1
|
Andernach L, Schury C, Nickel M, Böttger J, Kaufmann M, Rohn S, Granvogl M, Hanschen FS. Non-enzymatic degradation of aliphatic Brassicaceae isothiocyanates during aqueous heat treatment. Food Chem 2024; 449:138939. [PMID: 38599103 DOI: 10.1016/j.foodchem.2024.138939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 04/12/2024]
Abstract
Glucosinolate-derived isothiocyanates are valuable for human health as they exert health promoting effects. As thermal food processing could affect their levels in a structure dependent way, the stability and reactivity of 12 Brassicaceae isothiocyanates during aqueous heating at 100 °C and pH 5-8 were investigated. The formation of their corresponding amines and N,N'-dialk(en)yl thioureas was quantified. Further, the potential to form odor active compounds was investigated by HRGC-MS-olfactometry. A strong structure-reactivity relationship was found and shorter side chains and electron withdrawing groups increase the reactivity of isothiocyanates. 3-(Methylsulfonyl)-propyl isothiocyanate was least stable. The main products are the corresponding amines (up to 69% recovery) and formation of N,N'-dialk(en)yl thioureas is only relevant at neutral to basic pH values. Apart from allyl isothiocyanate also 3-(methylthio)propyl isothiocyanate is precursor to many sulfur-containing odor active compounds. Thus, the isothiocyanate-structure affects their levels but also contributes to the flavor of boiled Brassicaceae vegetables.
Collapse
Affiliation(s)
- Lars Andernach
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Carolina Schury
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Strasse 34, Freising-Weihenstephan D-85354, Germany
| | - Marie Nickel
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Jana Böttger
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Martin Kaufmann
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Michael Granvogl
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Strasse 34, Freising-Weihenstephan D-85354, Germany; Department of Food Chemistry and Analytical Chemistry (170a), Institute of Food Chemistry, University of Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Franziska Sabine Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.
| |
Collapse
|
2
|
M Ezzat S, M Merghany R, M Abdel Baki P, Ali Abdelrahim N, M Osman S, A Salem M, Peña-Corona SI, Cortés H, Kiyekbayeva L, Leyva-Gómez G, Sharifi-Rad J, Calina D. Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights. Mol Nutr Food Res 2024; 68:e2400063. [PMID: 38600885 DOI: 10.1002/mnfr.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 04/12/2024]
Abstract
Phenethyl isothiocyanate (PEITC), a compound derived from cruciferous vegetables, has garnered attention for its anticancer properties. This review synthesizes existing research on PEITC, focusing on its mechanisms of action in combatting cancer. PEITC has been found to be effective against various cancer types, such as breast, prostate, lung, colon, and pancreatic cancers. Its anticancer activities are mediated through several mechanisms, including the induction of apoptosis (programmed cell death), inhibition of cell proliferation, suppression of angiogenesis (formation of new blood vessels that feed tumors), and reduction of metastasis (spread of cancer cells to new areas). PEITC targets crucial cellular signaling pathways involved in cancer progression, notably the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Protein Kinase B (Akt), and Mitogen-Activated Protein Kinase (MAPK) pathways. These findings suggest PEITC's potential as a therapeutic agent against cancer. However, further research is necessary to determine the optimal dosage, understand its bioavailability, and assess potential side effects. This will be crucial for developing PEITC-based treatments that are both effective and safe for clinical use in cancer therapy.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Rana M Merghany
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Giza, Egypt
| | - Passent M Abdel Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Nariman Ali Abdelrahim
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sohaila M Osman
- Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin El Kom, Menoufia, 32511, Egypt
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| |
Collapse
|
3
|
Renz M, Andernach L, Kaufmann M, Rohn S, Hanschen FS. Degradation of glucosinolates and formation of isothiocyanates, nitriles, amines, and N,N'-dialk(en)yl thioureas during domestic boiling of red cabbage. Food Chem 2024; 435:137550. [PMID: 37783130 DOI: 10.1016/j.foodchem.2023.137550] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Red cabbage is a popular vegetable in Central Europe and a rich source of glucosinolates (GLSs). Upon hydrolysis, GLSs form health-promoting isothiocyanates (ITCs), but also nitriles and epithionitriles. Recently, ITCs were shown to undergo further hydrolysis, yielding amines. Here, we analyzed the degradation of GLSs and the formation of ITCs, nitriles, epithionitriles, and amines during domestic-like cooking of red cabbage with addition of vinegar or baking soda. Both additives strongly affected the stability of GLSs and the formation of nitriles during boiling. Primary amines were found as a major degradation product of GLSs. In control and vinegar samples, formation of methylsulfinylalkyl amines increased during boiling. Additionally, for the first time, the formation of several N,N'-dialk(en)yl thioureas during boiling of Brassica vegetables was demonstrated, resulting from the reaction of GLS-derived ITCs and amines, and they were subsequently quantified. As references, five N,N'-dialk(en)yl thioureas were synthesized and characterized by NMR and HRMS.
Collapse
Affiliation(s)
- Matthias Renz
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany; Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Lars Andernach
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Martin Kaufmann
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Sascha Rohn
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Franziska S Hanschen
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.
| |
Collapse
|
4
|
Yang Q, Luo M, Zhou Q, Zhao Y, Chen J, Ji S. Insights into the loss of glucoraphanin in post-harvested broccoli--Possible involvement of the declined supply capacity of sulfur donor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111580. [PMID: 36587585 DOI: 10.1016/j.plantsci.2022.111580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The loss of characteristic nutrient glucoraphanin during the shelf life seriously affects the nutritional quality of broccoli. Here, we monitored the changes in the levels of sulfur donors (cysteine and glutathione) required for glucoraphanin biosynthesis. Similar to glucoraphanin, cysteine content decreased sharply. Continuous down-regulation of BoCysK1 and BoCysK2 genes encoding cysteine synthase might account for cysteine loss. Contrarily, glutathione content accumulated steadily, which might owe to the up-regulation of biosynthetic gene (BoEC1). Additionally, the change of malondialdehyde content was positively correlated with glutathione, implying that oxidative stress might stimulate glutathione accumulation. Nevertheless, the expression of BoGSTF11 gene encoding glutathione S-transferases was down-regulated, which blocked the supply of glutathione. The increase in the content of raphanusamic acid (degradation product) indicated that insufficient supply of sulfur donors not only could constrain the biosynthesis of glucoraphanin but also triggered its degradation.
Collapse
Affiliation(s)
- Qingxi Yang
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Manli Luo
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qian Zhou
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yingbo Zhao
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Shujuan Ji
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
5
|
Delbaere SM, Bernaerts T, Vangrunderbeek M, Vancoillie F, Hendrickx ME, Grauwet T, Van Loey AM. The Volatile Profile of Brussels Sprouts ( Brassica oleracea Var. gemmifera) as Affected by Pulsed Electric Fields in Comparison to Other Pretreatments, Selected to Steer (Bio)Chemical Reactions. Foods 2022; 11:foods11182892. [PMID: 36141018 PMCID: PMC9498443 DOI: 10.3390/foods11182892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Pulsed electric fields (PEF) at low field strength is considered a non-thermal technique allowing membrane permeabilization in plant-based tissue, hence possibly impacting biochemical conversions and the concomitant volatile profile. Detailed studies on the impact of PEF at low field strength on biochemical conversions in plant-based matrices are scarce but urgently needed to provide the necessary scientific basis allowing to open a potential promising field of applications. As a first objective, the effect of PEF and other treatments that aim to steer biochemical conversions on the volatile profile of Brussels sprouts was compared in this study. As a second objective, the effect of varying PEF conditions on the volatile profile of Brussels sprouts was elucidated. Volatile fingerprinting was used to deduce whether and which (bio)chemical reactions had occurred. Surprisingly, PEF at 1.01 kV/cm and 2.7 kJ/kg prior to heating was assumed not to have caused significant membrane permeabilization since similar volatiles were observed in the case of only heating, as opposed to mixing. A PEF treatment with an electrical field strength of 3.00 kV/cm led to a significantly higher formation of certain enzymatic reaction products, being more pronounced when combined with an energy input of 27.7 kJ/kg, implying that these PEF conditions could induce substantial membrane permeabilization. The results of this study can be utilized to steer enzymatic conversions towards an intended volatile profile of Brussels sprouts by applying PEF.
