1
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Tsyganov D, Samet AV, Silyanova EA, Ushkarov VI, Varakutin AE, Chernysheva NB, Chuprov-Netochin RN, Khomutov AA, Volkova AS, Leonov SV, Semenova MN, Semenov VV. Synthesis and Antiproliferative Activity of Triphenylphosphonium Derivatives of Natural Allylpolyalkoxybenzenes. ACS OMEGA 2022; 7:3369-3383. [PMID: 35128247 PMCID: PMC8811894 DOI: 10.1021/acsomega.1c05515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/12/2022] [Indexed: 05/15/2023]
Abstract
Derivatives of natural allylpolyalkoxybenzenes conjugated to triphenylphosphonium (TPP) cations by aliphatic linkers of three, six, seven, and eight atoms were synthesized to examine the role of the polyalkoxybenzene pharmacophore, TPP fragment, and linker length in antiproliferative activities. The key synthetic procedures included (i) hydroboration-oxidation of apiol, dillapiol, myristicin, and allyltetramethoxybenzene; (ii) acylation of polyalkoxybenzyl alcohols or amines; and (iii) condensation of polyalkoxybenzaldehydes followed by hydrogenation and cyclopropyl-homoallyl rearrangement. The targeted TPP conjugates as well as the starting allylbenzenes, the corresponding alkylpolyalkoxybenzenes, and the respective alkyl-TPP salts were evaluated for cytotoxicity in a panel of human cancer cell lines using MTT and Click-iT-EdU assays and in a sea urchin embryo model. The linker of three carbon atoms was identified as favorable for selective cancer cell growth inhibition. Although the propyl-TPP salt was cytotoxic at low micromolar concentrations, the introduction of a polyalkoxybenzene moiety significantly potentiated inhibition of both cell growth and de novo DNA synthesis in several human cancer cell lines, HST-116 colon cancer, A375 melanoma, PC-3 prostate cancer, and T-47D breast carcinoma cells, while it failed to produce any developmental abnormalities in the sea urchin embryos.
Collapse
Affiliation(s)
- Dmitry
V. Tsyganov
- N.D.
Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Alexander V. Samet
- N.D.
Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Eugenia A. Silyanova
- N.D.
Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Vladimir I. Ushkarov
- N.D.
Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Alexander E. Varakutin
- N.D.
Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Natalia B. Chernysheva
- N.D.
Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Roman N. Chuprov-Netochin
- School
of Biological and Medical Physics, Moscow
Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russian Federation
| | - Andrey A. Khomutov
- School
of Biological and Medical Physics, Moscow
Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russian Federation
| | - Anna S. Volkova
- School
of Biological and Medical Physics, Moscow
Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russian Federation
| | - Sergey V. Leonov
- School
of Biological and Medical Physics, Moscow
Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russian Federation
| | - Marina N. Semenova
- N.
K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, 119334 Moscow, Russian Federation
| | - Victor V. Semenov
- N.D.
Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
- . Tel.: +7 (499) 135-6343. Fax: +7 (499) 137-2966
| |
Collapse
|
3
|
Ruberte AC, Ramos-Inza S, Aydillo C, Talavera I, Encío I, Plano D, Sanmartín C. Novel N, N'-Disubstituted Acylselenoureas as Potential Antioxidant and Cytotoxic Agents. Antioxidants (Basel) 2020; 9:antiox9010055. [PMID: 31936213 PMCID: PMC7023466 DOI: 10.3390/antiox9010055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
Selenium compounds are pivotal in medicinal chemistry for their antitumoral and antioxidant properties. Forty seven acylselenoureas have been designed and synthesized following a fragment-based approach. Different scaffolds, including carbo- and hetero-cycles, along with mono- and bi-cyclic moieties, have been linked to the selenium containing skeleton. The dose- and time-dependent radical scavenging activity for all of the compounds were assessed using the in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assays. Some of them showed a greater radical scavenging capacity at low doses and shorter times than ascorbic acid. Therefore, four compounds were evaluated to test their protective effects against H2O2-induced oxidative stress. One derivative protected cells against H2O2-induced damage, increasing cell survival by up to 3.6-fold. Additionally, in vitro cytotoxic activity of all compounds was screened against several cancer cells. Eight compounds were selected to determine their half maximal inhibitory concentration (IC50) values towards breast and lung cancer cells, along with their selectivity indexes. The breast cancer cells turned out to be much more sensitive than the lung. Two compounds (5d and 10a) stood out with IC50 values between 4.2 μM and 8.0 μM towards MCF-7 and T47D cells, with selectivity indexes greater than 22.9. In addition, compound 10b exhibited dual antioxidant and cytotoxic activities. Although further evidence is needed, the acylselenourea scaffold could be a feasible frame to develop new dual agents.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Sandra Ramos-Inza
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Irene Talavera
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
- Correspondence: ; Tel.: +34-948425600 (ext. 806388)
| |
Collapse
|
4
|
Wang C, Zhang W, Wong JH, Ng T, Ye X. Diversity of potentially exploitable pharmacological activities of the highly prized edible medicinal fungus Antrodia camphorata. Appl Microbiol Biotechnol 2019; 103:7843-7867. [PMID: 31407039 DOI: 10.1007/s00253-019-10016-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Antrodia camphorata, also known as A. cinnamomea, is a precious medicinal basidiomycete fungus endemic to Taiwan. This article summarizes the recent advances in research on the multifarious pharmacological effects of A. camphorata. The mushroom exhibits anticancer activity toward a large variety of cancers including breast, cervical, ovarian, prostate, bladder, colorectal, pancreatic, liver, and lung cancers; melanoma; leukemia; lymphoma; neuroblastoma; and glioblastoma. Other activities encompass antiinflammatory, antiatopic dermatitis, anticachexia, immunoregulatory, antiobesity, antidiabetic, antihyperlipidemic, antiatherosclerotic, antihypertensive, antiplatelet, antioxidative, antiphotodamaging, hepatoprotective, renoprotective, neuroprotective, testis protecting, antiasthmatic, osteogenic, osteoprotective, antiviral, antibacterial, and wound healing activities. This review aims to provide a reference for further development and utilization of this highly prized mushroom.
Collapse
Affiliation(s)
- Caicheng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weiwei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiujuan Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
5
|
Lee DY, Lee IH. FDY003 inhibits colon cancer in a Colo205 xenograft mouse model by decreasing oxidative stress. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_650_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Antrodia cinnamomea induces autophagic cell death via the CHOP/TRB3/Akt/mTOR pathway in colorectal cancer cells. Sci Rep 2018; 8:17424. [PMID: 30479369 PMCID: PMC6258711 DOI: 10.1038/s41598-018-35780-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023] Open
Abstract
Antrodia cinnamomea, a well-known traditional medicine used in Taiwan, is a potent anticancer drug for colorectal cancer, but the upstream molecular mechanism of its anticancer effects remains unclear. In this study, A. cinnamomea extracts showed cytotoxicity in HCT116, HT29, SW480, Caco-2 and, Colo205 colorectal cancer cells. Whole-genome expression profiling of A. cinnamomea extracts in HCT116 cells was performed. A. cinnamomea extracts upregulated the expression of the endoplasmic reticulum stress marker CHOP and its downstream gene TRB3. Moreover, dephosphorylation of Akt and mTOR as well as autophagic cell death were observed. Gene expression and autophagic cell death were reversed by the knockdown of CHOP and TRB3. Autophagy inhibition but not apoptosis inhibition reversed A. cinnamomea-induced cell death. Finally, we demonstrated that A. cinnamomea extracts significantly suppressed HCT116 tumour growth in nude mice. Our findings suggest that autophagic cell death via the CHOP/TRB3/Akt/mTOR pathway may represent a new mechanism of anti-colorectal cancer action by A. cinnamomea. A. cinnamomea is a new CHOP activator and potential drug that can be used in colorectal cancer treatment.
