J.C.); (F.C.)
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Jun Chen
- Department of Bioengineering, Jimei University, Xiamen 361021, China; (Q.X.); (X.W.); (J.Z.); (Y.Z.); (J.C.); (F.C.)
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Fuquan Chen
- Department of Bioengineering, Jimei University, Xiamen 361021, China; (Q.X.); (X.W.); (J.Z.); (Y.Z.); (J.C.); (F.C.)
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Anfeng Xiao
- Department of Bioengineering, Jimei University, Xiamen 361021, China; (Q.X.); (X.W.); (J.Z.); (Y.Z.); (J.C.); (F.C.)
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
- Correspondence: ; Tel.: +86-592-6180075
| |
Collapse
|
13
|
|
14
|
Martínez-Sanz M, Ström A, Lopez-Sanchez P, Knutsen SH, Ballance S, Zobel HK, Sokolova A, Gilbert EP, López-Rubio A. Advanced structural characterisation of agar-based hydrogels: Rheological and small angle scattering studies. Carbohydr Polym 2020; 236:115655. [DOI: 10.1016/j.carbpol.2019.115655] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
|
15
|
Chen H, Xiao Q, Weng H, Zhang Y, Yang Q, Xiao A. Extraction of sulfated agar from Gracilaria lemaneiformis using hydrogen peroxide-assisted enzymatic method. Carbohydr Polym 2019; 232:115790. [PMID: 31952598 DOI: 10.1016/j.carbpol.2019.115790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/22/2023]
Abstract
In this study, an eco-friendly extraction method was explored to obtain high sulfate content agar and repair the deficiency of enzymatic extraction by taking full advantage of H2O2. The sulfate content of EHA (H2O2-assisted enzymatic extracted agar) reached 3.56 %, which is significantly higher than that of traditional alkali-extracted agar (AA, 1.8 %). Moreover, EHA exhibited lower viscosity (9.4 cP), which improved 26.6 % and 14 % of filtration and gel dehydration rates than EA (enzymatic extracted agar), respectively. Additionally, the physicochemical properties of the agars were evaluated and compared. Among these agars, EHA showed some favorable properties, such as high yield (16.08 %) and low dissolution temperature (88.9 °C). The surface of algae became smoother after treatment with H2O2 due to effective degradation of cellulose. Besides, mass spectrometry analysis revealed that EHA preserved a great amount of sulfate, while thermogravimetric analysis suggested that the thermal stability of EA and EHA both decreased.
Collapse
Affiliation(s)
- Huijing Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian Province 361021, China
| | - Qiong Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian Province 361021, China
| | - Huifen Weng
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian Province 361021, China
| | - Yonghui Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China
| | - Qiuming Yang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian Province 361021, China
| | - Anfeng Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian Province 361021, China.
| |
Collapse
|
16
|
Torres MD, Flórez-Fernández N, Domínguez H. Integral Utilization of Red Seaweed for Bioactive Production. Mar Drugs 2019; 17:E314. [PMID: 31142051 PMCID: PMC6627364 DOI: 10.3390/md17060314] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
The hydrocolloids carrageenan and agar are the major fraction industrially extracted and commercialized from red seaweeds. However, this type of macroalgae also contains a variety of components with nutritional, functional and biological properties. In the context of sustainability and bioeconomy, where the integral utilization of the natural resources is incentivized, the sequential separation and valorization of seaweed components with biological properties of interest for food, nutraceuticals, cosmeceuticals and pharmaceuticals is proposed. In this work, a review of the available conventional and alternative greener and efficient extraction for obtaining red seaweed bioactives is presented. The potential of emerging technologies for the production of valuable oligomers from carrageenan and agar is also commented, and finally, the sequential extraction of the constituent fractions is discussed.
Collapse
Affiliation(s)
- Maria Dolores Torres
- Department of Chemical Engineering, Faculty of Sciences, University of Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain.
| | - Noelia Flórez-Fernández
- Department of Chemical Engineering, Faculty of Sciences, University of Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain.
| | - Herminia Domínguez
- Department of Chemical Engineering, Faculty of Sciences, University of Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain.
| |
Collapse
|
17
|
Rocha CM, Sousa AM, Kim JK, Magalhães JM, Yarish C, Gonçalves MDP. Characterization of agar from Gracilaria tikvahiae cultivated for nutrient bioextraction in open water farms. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101420] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Jeong DW, Hyeon JE, Joo YC, Shin SK, Han SO. Integration of Bacterial Expansin on Agarolytic Complexes to Enhance the Degrading Activity of Red Algae by Control of Gelling Properties. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:1-9. [PMID: 29151139 DOI: 10.1007/s10126-017-9782-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Expansin act by loosening hydrogen bonds in densely packed polysaccharides. This work characterizes the biological functions of expansin in the gelling and degradation of algal polysaccharides. In this study, the bacterial expansin BpEX from Bacillus pumilus was fused with the dockerin module of a cellulosome system for assembly with agarolytic complexes. The assembly of chimeric expansin caused an indicative enhancement in agarase activity. The enzymatic activities on agar substrate and natural biomass were 3.7-fold and 3.3-fold higher respectively than that of agarase as a single enzyme. To validate the effect on the agar degradation, the regulation potential of parameters related to gel rheology by bacterial expansin was experimentally investigated to indicate that the bacterial expansin lowered the gelling temperature and viscosity of agar. Thus, these results demonstrated the possibility of advancing more efficient strategies for utilizing agar as oligo sugar source in the biorefinery field that uses marine biomass as feedstocks.