Collapse
|
6
|
Krell M, Hanschen FS, Rohn S. Formation and stability of isothiocyanate protein conjugates at different pH values and bread types enriched with nasturtium (Tropaeolum majus L.). Food Res Int 2022; 158:111492. [DOI: 10.1016/j.foodres.2022.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
|
7
|
Formation of volatile sulfur compounds and S-methyl-l-cysteine sulfoxide in Brassica oleracea vegetables. Food Chem 2022; 383:132544. [PMID: 35247727 DOI: 10.1016/j.foodchem.2022.132544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022]
Abstract
Besides glucosinolates, Brassica vegetables accumulate sulfur-containing (+)-S-methyl-l-cysteine sulfoxide (SMCSO, methiin), mainly known from Allium vegetables. Such (+)-S-alk(en)yl-l-cysteine sulfoxides can degrade to volatile organosulfur compounds (VOSCs), which have been linked to health beneficial effects. In the present study, the accumulation of SMCSO and the formation of VOSCs was investigated in Brassica oleracea vegetables. SMCSO content of commercially available white and red cabbages was monitored over a three-month period and linked with the formation of VOSCs. S-Methyl methanethiosulfinate was the main VOSC released from SMCSO. Upon heating, it degraded to dimethyltrisulfide and dimethyldisulfide, which were less abundant in fresh homogenates. SMCSO made up approximately 1% of the dry matter of cabbages and the overall contents were similar in white and red cabbages (3.2-10.2 and 3.9-10.3 µmol/g fresh weight, respectively). Using proteome profiling it was shown that recovery of VOSCs correlated with abundance of two isoforms of cystine lyase.
Collapse
|
8
|
Hoffmann H, Ott C, Raupbach J, Andernach L, Renz M, Grune T, Hanschen FS. Assessing Bioavailability and Bioactivity of 4-Hydroxythiazolidine-2-Thiones, Newly Discovered Glucosinolate Degradation Products Formed During Domestic Boiling of Cabbage. Front Nutr 2022; 9:941286. [PMID: 35938125 PMCID: PMC9354954 DOI: 10.3389/fnut.2022.941286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Glucosinolates are plant secondary metabolites found in cruciferous vegetables (Brassicaceae) that are valued for their potential health benefits. Frequently consumed representatives of these vegetables, for example, are white or red cabbage, which are typically boiled before consumption. Recently, 3-alk(en)yl-4-hydroxythiazolidine-2-thiones were identified as a class of thermal glucosinolate degradation products that are formed during the boiling of cabbage. Since these newly discovered compounds are frequently consumed, this raises questions about their potential uptake and their possible bioactive functions. Therefore, 3-allyl-4-hydroxythiazolidine-2-thione (allyl HTT) and 4-hydroxy-3-(4-(methylsulfinyl) butyl)thiazolidine-2-thione (4-MSOB HTT) as degradation products of the respective glucosinolates sinigrin and glucoraphanin were investigated. After consumption of boiled red cabbage broth, recoveries of consumed amounts of the degradation products in urine collected for 24 h were 18 ± 5% for allyl HTT and 21 ± 4% for 4-MSOB HTT (mean ± SD, n = 3). To investigate the stability of the degradation products during uptake and to elucidate the uptake mechanism, both an in vitro stomach and an in vitro intestinal model were applied. The results indicate that the uptake of allyl HTT and 4-MSOB HTT occurs by passive diffusion. Both compounds show no acute cell toxicity, no antioxidant potential, and no change in NAD(P)H dehydrogenase quinone 1 (NQO1) activity up to 100 μM. However, inhibition of glycogen synthase kinases-3 (GSK-3) in the range of 20% for allyl HTT for the isoform GSK-3β and 29% for 4-MSOB HTT for the isoform GSK-3α at a concentration of 100 μM was found. Neither health-promoting nor toxic effects of 3-alk(en)yl-4-hydroxythiazolidine-2-thiones were found in the four tested assays carried out in this study, which contrasts with the properties of other glucosinolate degradation products, such as isothiocyanates.
Collapse
Affiliation(s)
- Holger Hoffmann
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Lars Andernach
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Matthias Renz
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Franziska S. Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
- *Correspondence: Franziska S. Hanschen
| |
Collapse
|
9
|
Novel transformation products from glucosinolate-derived thioglucose and isothiocyanates formed during cooking. Food Res Int 2022; 157:111237. [DOI: 10.1016/j.foodres.2022.111237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023]
|
10
|
Alderley CL, Greenrod STE, Friman V. Plant pathogenic bacterium can rapidly evolve tolerance to an antimicrobial plant allelochemical. Evol Appl 2022; 15:735-750. [PMID: 35603031 PMCID: PMC9108312 DOI: 10.1111/eva.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
Crop losses to plant pathogens are a growing threat to global food security and more effective control strategies are urgently required. Biofumigation, an agricultural technique where Brassica plant tissues are mulched into soils to release antimicrobial plant allelochemicals called isothiocyanates (ITCs), has been proposed as an environmentally friendly alternative to agrochemicals. Whilst biofumigation has been shown to suppress a range of plant pathogens, its effects on plant pathogenic bacteria remain largely unexplored. Here, we used a laboratory model system to compare the efficacy of different types of ITCs against Ralstonia solanacearum plant bacterial pathogen. Additionally, we evaluated the potential for ITC-tolerance evolution under high, intermediate, and low transfer frequency ITC exposure treatments. We found that allyl-ITC was the most efficient compound at suppressing R. solanacearum growth, and its efficacy was not improved when combined with other types of ITCs. Despite consistent pathogen growth suppression, ITC tolerance evolution was observed in the low transfer frequency exposure treatment, leading to cross-tolerance to ampicillin beta-lactam antibiotic. Mechanistically, tolerance was linked to insertion sequence movement at four positions in genes that were potentially associated with stress responses (H-NS histone like protein), cell growth and competitiveness (acyltransferase), iron storage ([2-Fe-2S]-binding protein) and calcium ion sequestration (calcium-binding protein). Interestingly, pathogen adaptation to the growth media also indirectly selected for increased ITC tolerance through potential adaptations linked with metabolism and antibiotic resistance (dehydrogenase-like protein) and transmembrane protein movement (Tat pathway signal protein). Together, our results suggest that R. solanacearum can rapidly evolve tolerance to allyl-ITC plant allelochemical which could constrain the long-term efficiency of biofumigation biocontrol and potentially shape pathogen evolution with plants.