Collapse
|
7
|
Phytol isolated from watermelon (Citrullus lanatus) sprouts induces cell death in human T-lymphoid cell line Jurkat cells via S-phase cell cycle arrest. Food Chem Toxicol 2018; 115:425-435. [DOI: 10.1016/j.fct.2018.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/22/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
|
8
|
Yeung SY, Piggott MJ. Reprint of: Antiproliferative activity of the Antrodia camphorata secondary metabolite 4,7-dimethoxy-5-methylbenzo[d][1,3]dioxole and analogues. Fitoterapia 2018; 126:40-44. [DOI: 10.1016/j.fitote.2018.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 12/18/2022]
|
9
|
Yeung SY, Piggott MJ. Antiproliferative activity of the Antrodia camphorata secondary metabolite 4,7-dimethoxy-5-methylbenzo[d][1,3]dioxole and analogues. Fitoterapia 2017; 123:9-12. [PMID: 28927852 DOI: 10.1016/j.fitote.2017.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 12/11/2022]
Abstract
Both the traditional Chinese medicinal fungus, Antrodia camphorata, and its secondary metabolite, 4,7-dimethoxy-5-methylbenzo[d][1,3]dioxole, have been reported to possess promising anticancer activity. In this work the natural product and analogues bearing more polar substituents were synthesised and assessed for antiproliferative activity in the NCI-60 screen. Although each compound inhibited the growth of some cell lines at 10μM, none had sufficient activity to warrant further investigation.
Collapse
Affiliation(s)
- Sing Yee Yeung
- Chemistry, School of Molecular Sciences, University of Western Australia, Perth, 6009, Australia
| | - Matthew J Piggott
- Chemistry, School of Molecular Sciences, University of Western Australia, Perth, 6009, Australia.
| |
Collapse
|
10
|
Wang JJ, Wu CC, Lee CL, Hsieh SL, Chen JB, Lee CI. Antimelanogenic, Antioxidant and Antiproliferative Effects of Antrodia camphorata Fruiting Bodies on B16-F0 Melanoma Cells. PLoS One 2017; 12:e0170924. [PMID: 28125738 PMCID: PMC5268406 DOI: 10.1371/journal.pone.0170924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/12/2017] [Indexed: 11/18/2022] Open
Abstract
Antrodia camphorata is a fungus that is endemic to Taiwan, and its fruiting body has been used as a folk medicine for the prevention or treatment of diverse diseases. The present study is aimed at investigating the antimelanogenesis and antioxidation effect of the ethanolic extract of Antrodia camphorata fruiting body (EE-AC), as well as its antiproliferation effects in B16-F0 melanoma cells. Regarding antimelanogenic effects, EE-AC had effective cupric ions reducing capacity and expressed more potent inhibitory effect than kojic acid on mushroom tyrosinase activity. Moreover, EE-AC significantly inhibited cellular tyrosinase activity and the melanin content in B16-F0 cells at 12.5 μg/mL concentration without cell toxicities. Regarding antioxidant effects, EE-AC exhibited potent DPPH radical- and SOD-like-scavenging activities. Regarding antiproliferative effects, EE-AC exhibited a selective cytotoxic effect and markedly inhibited the migration ability of B16-F0 cells. EE-AC increased the population of B16-F0 cells at sub-G1 phase of the cell cycle. EE-AC also caused the increase of early apoptotic cells and chromatin condensation, which indicated the apoptotic effects in B16-F0 cells. We demonstrated that EE-AC possessed antimelanogenic, antioxidant and anti-skin cancer actions. The results would contribute to the development and application of cosmetics, healthy food and pharmaceuticals.