Collapse
Affiliation(s)
- Da Woon Jeong
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19702, USA
| | - Young-Chul Joo
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Kyu Shin
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
20
|
Mikshina PV, Makshakova ON, Petrova AA, Gaifullina IZ, Idiyatullin BZ, Gorshkova TA, Zuev YF. Gelation of rhamnogalacturonan I is based on galactan side chain interaction and does not involve chemical modifications. Carbohydr Polym 2017; 171:143-151. [DOI: 10.1016/j.carbpol.2017.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 11/26/2022]
|
21
|
Relation between structure and rheological/thermal properties of agar. A mini-review on the effect of alkali treatment and the role of agaropectin. FOOD STRUCTURE-NETHERLANDS 2017. [DOI: 10.1016/j.foostr.2016.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Gomaa AI, Nsonzi F, Sedman J, Ismail AA. Enhanced Unfolding of Bovine β-Lactoglobulin Structure Using Microwave Treatment: a Multi-Spectroscopic Study. FOOD BIOPHYS 2016. [DOI: 10.1007/s11483-016-9451-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Strategies to improve the mechanical strength and water resistance of agar films for food packaging applications. Carbohydr Polym 2015; 132:196-204. [DOI: 10.1016/j.carbpol.2015.06.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/31/2015] [Accepted: 06/06/2015] [Indexed: 11/19/2022]
|
24
|
Yarnpakdee S, Benjakul S, Kingwascharapong P. Physico-chemical and gel properties of agar from Gracilaria tenuistipitata from the lake of Songkhla, Thailand. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Sousa AM, Gonçalves MP. The influence of locust bean gum on native and alkali-modified agar gels. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Laccase–Prussian blue film–graphene doped carbon paste modified electrode for carbamate pesticides quantification. Biosens Bioelectron 2013; 47:292-9. [DOI: 10.1016/j.bios.2013.03.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 02/22/2013] [Accepted: 03/12/2013] [Indexed: 02/08/2023]
|
27
|
Sousa AMM, Borges J, Silva AF, Gonçalves MP. Influence of the extraction process on the rheological and structural properties of agars. Carbohydr Polym 2013; 96:163-71. [PMID: 23688466 DOI: 10.1016/j.carbpol.2013.03.070] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 11/29/2022]
Abstract
Agars obtained by traditional hot-water (TWE) and microwave-assisted (MAE) extractions were compared in terms of their rheological and physicochemical properties and molecular self-association in solutions of low (0.05%, w/w) and high (1.5%, w/w) polymer concentrations. At low concentration, thin gelled layers were imaged by AFM. Slow or rapid cooling of the solutions influenced structure formation. In each case, TWE and MAE agar structures were different and apparently larger for MAE. At high concentration, progressive structural reinforcement was seen; while TWE agar showed a more open and irregular 3D network, MAE agar gel imaged by cryoSEM was denser and fairly uniform. The rheological (higher thermal stability and consistency) and mechanical (higher gel strength) behaviors of MAE agar seemed consistent with a positive effect of molecular mass and 3,6-anhydro-α-l-galactose content. MAE produced non-degraded agar comparable with commercial ones and if properly monitored, could be a promising alternative to TWE.
Collapse
Affiliation(s)
- Ana M M Sousa
- REQUIMTE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | | | | | | |
Collapse
|
28
|
Francavilla M, Pineda A, Lin CSK, Franchi M, Trotta P, Romero AA, Luque R. Natural porous agar materials from macroalgae. Carbohydr Polym 2012; 92:1555-60. [PMID: 23399188 DOI: 10.1016/j.carbpol.2012.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 11/27/2022]
Abstract
Porous agar materials have been prepared from marine macroalgae species using a simple microwave-assisted extraction/drying methodology, providing a new family of polysaccharide derived porous solids. The microwave-assisted extraction allows a more efficient and less time-consuming extraction of the polysaccharide compared to conventional extraction protocols based on conventional heating. DRIFT and (13)C NMR results indicated that the internal agar structure (based on d-galactose and 3,6-anhydro-l-galactose linked units) was preserved after the extraction methodology, which opens a wide range of future possibilities and applications for this new family of porous polysaccharides. The extracted agar materials, which have already applications per se due to their high purities, could be subsequently transformed into a novel family of attractive mesoporous agar materials that could be used as natural templates for the production of nanocrystals of metal oxides.
Collapse
Affiliation(s)
- Matteo Francavilla
- Institute of Marine Science, National Research Council (CNR), via Pola 4, 71010 Lesina, Italy.
| | | | | | | | | | | | | |
Collapse
|