Collapse
|
11
|
Huchthausen J, Henneberger L, Mälzer S, Nicol B, Sparham C, Escher BI. High-Throughput Assessment of the Abiotic Stability of Test Chemicals in In Vitro Bioassays. Chem Res Toxicol 2022; 35:867-879. [PMID: 35394761 DOI: 10.1021/acs.chemrestox.2c00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abiotic stability of chemicals is not routinely tested prior to performing in vitro bioassays, although abiotic degradation can reduce the concentration of test chemicals leading to the formation of active or inactive transformation products, which may lead to misinterpretation of bioassay results. A high-throughput workflow was developed to measure the abiotic stability of 22 test chemicals in protein-rich aqueous media under typical bioassay conditions at 37 °C for 48 h. These test chemicals were degradable in the environment according to a literature review. The chemicals were extracted from the exposure media at different time points using a novel 96-pin solid-phase microextraction. The conditions were varied to differentiate between various reaction mechanisms. For most hydrolyzable chemicals, pH-dependent degradation in phosphate-buffered saline indicated that acid-catalyzed hydrolysis was less important than reactions with hydroxide ions. Reactions with proteins were mainly responsible for the depletion of the test chemicals in the media, which was simulated by bovine serum albumin (BSA) and glutathione (GSH). 1,2-Benzisothiazol-3(2H)-one, 2-methyl-4-isothiazolinone, and l-sulforaphane reacted almost instantaneously with GSH but not with BSA, indicating that GSH is a good proxy for reactivity with electrophilic amino acids but may overestimate the actual reaction with three-dimensional proteins. Chemicals such as hydroquinones or polyunsaturated chemicals are prone to autoxidation, but this reaction is difficult to differentiate from hydrolysis and could not be simulated by the oxidant N-bromosuccinimide. Photodegradation played a minor role because cells are exposed in incubators in the dark and simulations with high light intensities did not yield realistic degradation. Stability predictions from various in silico prediction models for environmental conditions can give initial indications of the stability but were not always consistent with the experimental stability in bioassays. As the presented workflow can be performed in high throughput under realistic bioassay conditions, it can be used to provide an experimental database for developing bioassay-specific stability prediction models.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Sophia Mälzer
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Beate Nicol
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, U.K
| | - Chris Sparham
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, U.K
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany.,Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, DE-72076 Tübingen, Germany
| |
Collapse
|
12
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
13
|
Characterization of Conjugates between α-Lactalbumin and Benzyl Isothiocyanate-Effects on Molecular Structure and Proteolytic Stability. Molecules 2021; 26:molecules26206247. [PMID: 34684828 PMCID: PMC8539348 DOI: 10.3390/molecules26206247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022] Open
Abstract
In complex foods, bioactive secondary plant metabolites (SPM) can bind to food proteins. Especially when being covalently bound, such modifications can alter the structure and, thus, the functional and biological properties of the proteins. Additionally, the bioactivity of the SPM can be affected as well. Consequently, knowledge of the influence of chemical modifications on these properties is particularly important for food processing, food safety, and nutritional physiology. As a model, the molecular structure of conjugates between the bioactive metabolite benzyl isothiocyanate (BITC, a hydrolysis product of the glucosinolate glucotropaeolin) and the whey protein α-lactalbumin (α-LA) was investigated using circular dichroism spectroscopy, anilino-1-naphthalenesulfonic acid fluorescence, and dynamic light scattering. Free amino groups were determined before and after the BITC conjugation. Finally, mass spectrometric analysis of the BITC-α-LA protein hydrolysates was performed. As a result of the chemical modifications, a change in the secondary structure of α-LA and an increase in surface hydrophobicity and hydrodynamic radii were documented. BITC modification at the ε-amino group of certain lysine side chains inhibited tryptic hydrolysis. Furthermore, two BITC-modified amino acids were identified, located at two lysine side chains (K32 and K113) in the amino acid sequence of α-LA.
Collapse
|
14
|
Benzyl isothiocyanate-modified α-lactalbumin - Two-dimensional high-performance thin-layer chromatography for analyzing modified peptides. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1181:122937. [PMID: 34536835 DOI: 10.1016/j.jchromb.2021.122937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/17/2023]
Abstract
In complex food matrices, non-directed reactions between food proteins and secondary plant metabolites (SPM) are conceivable. In this study, the interaction between the bioactive metabolite from garden cress (Lepidium sativum) and selected Brassicaceae - benzyl isothiocyanate (BITC) - and the dairy protein α-lactalbumin (α-LA) was investigated. It was focused on monitoring the proteolytic degradation behaviour of unmodified and BITC-modified α-LA with two-dimensional high-performance thin-layer chromatography (2D-HPTLC). The two-dimensional approach of HPTLC offers high resolution in the separation of complex peptide mixtures and might enable differentiation of protein modifications. Based on the specific peptide patterns of native and modified peptides, conclusions can be drawn about differences in protein/peptide polarity, location of a modification, and digestibility. The aim was to characterize tryptically hydrolyzed unmodified and BITC-modified peptides using the 2D method and to investigate the influence of BITC modification of α-LA on polarity and digestibility. To determine the repeatability of peptide separation by 2D-HPTLC, the unmodified and BITC-modified protein hydrolyzates were separated six times. The absolute standard deviations between the retardation factors of the individual peptide spots varied between 0.52 and 4.79 mm for the x-coordinates and between 0.41 and 6.47 mm for the y-coordinates for all three samples. Here, the mean relative standard deviations ranged from 5.80 to 10.4% for the x-coordinates and from 5.91 to 18.3% for the y-coordinates. The results of the tryptic hydrolysis indicated that, depending on the concentration of BITC used, the modification sterically hinders the cleavage sites for the enzyme, resulting in a reduced digestibility. Covalent binding of the hydrophobic BITC altered the digestibility and polarity of the protein, leading to a difference in peptide patterns between the unmodified and modified α-LA. It was concluded that the reaction was undirected, resulting in a mixture of unmodified and modified peptides, and that elongated modified peptides were formed by BITC blocking of trypsin cleavage sites.
Collapse
|
15
|
Lu Y, Maria Vos RD, Zhang Y, Zhang M, Liu Y, Fu C, Liu SQ, Huang D. The degradation kinetics and mechanism of moringin in aqueous solution and the cytotoxicity of degraded products. Food Chem 2021; 364:130424. [PMID: 34182363 DOI: 10.1016/j.foodchem.2021.130424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
In this work, we investigated the degradation of moringin (4-[(α-l-rhamnosyloxy)benzyl]-isothiocyanate), a major bioactive isothiocyanate (ITC) found in moringa seeds (Moringa oleifera Lam), at various food processing conditions. Moringin degrades rapidly to several water-soluble products via a pseudo-first-order kinetics. By analyzing the reaction products, the degradation mechanism was found to be through hydrolyzing to (A) 1-O-(4-hydroxymethylphenyl) α-l-rhamnopyranoside (rhamnobenzyl alcohol RBA) or (B) rhamnobenzylamine. The formed amine further reacts with moringin to form N,N'-bis{4-[(α-l-rhamnosyloxy)benzyl]}thiourea (di-rhamnobenzyl thiourea, DRBTU). In addition, moringin isomerizes to 4-[(α-l-rhamnosyloxy)benzyl]thiocyanate (RBTC), which further reacts with moringin to form S,N-bis{4-[(α-l-rhamnosyloxy)benzyl]}-dithiocarbamate (DRBDTC). Furthermore, pH was found to have an effect on the degradation of moringin. RBA and RBTC were major degraded products in neutral and acidic conditions while thiourea (DRBTU) was in alkaline condition. Although moringin showed higher cytotoxicity to cancer cells, its degraded products showed very weak or no activities, suggesting that the isothiocyanate group of ITCs is essential for their cancer chemoprevention activities.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Romy Dorothea Maria Vos
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Molan Zhang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Yunjiao Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| | - Dejian Huang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China.
| |
Collapse
|
16
|
Zeng W, Tao H, Li Y, Wang J, Xia C, Li S, Wang M, Wang Q, Miao H. The flavor of Chinese kale sprouts is affected by genotypic variation of glucosinolates and their breakdown products. Food Chem 2021; 359:129824. [PMID: 33965761 DOI: 10.1016/j.foodchem.2021.129824] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/17/2021] [Accepted: 04/11/2021] [Indexed: 11/30/2022]
Abstract
Metabolic profiling of glucosinolates and their breakdown products in sprouts of 22 Chinese kale (Brassica oleracea var. alboglabra, BOA) varieties were investigated by using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). Relationships between glucosinolate metabolites and flavor of Chinese kale sprouts were also analyzed. Results showed that compositions and contents of both glucosinolates and their breakdown products varied greatly among different varieties of Chinese kale sprouts. Gluconapin and 4,5-Epithio-pentanenitrile were the dominant glucosinolate and glucosinolate breakdown product in Chinese kale sprouts, respectively. Gluconapin and glucobrassicin were significantly related to bitterness (r = 0.577, 0.648, respectively; p < 0.05). BOA 1 and BOA 13, BOA 3 and BOA 10 are good candidates for future breeding programs since the former two varieties have light bitterness and pungency, and the latter two varieties contain high levels of glucosinolate breakdown products such as isothiocyanates and epithionitriles in sprouts.