Collapse
Affiliation(s)
- Jyh-Jye Wang
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung, Taiwan
| | - Chih-Chung Wu
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Chun-Lin Lee
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Sciences, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Jin-Bor Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chu-I Lee
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Yang YL, Tao QQ, Han JJ, Bao L, Liu HW. Recent Advance on Bioactive Compounds from the Edible and Medicinal Fungi in China. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Secondary Metabolites from Higher Fungi. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 106 2017; 106:1-201. [DOI: 10.1007/978-3-319-59542-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Newson HL, Wild DA, Yeung SY, Skelton BW, Flematti GR, Allan JE, Piggott MJ. Access to 1,2,3,4-Tetraoxygenated Benzenes via a Double Baeyer–Villiger Reaction of Quinizarin Dimethyl Ether: Application to the Synthesis of Bioactive Natural Products from Antrodia camphorata. J Org Chem 2016; 81:3127-35. [DOI: 10.1021/acs.joc.5b02861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Harriet L. Newson
- School of Chemistry and Biochemistry, ‡Centre for Microscopy, Characterisation
and Analysis, §School of Medicine and Pharmacology, The University of Western Australia, Perth, WA 6009, Australia
| | - Duncan A. Wild
- School of Chemistry and Biochemistry, ‡Centre for Microscopy, Characterisation
and Analysis, §School of Medicine and Pharmacology, The University of Western Australia, Perth, WA 6009, Australia
| | - Sing Yee Yeung
- School of Chemistry and Biochemistry, ‡Centre for Microscopy, Characterisation
and Analysis, §School of Medicine and Pharmacology, The University of Western Australia, Perth, WA 6009, Australia
| | - Brian W. Skelton
- School of Chemistry and Biochemistry, ‡Centre for Microscopy, Characterisation
and Analysis, §School of Medicine and Pharmacology, The University of Western Australia, Perth, WA 6009, Australia
| | - Gavin R. Flematti
- School of Chemistry and Biochemistry, ‡Centre for Microscopy, Characterisation
and Analysis, §School of Medicine and Pharmacology, The University of Western Australia, Perth, WA 6009, Australia
| | - Jane E. Allan
- School of Chemistry and Biochemistry, ‡Centre for Microscopy, Characterisation
and Analysis, §School of Medicine and Pharmacology, The University of Western Australia, Perth, WA 6009, Australia
| | - Matthew J. Piggott
- School of Chemistry and Biochemistry, ‡Centre for Microscopy, Characterisation
and Analysis, §School of Medicine and Pharmacology, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
14
|
4,7-Dimethoxy-5-methyl-1,3-benzodioxole from Antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264.7 cells. Int Immunopharmacol 2015; 31:186-94. [PMID: 26745712 DOI: 10.1016/j.intimp.2015.12.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/02/2015] [Accepted: 12/21/2015] [Indexed: 01/19/2023]
Abstract
Several benzenoid compounds have been isolated from Antrodia camphorata are known to have excellent anti-inflammatory activity. In this study, we investigated the anti-inflammatory potential of 4,7-dimethoxy-5-methyl-1,3-benzodioxole (DMB), one of the major benzenoid compounds isolated from the mycelia of A. camphorata. DMB significantly decreased the LPS-induced production of pro-inflammatory molecules, such as nitric oxide (NO), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. In addition, DMB suppressed the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner. Moreover, DMB significantly suppressed LPS-induced nuclear translocation of nuclear factor-κB (NF-κB), and this inhibition was found to be associated with decreases in the phosphorylation and degradation of its inhibitor, inhibitory κB-α (IκB-α). Moreover, we found that DMB markedly inhibited the protein expression level of Toll-like receptor 4 (TLR4). Furthermore, treatment with DMB significantly increased hemoxygenase-1 (HO-1) expression in RAW264.7 cells, which is further confirmed by hemin, a HO-1 enhancer, significantly attenuated the LPS-induced pro-inflammatory molecules and iNOS and TLR4 protein levels. Taken together, the present study suggests that DMB may have therapeutic potential for the treatment of inflammatory diseases.