Collapse
Affiliation(s)
- Wei Zeng
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Han Tao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yubo Li
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chuchu Xia
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Songwen Li
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Mengyu Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| | - Huiying Miao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Spöttel J, Brockelt J, Badekow S, Rohn S. Immunological Analysis of Isothiocyanate-Modified α-Lactalbumin Using High-Performance Thin Layer Chromatography. Molecules 2021; 26:molecules26071842. [PMID: 33805932 PMCID: PMC8036266 DOI: 10.3390/molecules26071842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Undirected modifications between food proteins and secondary plant metabolites can occur during food processing. The results of covalent interactions can alter the functional and biological properties of the proteins. The present work studied the extent of which covalent conjugation of the bioactive metabolite benzyl isothiocyanate (BITC; a glucosinolate breakdown product) to the whey protein α-lactalbumin affects the protein’s allergenicity. Additional to the immunological analysis of native untreated and BITC-modified α-lactalbumin, the analysis of antigenic properties of proteolytically digested protein derivatives was also performed by high performance thin layer chromatography and immunostaining. As a result of the chemical modifications, structural changes in the protein molecule affected the allergenic properties. In this process, epitopes are destroyed or inactivated, but at the same time, buried epitopes can be exposed or newly formed, so that the net effect was an increase in allergenicity, in this case. Results from the tryptic hydrolysis suggest that BITC conjugation sterically hindered the cleavage sites for the enzyme, resulting in reduced digestibility and allergenicity. Residual antigenicity can be still present as short peptide fragments that provide epitopes. The desire to make food safer for allergy sufferers and to protect sensitized individuals from an allergenic reaction makes it clear that the detection of food antigens is mandatory; especially by considering protein interactions.
Collapse
Affiliation(s)
- Jenny Spöttel
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
| | - Johannes Brockelt
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
| | - Svenja Badekow
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Correspondence: ; Tel.: +49-30-314-72583
| |
Collapse
|
18
|
Yuanfeng W, Chengzhi L, Ligen Z, Juan S, Xinjie S, Yao Z, Jianwei M. Approaches for enhancing the stability and formation of sulforaphane. Food Chem 2020; 345:128771. [PMID: 33601652 DOI: 10.1016/j.foodchem.2020.128771] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022]
Abstract
The isothiocyanate sulforaphane (SF) is one of the most potent naturally occurring Phase 2 enzymes inducers derived from brassica vegetables like broccoli, cabbage, brussel sprouts, etc. Ingestion of broccoli releases SF via hydrolysis of glucoraphanin (GRP) by plant myrosinase and/or intestinal microbiota. However, both SF and plant myrosinase are thermal-labile, and the epithiospecifier protein (ESP) directs the hydrolysis of GRP toward formation of sulforaphane nitrile instead of SF. In addition, bacterial myrosinase has low hydrolyzing efficiency. In this review, we discuss strategies that could be employed to improve the stability of SF, increase SF formation during thermal and non-thermal processing of broccoli, and enhance the myrosinase-like activity of the gut microbiota. Furthermore, new cooking methods or blanching technologies should be developed to maintain myrosinase activity, and novel thermostable myrosinase and/or microbes with high SF producing abilities should also be developed.
Collapse
Affiliation(s)
- Wu Yuanfeng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Lv Chengzhi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Zou Ligen
- Hangzhou Academy of Agricultural Sciences, Zhejiang, Hangzhou, China.
| | - Sun Juan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Song Xinjie
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Zhang Yao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Mao Jianwei
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China; Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China.
| |
Collapse
|
19
|
Andini S, Araya-Cloutier C, Waardenburg L, den Besten HM, Vincken JP. The interplay between antimicrobial activity and reactivity of isothiocyanates. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Sun R, Gols R, Harvey JA, Reichelt M, Gershenzon J, Pandit SS, Vassão DG. Detoxification of plant defensive glucosinolates by an herbivorous caterpillar is beneficial to its endoparasitic wasp. Mol Ecol 2020; 29:4014-4031. [PMID: 32853463 DOI: 10.1111/mec.15613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023]
Abstract
Plant chemical defences impact not only herbivores, but also organisms in higher trophic levels that prey on or parasitize herbivores. While herbivorous insects can often detoxify plant chemicals ingested from suitable host plants, how such detoxification affects endoparasitoids that use these herbivores as hosts is largely unknown. Here, we used transformed plants to experimentally manipulate the major detoxification reaction used by Plutella xylostella (diamondback moth) to deactivate the glucosinolate defences of its Brassicaceae host plants. We then assessed the developmental, metabolic, immune, and reproductive consequences of this genetic manipulation on the herbivore as well as its hymenopteran endoparasitoid Diadegma semiclausum. Inhibition of P. xylostella glucosinolate metabolism by plant-mediated RNA interference increased the accumulation of the principal glucosinolate activation products, the toxic isothiocyanates, in the herbivore, with negative effects on its growth. Although the endoparasitoid manipulated the excretion of toxins by its insect host to its own advantage, the inhibition of herbivore glucosinolate detoxification slowed endoparasitoid development, impaired its reproduction, and suppressed the expression of genes of a parasitoid-symbiotic polydnavirus that aids parasitism. Therefore, the detoxification of plant glucosinolates by an herbivore lowers its toxicity as a host and benefits the parasitoid D. semiclausum at multiple levels.
Collapse
Affiliation(s)
- Ruo Sun
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeffrey A Harvey
- Department of Multitrophic Interactions, Netherlands Institute of Ecology, Wageningen, The Netherlands.,Department of Ecological Sciences, Section Animal Ecology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sagar S Pandit
- Molecular and Chemical Ecology Laboratory, Indian Institute of Science Education and Research, Pune, India
| | - Daniel G Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
21
|
Li H, Sun X, Liao X, Gänzle M. Control of pathogenic and spoilage bacteria in meat and meat products by high pressure: Challenges and future perspectives. Compr Rev Food Sci Food Saf 2020; 19:3476-3500. [PMID: 33337070 DOI: 10.1111/1541-4337.12617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 01/18/2023]
Abstract
High-pressure processing is among the most widely used nonthermal intervention to reduce pathogenic and spoilage bacteria in meat and meat products. However, resistance of pathogenic bacteria strains in meats at the current maximum commercial equipment of 600 MPa questions the ability of inactivation by its application in meats. Pathogens including Escherichia coli, Listeria, and Salmonelle, and spoilage microbiota including lactic acid bacteria dominate in raw meat, ready-to-eat, and packaged meat products. Improved understanding on the mechanisms of the pressure resistance is needed for optimizing the conditions of pressure treatment to effectively decontaminate harmful bacteria. Effective control of the pressure-resistant pathogens and spoilage organisms in meats can be realized by the combination of high pressure with application of mild temperature and/or other hurdles including antimicrobial agents and/or competitive microbiota. This review summarized applications, mechanisms, and challenges of high pressure on meats from the perspective of microbiology, which are important for improving the understanding and optimizing the conditions of pressure treatment in the future.
Collapse
Affiliation(s)
- Hui Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong Sun
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
22
|
|
23
|
Le TN, Chiu CH, Hsieh PC. Bioactive Compounds and Bioactivities of Brassica oleracea L. var. Italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective. PLANTS 2020; 9:plants9080946. [PMID: 32727144 PMCID: PMC7465980 DOI: 10.3390/plants9080946] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Sprouts and microgreens, the edible seedlings of vegetables and herbs, have received increasing attention in recent years and are considered as functional foods or superfoods owing to their valuable health-promoting properties. In particular, the seedlings of broccoli (Brassica oleracea L. var. Italica) have been highly prized for their substantial amount of bioactive constituents, including glucosinolates, phenolic compounds, vitamins, and essential minerals. These secondary metabolites are positively associated with potential health benefits. Numerous in vitro and in vivo studies demonstrated that broccoli seedlings possess various biological properties, including antioxidant, anticancer, anticancer, antimicrobial, anti-inflammatory, anti-obesity and antidiabetic activities. The present review summarizes the updated knowledge about bioactive compounds and bioactivities of these broccoli products and discusses the relevant mechanisms of action. This review will serve as a potential reference for food selections of consumers and applications in functional food and nutraceutical industries.
Collapse
|
24
|
Covalent modification of food proteins by plant-based ingredients (polyphenols and organosulphur compounds): A commonplace reaction with novel utilization potential. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Methyl Jasmonate Treatment of Broccoli Enhanced Glucosinolate Concentration, Which Was Retained after Boiling, Steaming, or Microwaving. Foods 2020; 9:foods9060758. [PMID: 32521670 PMCID: PMC7353551 DOI: 10.3390/foods9060758] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022] Open
Abstract
Exogenous methyl jasmonate (MeJA) treatment was known to increase the levels of neoglucobrassicin and their bioactive hydrolysis products in broccoli (Brassica oleracea var. italica), but the fate of MeJA-induced glucosinolates (GSLs) after various cooking methods was unknown. This study measured the changes in GSLs and their hydrolysis compounds in broccoli treated with MeJA and the interaction between MeJA and cooking treatments. All cooked MeJA-treated broccoli contained significantly more GSLs than untreated broccoli (p < 0.05). After 5 min of cooking (boil, steam, microwave), MeJA-treated broccoli still contained 1.6- to 2.3-fold higher GSL content than untreated broccoli. Neoglucobrassicin hydrolysis products were also significantly greater in steamed and microwaved MeJA-treated broccoli. The results show that exogenous MeJA treatment increases neoglucobrassicin and its hydrolysis compounds in broccoli even after cooking. Once the positive and negative effects of these compounds are better understood, the results of this experiment can be a valuable tool to help food scientists, nutrition scientists, and dieticians determine how to incorporate raw or cooked broccoli and Brassica vegetables in the diet.