Collapse
|
15
|
The Ethanolic Extract of Taiwanofungus camphoratus (Antrodia camphorata) Induces Cell Cycle Arrest and Enhances Cytotoxicity of Cisplatin and Doxorubicin on Human Hepatocellular Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:415269. [PMID: 26557666 PMCID: PMC4628761 DOI: 10.1155/2015/415269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/09/2023]
Abstract
Taiwanofungus camphoratus (synonym Antrodia camphorata) is a widely used medicinal fungus in the folk medicine of Taiwan with several pharmacological features such as anti-inflammatory, liver protection, antihypertensive, and antioxidative activities. The ethanolic extract of T. camphoratus (TCEE) which contains abundant bioactive compounds including triterpenoids and polysaccharides also has antitumor effects in various human cancer cell lines. The aims of this study are to clarify the antitumor effects of TCEE on human hepatocellular carcinoma cells and also evaluate the combination drug effects with conventional chemotherapy agents, cisplatin and doxorubicin. In the present study, the TCEE treatment induced cell cycle arrest and suppressed cell growth on both Hep3B and HepJ5 cells. Expression of cell cycle inhibitors, P21 and P27, and activation of apoptosis executer enzyme, caspase-3, were also induced by TCEE. In combination with the chemotherapy agents, TCEE treatment further enhanced the tumor suppression efficiency of cisplatin and doxorubicin. These results together suggested that TCEE is a potential ingredient for developing an integrated chemotherapy for human liver cancer.
Collapse
|
16
|
Lee CI, Wu CC, Hsieh SL, Lee CL, Chang YP, Chang CC, Wang YZ, Wang JJ. Anticancer effects on human pancreatic cancer cells of triterpenoids, polysaccharides and 1,3-β-d-glucan derived from the fruiting body of Antrodia camphorata. Food Funct 2014; 5:3224-32. [DOI: 10.1039/c4fo00720d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Comparison of the apoptotic effects of supercritical fluid extracts of Antrodia cinnamomea mycelia on hepatocellular carcinoma cells. Molecules 2014; 19:9033-50. [PMID: 24979405 PMCID: PMC6271877 DOI: 10.3390/molecules19079033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 02/06/2023] Open
Abstract
Antrodia cinnamomea (AC) has been widely used as a folk medicine in the prevention and treatment of liver diseases, such as hepatitis, hepatic fibrosis, and hepatocellular carcinoma. Previous studies have indicated that triterpenoids and benzenoids show selective cytotoxicity against human hepatoma cell lines. The aim of the study was to compare the triterpenoid content of extract and the extract-induced cytotoxicity in HepG2 cells from mycelia extracts of solid state cultured AC obtained by supercritical fluid extraction (SFE) and the conventional solvent extraction method. SFE with CO2 mixed with a constant amount of ethanol co-solvent (10% of CO2 volume) applied at different temperatures and pressures (40, 60 and 80 °C and, 20.7, 27.6 and 34.5 Mpa) was also compared in the study. Although the extraction yield of triterpenoids (59.7 mg/g) under the optimal extraction conditions of 34.5 MPa (5000 psi)/60 °C (designated as sample S-5000-60) was equivalent to the extraction yield using conventional liquid solvent extraction with ethanol (ETOH-E) at room temperature (60.33 mg/g), the cytotoxicity of the former against the proliferation of HepG2 cell line measured as the inhibition of 50% of cell growth activity (IC50) at dosages of 116.15, 57.82 and 43.96 µg/mL was superior to that of EtOH-E at 131.09, 80.04 and 48.30 µg/mL at 24, 48 and 72 h, respectively. Additionally, we further proved that the apoptotic effect of S-5000-60 presented a higher apoptosis ratio (21.5%) than ETOH-E (10.5%) according to annexin V-FITC and propidium iodide double staining assay results. The high affinity and selectivity of SFE on bioactive components resulted in a higher extraction efficiency than conventional solvent extraction. The chemical profile of the obtained extracts from solid state cultivated mycelium of AC was also determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS), whereby three benzenoids and four triterpenoids were found for the first time in SFE extracts with 4,7-dimethoxy-5-methyl-l,3-benzodioxole (5.78 mg/g) being the most abundant component, followed by 2,4-dimethoxy-6-methylbenzene-1,3-diol (3.03 mg/g) and dehydroeburicoic acid (0.40 mg/g).
Collapse
|
18
|
Gomha SM, Eldebss TMA, Abdulla MM, Mayhoub AS. Diphenylpyrroles: Novel p53 activators. Eur J Med Chem 2014; 82:472-9. [PMID: 24934571 DOI: 10.1016/j.ejmech.2014.05.082] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 05/23/2014] [Accepted: 05/31/2014] [Indexed: 12/14/2022]
Abstract
Cellular tumor antigen p53 is crucial for cancer prevention via different mechanisms. E3 ubiquitin-protein ligase HDM2 binds to p53, blocks its ability to activate transcription, and therefore acts as a negative regulator. Blocking p53 binding site on HDM2 was believed to generate efficient antitumor agents. So far, limited scaffolds were reported with HDM2 antagonist activity. Herein, diphenylpyrroles were introduced and evaluated as a novel scaffold in the field of p53 activators. An efficient synthesis of novel 3-heteroaryl-pyrroles is described via reactions of E-3-(dimethylamino)-1-(2-methyl-4,5-diphenyl-1H-pyrrol-3-yl)prop-2-en-1-one or E-1-(2-methyl-4,5-diphenyl-1H-pyrrol-3-yl)-3-morpholinoprop-2-en-1-one with hydrazine hydrate, phenyl hydrazine, hydroxylamine, various heterocyclic amines and active methylene compounds.
Collapse
Affiliation(s)
- Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Taha M A Eldebss
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Abdelrahman S Mayhoub
- Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884 Egypt
| |
Collapse
|
19
|
Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. FUNGAL DIVERS 2013. [DOI: 10.1007/s13225-013-0265-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Lu MC, El-Shazly M, Wu TY, Du YC, Chang TT, Chen CF, Hsu YM, Lai KH, Chiu CP, Chang FR, Wu YC. Recent research and development of Antrodia cinnamomea. Pharmacol Ther 2013; 139:124-56. [DOI: 10.1016/j.pharmthera.2013.04.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 12/20/2022]
|
21
|
Chen YC, Chiu HL, Chao CY, Lin WH, Chao LK, Huang GJ, Kuo YH. New Anti-Inflammatory Aromatic Components from Antrodia camphorata. Int J Mol Sci 2013; 14:4629-39. [PMID: 23443162 PMCID: PMC3634465 DOI: 10.3390/ijms14034629] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 12/02/2022] Open
Abstract
Three new benzenoids, 3-isopropenyl-2-methoxy-6-methyl-4,5-methylenedioxyphenol (1), 2-hydroxy-4,4′-dimethoxy-3,3′-dimethyl-5,6,5′,6′-bimethylenedioxybiphenyl (2), 4,4′-dihydroxy-3,3′-dimethoxy-2,2′-dimethyl-5,6,5′,6′-bimethylenedioxybiphenyl (3), together with two known benzenoids, 2,3,6-trimethoxy-5-methylphenol (4) and 2,3-methylenedioxy-4-methoxy-5-methylphenol (5), were isolated from Antrodia camphorata. Our results support that compounds 1–5 potently inhibited LPS (lipopolysaccharide)-induced nitric oxide (NO) production in a dose-dependent manner. The IC50 values of compounds 1, 3 and 5 were 1.8 ± 0.2, 18.8 ± 0.6 and 0.8 ± 0.3 μg/mL, respectively.