Collapse
|
26
|
Kołodziejski D, Koss-Mikołajczyk I, Abdin AY, Jacob C, Bartoszek A. Chemical Aspects of Biological Activity of Isothiocyanates and Indoles, the Products of Glucosinolate Decomposition. Curr Pharm Des 2020; 25:1717-1728. [PMID: 31267852 DOI: 10.2174/1381612825666190701151644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
There is growing evidence that cancer chemoprevention employing natural, bioactive compounds may halt or at least slow down the different stages of carcinogenesis. A particularly advantageous effect is attributed to derivatives of sulfur-organic phytochemicals, such as glucosinolates (GLs) synthesized mainly in Brassicaceae plant family. GLs are hydrolysed enzymatically to bioactive isothiocyanates (ITC) and indoles, which exhibit strong anti-inflammatory and anti-carcinogenic activity. Highly bioavailable electrophilic ITC are of particular interest, as they can react with nucleophilic groups of important biomolecules to form dithiocarbamates, thiocarbamates and thioureas. These modifications seem responsible for the chemopreventive activity, but also for genotoxicity and mutagenicity. It was documented that ITC can permanently bind to important biomolecules such as glutathione, cytoskeleton proteins, transcription factors NF-κB and Nrf2, thiol-disulfide oxidoreductases, proteasome proteins or heat shock proteins. Furthermore, ITC may also affect epigenetic regulation of gene expression, e.g. by inhibition of histone deacetylases. Some other derivatives of glucosinolates, especially indoles, are able to form covalent bonds with nucleobases in DNA, which may result in genotoxicity and mutagenicity. This article summarizes the current state of knowledge about glucosinolates and their degradation products in terms of possible interactions with reactive groups of cellular molecules.
Collapse
Affiliation(s)
- Dominik Kołodziejski
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdarisk, Poland
| | - Izabela Koss-Mikołajczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdarisk, Poland
| | - Ahmad Y Abdin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdarisk, Poland
| |
Collapse
|
27
|
Sun R, Jiang X, Reichelt M, Gershenzon J, Pandit SS, Giddings Vassão D. Tritrophic metabolism of plant chemical defenses and its effects on herbivore and predator performance. eLife 2019; 8:e51029. [PMID: 31841109 PMCID: PMC6934381 DOI: 10.7554/elife.51029] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022] Open
Abstract
Insect herbivores are frequently reported to metabolize plant defense compounds, but the physiological and ecological consequences are not fully understood. It has rarely been studied whether such metabolism is genuinely beneficial to the insect, and whether there are any effects on higher trophic levels. Here, we manipulated the detoxification of plant defenses in the herbivorous pest diamondback moth (Plutella xylostella) to evaluate changes in fitness, and additionally examined the effects on a predatory lacewing (Chrysoperla carnea). Silencing glucosinolate sulfatase genes resulted in the systemic accumulation of toxic isothiocyanates in P. xylostella larvae, impairing larval development and adult reproduction. The predatory lacewing C. carnea, however, efficiently degraded ingested isothiocyanates via a general conjugation pathway, with no negative effects on survival, reproduction, or even prey preference. These results illustrate how plant defenses and their detoxification strongly influence herbivore fitness but might only subtly affect a third trophic level.
Collapse
Affiliation(s)
- Ruo Sun
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Xingcong Jiang
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Sagar Subhash Pandit
- Molecular and Chemical Ecology LabIndian Institute of Science Education and ResearchPuneIndia
| | | |
Collapse
|
28
|
Central composite design-based optimization and fabrication of benzylisothiocynate-loaded PLGA nanoparticles for enhanced antimicrobial attributes. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01185-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Cai YX, Wang JH, McAuley C, Augustin MA, Terefe NS. Fermentation for enhancing the bioconversion of glucoraphanin into sulforaphane and improve the functional attributes of broccoli puree. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
30
|
Oliveira GR, Oliveira WK, Andrade C, Melo ADB, Luciano FB, Macedo REF, Costa LB. Natural antimicrobials for control of
Salmonella
Enteritidis in feed and in vitro model of the chicken digestive process. J Anim Physiol Anim Nutr (Berl) 2019; 103:756-765. [DOI: 10.1111/jpn.13070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/07/2018] [Accepted: 01/09/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Geovane R. Oliveira
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| | - Willian K. Oliveira
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| | - Carla Andrade
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| | - Antonio Diego B. Melo
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| | - Fernando B. Luciano
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| | - Renata E. F. Macedo
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| | - Leandro B. Costa
- Programa de Pós‐graduação em Ciência Animal Pontifícia Universidade Católica do Paraná, PUCPR Curitiba Brazil
| |
Collapse
|
31
|
Relationship between conversion rate of glucosinolates to isothiocyanates/indoles and genotoxicity of individual parts of Brassica vegetables. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3170-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Oliviero T, Verkerk R, Dekker M. Isothiocyanates from Brassica Vegetables-Effects of Processing, Cooking, Mastication, and Digestion. Mol Nutr Food Res 2018; 62:e1701069. [PMID: 29898282 PMCID: PMC6175105 DOI: 10.1002/mnfr.201701069] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/15/2018] [Indexed: 12/14/2022]
Abstract
The formation of health-beneficial isothiocyanates (ITCs) from glucosinolates depends on a wide variety of plant-intrinsic factors (e.g., concentration of glucosinolates, activity of myrosinase, and specifier proteins) and on a multitude of extrinsic postharvest factors such as the conditions used during industrial processing, domestic preparation, mastication, and digestion. All of these factors contribute to a large variability in the formation of ITCs (and other breakdown products), as well as their intake and absorption upon consumption of Brassica vegetables. This uncertainty in ITC intake and absorption is a barrier for the determination of an optimal Brassica vegetable consumption pattern. In this review, the intrinsic and extrinsic factors that affect the formation, intake, and absorption of ITCs are described according to the most recent findings. The focus of this review includes the hydrolysis reaction mechanisms, the elucidation of the primary factors that play a role in the hydrolysis reaction, the influence of processing and cooking conditions, the effect of chewing, and the roles of the gastric and upper intestinal phases, including the effect of the meal composition (e.g., the effect of other meal compounds present during digestion) on the potential formation of ITCs.
Collapse
Affiliation(s)
- Teresa Oliviero
- Food Quality and Design GroupDepartment of Agrotechnology and Food SciencesWageningen UniversityBornse Weilanden 96708 WGWageningenThe Netherlands
| | - Ruud Verkerk
- Food Quality and Design GroupDepartment of Agrotechnology and Food SciencesWageningen UniversityBornse Weilanden 96708 WGWageningenThe Netherlands
| | - Matthijs Dekker
- Food Quality and Design GroupDepartment of Agrotechnology and Food SciencesWageningen UniversityBornse Weilanden 96708 WGWageningenThe Netherlands
| |
Collapse
|
33
|
Kühn C, Kupke F, Baldermann S, Klopsch R, Lamy E, Hornemann S, Pfeiffer AFH, Schreiner M, Hanschen FS, Rohn S. Diverse Excretion Pathways of Benzyl Glucosinolate in Humans after Consumption of Nasturtium (Tropaeolum majus L.)-A Pilot Study. Mol Nutr Food Res 2018; 62:e1800588. [PMID: 30091516 DOI: 10.1002/mnfr.201800588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/17/2018] [Indexed: 01/01/2023]
Abstract
SCOPE Different metabolic and excretion pathways of the benzyl glucosinolate breakdown products benzyl isothiocyanate and benzyl cyanide are investigated to obtain information about their multiple fate after ingestion. Detailed focus is on the so far underestimated transformation/excretion pathways-protein conjugation and exhalation. METHODS AND RESULTS Metabolites, protein conjugates, and non-conjugated isothiocyanates are determined in plasma, urine, and breath of seven volunteers after consuming freeze-dried nasturtium or bread enriched with nasturtium. Samples are collected up to 48 h at selected time points. The metabolites of the mercapturic acid pathway are detectable in plasma up to 24 h after consumption. Additionally, mercapturic acid is the main metabolite in urine, but non-conjugated benzyl isothiocyanate is detectable as well. Protein conjugates show high amounts in plasma even 48 h after consumption. In breath, benzyl isothiocyanate and benzyl cyanide are detectable up to 48 h after consumption. CONCLUSION Isothiocyanates are not only metabolized via the mercapturic acid pathway, but also form protein conjugates in blood and are exhaled. To balance intake and excretion, it is necessary to investigate all potential metabolites and excretion routes. This has important implications for the understanding of physiological and pharmacological effects of isothiocyanate-containing products.
Collapse
Affiliation(s)
- Carla Kühn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Franziska Kupke
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, D-14979, Großbeeren, Germany
| | - Rebecca Klopsch
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, D-14979, Großbeeren, Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Infection Control, Medical Center, University of Freiburg, Breisacher Str. 115b, 79106, Freiburg, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, D-14979, Großbeeren, Germany
| | - Franziska S Hanschen
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, D-14979, Großbeeren, Germany
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| |
Collapse
|
34
|
Kühn C, von Oesen T, Herz C, Schreiner M, Hanschen FS, Lamy E, Rohn S. In Vitro Determination of Protein Conjugates in Human Cells by LC-ESI-MS/MS after Benzyl Isothiocyanate Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6727-6733. [PMID: 29879845 DOI: 10.1021/acs.jafc.8b01309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glucosinolates and their breakdown products, especially isothiocyanates (ITCs), are hypothesized to exert a broad range of bioactivities. However, physiological mechanisms are not yet completely understood. In this study, formation of protein conjugates after incubation with benzyl isothiocyanate (BITC) was investigated in vitro. A survey of protein conjugates was done by determining BITC cysteine and lysine amino acid conjugates after protein digestion. Therefore, a liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated. Stability studies showed that cysteine conjugates are not stable under alkaline conditions, and lysine conjugates did not show any correlation to pH values, although stability increased at low temperatures. Lysine conjugates were the preferred form of protein conjugates, and longer BITC exposure times led to higher amounts. Knowledge about the reaction sites of ITCs in eukaryotic cells may help to understand the mode of action of ITCs leading to health promoting as well as toxicological effects in humans.
Collapse
Affiliation(s)
- Carla Kühn
- Institute of Food Chemistry, Hamburg School of Food Science , University of Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| | - Tobias von Oesen
- Institute of Food Chemistry, Hamburg School of Food Science , University of Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| | - Corinna Herz
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Infection Control, Medical Center , University of Freiburg , 79106 Freiburg , Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1 , D-14979 Großbeeren , Germany
| | - Franziska S Hanschen
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1 , D-14979 Großbeeren , Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Infection Control, Medical Center , University of Freiburg , 79106 Freiburg , Germany
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science , University of Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| |
Collapse
|
35
|
Arabidopsis mutants impaired in glutathione biosynthesis exhibit higher sensitivity towards the glucosinolate hydrolysis product allyl-isothiocyanate. Sci Rep 2018; 8:9809. [PMID: 29955088 PMCID: PMC6023892 DOI: 10.1038/s41598-018-28099-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Upon tissue damage the plant secondary metabolites glucosinolates can generate various hydrolysis products, including isothiocyanates (ITCs). Their role in plant defence against insects and pest and their potential health benefits have been well documented, but our knowledge regarding the endogenous molecular mechanisms of their effect in plants is limited. Here we investigated the effect of allyl-isothiocyanate (AITC) on Arabidopsis thaliana mutants impaired in homeostasis of the low-molecular weight thiol glutathione. We show that glutathione is important for the AITC-induced physiological responses, since mutants deficient in glutathione biosynthesis displayed a lower biomass and higher root growth inhibition than WT seedlings. These mutants were also more susceptible than WT to another ITC, sulforaphane. Sulforaphane was however more potent in inhibiting root growth than AITC. Combining AITC with the glutathione biosynthesis inhibitor L-buthionine-sulfoximine (BSO) led to an even stronger phenotype than observed for the single treatments. Furthermore, transgenic plants expressing the redox-sensitive fluorescent biomarker roGFP2 indicated more oxidative conditions during AITC treatment. Taken together, we provide genetic evidence that glutathione plays an important role in AITC-induced growth inhibition, although further studies need to be conducted to reveal the underlying mechanisms.
Collapse
|
36
|
Bello C, Maldini M, Baima S, Scaccini C, Natella F. Glucoraphanin and sulforaphane evolution during juice preparation from broccoli sprouts. Food Chem 2018; 268:249-256. [PMID: 30064754 DOI: 10.1016/j.foodchem.2018.06.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022]
Abstract
Broccoli sprouts are considered functional food as they are naturally enriched in glucoraphanin (GR) that is the biological precursor of the anticancer compound sulforaphane (SFN). Due to its health promoting value, also broccoli sprout juice is becoming very popular. The present study aimed to quantitatively assess the conversion of GR to its hydrolysis products, SFN and SFN-nitrile, during the juice preparation process. We demonstrated that SFN plus SFN-nitrile yield from glucoraphanin is quite low (≈25%) and that some SFN is lost during the juice preparation partially due to the spontaneous conversion to sulforaphane-amine or conjugation to GSH and proteins naturally present in the juice. Our results demonstrate that the detection of the sole SFN free form does not provide reliable information about the real concentration of this functional compound in the juice.
Collapse
Affiliation(s)
- Cristiano Bello
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Food and Nutrition Research Centre, Via Ardeatina 546, 00178 Roma, Italy.
| | - Mariateresa Maldini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Food and Nutrition Research Centre, Via Ardeatina 546, 00178 Roma, Italy
| | - Simona Baima
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Food and Nutrition Research Centre, Via Ardeatina 546, 00178 Roma, Italy.
| | - Cristina Scaccini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Food and Nutrition Research Centre, Via Ardeatina 546, 00178 Roma, Italy.
| | - Fausta Natella
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Food and Nutrition Research Centre, Via Ardeatina 546, 00178 Roma, Italy.
| |
Collapse
|
37
|
Capuano E, Dekker M, Verkerk R, Oliviero T. Food as Pharma? The Case of Glucosinolates. Curr Pharm Des 2018; 23:2697-2721. [PMID: 28117016 DOI: 10.2174/1381612823666170120160832] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/24/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glucosinolates (GLSs) are dietary plant secondary metabolites occurring in the order Brassicales with potential health effects, in particular as anti-carcinogenic compounds. GLSs are converted into a variety of breakdown products (BPs) upon plant tissue damage and by the gut microbiota. GLS biological activity is related to BPs rather than to GLSs themselves. METHODS we have reviewed the most recent scientific literature on the metabolic fate and the biological effect of GLSs with particular emphasis on the epidemiological evidence for health effect and evidence from clinical trials. An overview of potential molecular mechanisms underlying GLS biological effect is provided. The potential toxic or anti-nutritional effect has also been discussed. RESULTS Epidemiological and human in vivo evidence point towards a potential anti-cancer effect for sulforaphane, indole-3-carbinol and 3,3-diindolylmethane. A number of new human clinical trials are on-going and will likely shed further light on GLS protective effect towards cancer as well as other diseases. BPs biological effect is the results of a plurality of molecular mechanisms acting simultaneously which include modulation of xenobiotic metabolism, modulation of inflammation, regulation of apoptosis, cell cycle arrest, angiogenesis and metastasis and regulation of epigenetic events. BPs have been extensively investigated for their protective effect towards cancer but in recent years the interest also includes other diseases. CONCLUSION It appears that certain BPs may protect against and may even represent a therapeutic strategy against several forms of cancer. Whether this latter effect can be achieved through diet or supplements should be investigated more thoroughly.