Collapse
Affiliation(s)
- Yu-Chang Chen
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan; E-Mails: (Y.-C.C.); (H.-L.C.)
| | - His-Lin Chiu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan; E-Mails: (Y.-C.C.); (H.-L.C.)
| | - Che-Yi Chao
- Department of Health and Nutrition Biotechnology, College of Health Science, Asia University, Taichung 412, Taiwan; E-Mail: cychao@asia,edu.tw
| | - Wen-Hsin Lin
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan; E-Mail:
| | - Louis Kuoping Chao
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 404, Taiwan; E-Mail:
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan; E-Mails: (Y.-C.C.); (H.-L.C.)
- Authors to whom correspondence should be addressed; E-Mails: (G.-J.H.); (Y.-H.K.); Tel.: +886-4-220-533-66 (ext. 5508) (G.-J.H.); +886-4-220533-66 (ext. 5709) (Y.-H.K.); Fax: +886-4-220-716-93 (Y.-H.K.)
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan; E-Mails: (Y.-C.C.); (H.-L.C.)
- Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung 404, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (G.-J.H.); (Y.-H.K.); Tel.: +886-4-220-533-66 (ext. 5508) (G.-J.H.); +886-4-220533-66 (ext. 5709) (Y.-H.K.); Fax: +886-4-220-716-93 (Y.-H.K.)
| |
Collapse
|
22
|
Antrodia camphorata Grown on Germinated Brown Rice Suppresses Melanoma Cell Proliferation by Inducing Apoptosis and Cell Differentiation and Tumor Growth. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:321096. [PMID: 23533475 PMCID: PMC3596902 DOI: 10.1155/2013/321096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/16/2013] [Indexed: 01/01/2023]
Abstract
Antrodia camphorata grown on germinated brown rice (CBR) was prepared to suppress melanoma development. CBR extracts were divided into hexane, EtOAc, BuOH, and water fractions. Among all the fractions, EtOAc fraction showed the best suppressive effect on B16F10 melanoma cell proliferation by CCK-8 assay. It also showed the increased cell death and the changed cellular morphology after CBR treatment. Annexin V-FITC/PI, flow cytometry, and western blotting were performed to elucidate anticancer activity of CBR. The results showed that CBR induced p53-mediated apoptotic cell death of B16F10. CBR EtOAc treatment increased melanin content and melanogenesis-related proteins of MITF and TRP-1 expressions, which supports its anticancer activity. Its potential as an anticancer agent was further investigated in tumor-xenografted mouse model. In melanoma-xenografted mouse model, melanoma tumor growth was significantly suppressed under CBR EtOAc fraction treatment. HPLC analysis of CBR extract showed peak of adenosine. In conclusion, CBR extracts notably inhibited B16F10 melanoma cell proliferation through the p53-mediated apoptosis induction and increased melanogenesis. These findings suggest that CBR EtOAc fraction can act as an effective anticancer agent to treat melanoma.
Collapse
|
23
|
Abstract
Chinese herbal medicine () attracts much attention in the treatment of liver injuries. Numerous studies have revealed various biological activities of medicinal mushrooms such as Antrodia Cinnamomea (). Although A. cinnamomea is rare in the wild, recent developments in fermentation and cultivation technologies make the mycelia and fruiting bodies of this valuable medicinal mushroom readily available. Liver diseases such as fatty liver, hepatitis, hepatic fibrosis, and liver cancer are complicated processes of liver injuries that have tremendous impact on human society. In this article, we reviewed studies about the hepatoprotective effects of the fruiting bodies and mycelia of A. cinnamomea performed in different experimental models. The results of those studies suggest the potential application of A. cinnamomea in preventing and treating liver diseases and its potential to be developed into health foods or new drugs.
Collapse
Affiliation(s)
- Yen-Wenn Liu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|