Collapse
Affiliation(s)
- Edoardo Capuano
- Food Quality Design, WU Agrotechnology & Food Sciences, Axis building 118, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Matthijs Dekker
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| | - Ruud Verkerk
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| | - Teresa Oliviero
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| |
Collapse
|
38
|
Fechner J, Kaufmann M, Herz C, Eisenschmidt D, Lamy E, Kroh LW, Hanschen FS. The major glucosinolate hydrolysis product in rocket (Eruca sativa L.), sativin, is 1,3-thiazepane-2-thione: Elucidation of structure, bioactivity, and stability compared to other rocket isothiocyanates. Food Chem 2018; 261:57-65. [PMID: 29739606 DOI: 10.1016/j.foodchem.2018.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Rocket is rich in glucosinolates and valued for its hot and spicy taste. Here we report the structure elucidation, bioactivity, and stability of the mainly formed glucosinolate hydrolysis product, namely sativin, which was formerly thought to be 4-mercaptobutyl isothiocyanate. However, by NMR characterization we revealed that sativin is in fact 1,3-thiazepane-2-thione, a tautomer of 4-mercaptobutyl isothiocyanate with 7-membered ring structure and so far unknown. This finding was further substantiated by conformation sampling using molecular modeling and total enthalpy calculation with density functional theory. During aqueous heat treatment sativin in general was quite stable, while the isothiocyanates erucin and sulforaphane were labile, having half-lives of 132 min and 56 min (pH 5, 100 °C), respectively. Moreover, using a WST-1 assay, we found that sativin did not reduce cell viability of HepG2 cells in a range of 0.3-30 µM, and, therefore, exhibited no cytotoxic effects in this cell line.
Collapse
Affiliation(s)
- Jana Fechner
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany; Technische Universität Dresden, Chair of Food Chemistry, Bergstrasse 66, 01062 Dresden, Germany.
| | - Martin Kaufmann
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Corinna Herz
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Infection Control, Medical Center, University of Freiburg, Breisacher Str. 115b, 79106 Freiburg, Germany.
| | - Daniela Eisenschmidt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany.
| | - Evelyn Lamy
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Infection Control, Medical Center, University of Freiburg, Breisacher Str. 115b, 79106 Freiburg, Germany.
| | - Lothar W Kroh
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Franziska S Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.
| |
Collapse
|
39
|
Kühn C, von Oesen T, Hanschen FS, Rohn S. Determination of isothiocyanate-protein conjugates in milk and curd after adding garden cress (Lepidium sativum L.). Food Res Int 2018; 108:621-627. [PMID: 29735098 DOI: 10.1016/j.foodres.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 01/02/2023]
Abstract
Isothiocyanates (ITC) play an important role in health promotion and cancer prevention due to their anti-bacterial, anti-inflammatory, and anti-cancerogenic properties. However, ITC are highly reactive so that a reaction with further food components is very likely. For example, a reaction of ITC with nucleophilic amino acid side chains of proteins such as cysteine and lysine can occur, reducing the bioavailability of indispensable amino acids and protein functions may be altered. Therefore, it is of great interest to investigate the fate of ITC in the food matrix. Accordingly, the aim of the present study was to investigate the interaction of milk proteins and the ITC benzyl isothiocyanate (BITC) and allyl isothiocyanate (AITC) forming dithiocarbamates and thioureas in milk and curd. After incubating milk and curd with pure ITC or ITC-containing garden cress (Lepidium sativum L.), proteins were isolated, digested, and analyzed via LC-ESI-MS/MS as amino acid derivatives ("conjugates"). Protein conjugates of AITC and BITC were detected in all samples investigated. Further, the acidic pH value in curd favored the formation of dithiocarbamates over the formation of thioureas. Slightly acidic or neutral conditions like in fresh milk favored the formation of thioureas. The investigations also indicated that AITC shows a higher reactivity and dithiocarbamates are formed preferably, whereas incubation with BITC lead to less protein conjugates and the ratio of thioureas and dithiocarbamates was more balanced. In addition, amino acid modifications were often analyzed with indirect methods like measuring the decline of the amino acid residues. In this study, the modified amino acids were analyzed directly leading to more reliable results concerning the amount of modification.
Collapse
Affiliation(s)
- Carla Kühn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany.
| | - Tobias von Oesen
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Franziska S Hanschen
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, Großbeeren D-14979, Germany.
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany.
| |
Collapse
|
40
|
Aly RM, Serya RAT, El-Motwally AM, Esmat A, Abbas S, Abou El Ella DA. Novel quinoline-3-carboxamides (Part 2): Design, optimization and synthesis of quinoline based scaffold as EGFR inhibitors with potent anticancer activity. Bioorg Chem 2017; 75:368-392. [PMID: 29096097 DOI: 10.1016/j.bioorg.2017.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/21/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
Abstract
EGFR has a key role in cell growth. Its mutation and overexpression share in epithelial malignancies and tumor growth. Quinazoline and quinoline derivatives are common anticancer intracellular inhibitors of EGFR kinase, and their optimization is an important issue for development of potent targeted anticancer agents. Based on these facts, different strategies were used for optimizing our reported quinoline-3-carboxamide compound III (EGFR IC50 = 5.283 µM and MCF-7 IC50 = 3.46 µM) through different molecular modeling techniques. The optimized compounds were synthesized and subjected to EGFR binding assay and accordingly some more potent inhibitors were obtained. The most potent quinoline-3-carboxamides were the furan derivative 5o; thiophene derivative 6b; and benzyloxy derivative 10 showing EGFR IC50 values 2.61, 0.49 and 1.73 μM, respectively. Furthermore, the anticancer activity of compounds eliciting potent EGFR inhibition (5o, 5p, 6b, 8a, 8b, and 10) was evaluated against MCF-7 cell line where they exhibited IC50 values 3.355, 3.647, 5.069, 3.617, 0.839 and 10.85 μM, respectively. Compound 6b was selected as lead structure for further optimization hoping to produce more potent EGFR inhibitors.
Collapse
Affiliation(s)
- Rasha M Aly
- National Organization for Drug Control and Research, Cairo, Egypt.
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, ElKhalifa El Maamoon St., 11566 Abbasseya, Cairo, Egypt
| | | | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, ElKhalifa El Maamoon St., 11566 Abbasseya, Cairo, Egypt
| | - Safinaz Abbas
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, ElKhalifa El Maamoon St., 11566 Abbasseya, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, Nahda University Road, New Beni Suef City 72427, Egypt
| |
Collapse
|
41
|
Encinas-Basurto D, Ibarra J, Juarez J, Burboa MG, Barbosa S, Taboada P, Troncoso-Rojas R, Valdez MA. Poly(lactic-co-glycolic acid) nanoparticles for sustained release of allyl isothiocyanate: characterization,in vitrorelease and biological activity. J Microencapsul 2017; 34:231-242. [DOI: 10.1080/02652048.2017.1323037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David Encinas-Basurto
- Departamento de Física, Posgrado en Nanotecnología, Universidad de Sonora, Rosales y Transversal, Hermosillo, Sonora, México
| | - Jaime Ibarra
- Departamento de Física, Posgrado en Nanotecnología, Universidad de Sonora, Rosales y Transversal, Hermosillo, Sonora, México
| | - Josué Juarez
- Departamento de Física, Posgrado en Nanotecnología, Universidad de Sonora, Rosales y Transversal, Hermosillo, Sonora, México
| | - María G. Burboa
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Rosales y transversal, Hermosillo, Sonora, México
| | - Silvia Barbosa
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, Santiago de Compostela, España
| | - Pablo Taboada
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, Santiago de Compostela, España
| | - Rosalba Troncoso-Rojas
- Coordinación de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, AC), La Victoria, Hermosillo, Sonora, México
| | - Miguel A. Valdez
- Departamento de Física, Posgrado en Nanotecnología, Universidad de Sonora, Rosales y Transversal, Hermosillo, Sonora, México
| |
Collapse
|
42
|
Keppler JK, Martin D, Garamus VM, Berton-Carabin C, Nipoti E, Coenye T, Schwarz K. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 1 physicochemical and antibacterial properties of native and modified whey proteins at pH 2 to 7. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Hanschen FS, Schreiner M. Isothiocyanates, Nitriles, and Epithionitriles from Glucosinolates Are Affected by Genotype and Developmental Stage in Brassica oleracea Varieties. FRONTIERS IN PLANT SCIENCE 2017; 8:1095. [PMID: 28690627 PMCID: PMC5479884 DOI: 10.3389/fpls.2017.01095] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/06/2017] [Indexed: 05/07/2023]
Abstract
Vegetables of the Brassica oleracea group, such as broccoli, cauliflower, and cabbage, play an important role for glucosinolate consumption in the human diet. Upon maceration of the vegetable tissue, glucosinolates are degraded enzymatically to form volatile isothiocyanates, nitriles, and epithionitriles. However, only the uptake of isothiocyanates is linked to the cancer-preventive effects. Thus, it is of great interest to evaluate especially the isothiocyanate formation. Here, we studied the formation of glucosinolates and their respective hydrolysis products in sprouts and fully developed vegetable heads of different genotypes of the five B. oleracea varieties: broccoli, cauliflower as well as white, red, and savoy cabbages. Further, the effect of ontogeny (developmental stages) during the head development on the formation of glucosinolates and their respective hydrolysis products was evaluated at three different developmental stages (mini, fully developed, and over-mature head). Broccoli and red cabbage were mainly rich in 4-(methylsulfinyl)butyl glucosinolate (glucoraphanin), whereas cauliflower, savoy cabbage and white cabbage contained mainly 2-propenyl (sinigrin) and 3-(methylsulfinyl)propyl glucosinolate (glucoiberin). Upon hydrolysis, epithionitriles or nitriles were often observed to be the main hydrolysis products, with 1-cyano-2,3-epithiopropane being most abundant with up to 5.7 μmol/g fresh weight in white cabbage sprouts. Notably, sprouts often contained more than 10 times more glucosinolates or their hydrolysis products compared to fully developed vegetables. Moreover, during head development, both glucosinolate concentrations as well as hydrolysis product concentrations changed and mini heads contained the highest isothiocyanate concentrations. Thus, from a cancer-preventive point of view, consumption of mini heads of the B. oleracea varieties is recommended.
Collapse
|
44
|
Effect of hydrostatic pressure and antimicrobials on survival of Listeria monocytogenes and enterohaemorrhagic Escherichia coli in beef. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Luang-In V, Albaser AA, Nueno-Palop C, Bennett MH, Narbad A, Rossiter JT. Glucosinolate and Desulfo-glucosinolate Metabolism by a Selection of Human Gut Bacteria. Curr Microbiol 2016; 73:442-451. [DOI: 10.1007/s00284-016-1079-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/09/2016] [Indexed: 11/24/2022]
|
46
|
Handiseni M, Jo YK, Lee KM, Zhou XG. Screening Brassicaceous Plants as Biofumigants for Management of Rhizoctonia solani AG1-IA. PLANT DISEASE 2016; 100:758-763. [PMID: 30688626 DOI: 10.1094/pdis-06-15-0667-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brassicaceae plants rich in glucosinolates have been used as biofumigants for management of Rhizoctonia solani (teleomorph: Thanatephorus cucumeris) and other soilborne pathogens. Efficacy of brassica plant tissue has mainly been attributed to toxic isothiocyanates released upon hydrolysis of glucosinolates. Management of R. solani AG 1-IA, the causal agent of sheath blight in rice (Oryza sativa), using biofumigation, is promising but needs more validation. Biofumigation activity of nine Brassicaceae plants and two other related species were evaluated in vitro with soils from Texas, Arkansas, or Mississippi. All plants evaluated significantly suppressed the mycelium growth of R. solani AG 1-IA. Mustard (Brassica juncea) cultivars ('Brand 199', 'Ruby Streak', 'Florida Broadleaf', and 'Green Wave') consistently provided the greatest (>90%) mycelial inhibition, while sunn hemp (Crotalaria juncea) and Chinese cabbage (B. rapa) had the least suppressive effect. B. juncea 'Red Giant' and 'Sheali Hong', turnip (B. rapa), kale (B. oleracea), and arugula (Eruca sativa) showed intermediate efficacy or were inconsistent. Effects of soil pasteurization and plant tissue amendment rates were examined with B. juncea Brand 199 and Texas soil. Inhibition of mycelial growth became greater with increasing plant amendment rates up to 3.2% (wt/wt) in the soil. Soil pasteurization almost completely suppressed the release of allyl isothiocyanate (AITC). The nonpasteurized soil amended with 0.5% (wt/wt) of the plant material released 96% more AITC than the soil amended with 0.25% (wt/wt) of the plant material. The highest levels of AITC release were observed at 12 and 24 h after soil amendment, with 0.25 and 0.5% (wt/wt) of the plant material, respectively. Antifungal effects of B. juncea are attributed to dose-dependent production of volatile AITC and could be used for managing rice sheath blight caused by R. solani AG 1-IA.
Collapse
Affiliation(s)
- Maxwell Handiseni
- AgriLife Research and Extension Center, Texas A&M University System, Beaumont 77713
| | - Young-Ki Jo
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843
| | - Kyung-Min Lee
- Office of the Texas State Chemist, Texas A&M University System, College Station 77841
| | - Xin-Gen Zhou
- AgriLife Research and Extension Center, Texas A&M University System, Beaumont
| |
Collapse
|
47
|
Agerbirk N, De Nicola GR, Olsen CE, Müller C, Iori R. Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis. PHYTOCHEMISTRY 2015; 118:109-115. [PMID: 26342619 DOI: 10.1016/j.phytochem.2015.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 06/05/2023]
Abstract
Isothiocyanates form adducts with a multitude of biomolecules, and these adducts need analytical methods. Likewise, analytical methods for hydrophilic isothiocyanates are needed. We considered reaction with ammonia to form thiourea derivatives. The hydrophilic, glycosylated isothiocyanate moringin, 4-(α-L-rhamnopyranosyloxy)benzyl isothiocyanate, was efficiently derivatized to the thiourea derivative by incubation with ammonia. The hydrophobic benzyl isothiocyanate was also efficiently derivatized to the thiourea derivative. The thiourea group provided a UV absorbing chromophore, and the derivatives showed expectable sodium and hydrogen adducts in ion trap mass spectrometry and were suitable for liquid chromatography analysis. Reactive dithiocarbamate adducts constitute the major type of reactive ITC adduct expected in biological matrices. Incubation of a model dithiocarbamate with ammonia likewise resulted in conversion to the corresponding thiourea derivative, suggesting that a variety of matrix-bound reactive isothiocyanate adducts can be determined using this strategy. As an example of the application of the method, recovery of moringin and benzyl isothiocyanate applied to cabbage leaf discs was studied in simulated insect feeding assays. The majority of moringin was recovered as native isothiocyanate, but a major part of benzyl isothiocyanate was converted to reactive adducts.
Collapse
Affiliation(s)
- Niels Agerbirk
- Copenhagen Plant Science Center and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Gina Rosalinda De Nicola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Carl Erik Olsen
- Copenhagen Plant Science Center and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| |
Collapse
|
48
|
Estevam EC, Griffin S, Nasim MJ, Zieliński D, Aszyk J, Osowicka M, Dawidowska N, Idroes R, Bartoszek A, Jacob C. Inspired by Nature: The use of Plant-derived Substrate/Enzyme Combinations to Generate Antimicrobial Activity in situ. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501001025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The last decade has witnessed a renewed interest in antimicrobial agents. Plants have received particular attention and frequently rely on the spontaneous enzymatic conversion of an inactive precursor to an active agent. Such two-component substrate/enzyme defence systems can be reconstituted ex vivo. Here, the alliin/alliinase system from garlic seems to be rather effective against Saccharomyces cerevisiae, whilst the glucosinolate/myrosinase system from mustard appears to be more active against certain bacteria. Studies with myrosinase also confirm that enzyme and substrate can be added sequentially. Ultimately, such binary systems hold considerable promise and may be employed in a medical or agricultural context.
Collapse
Affiliation(s)
| | - Sharoon Griffin
- Bioorganic Chemistry, Department of Pharmacy, Saarland University, Saarbruecken, Saarland, Germany
| | - Muhammad Jawad Nasim
- Bioorganic Chemistry, Department of Pharmacy, Saarland University, Saarbruecken, Saarland, Germany
| | - Dariusz Zieliński
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Justyna Aszyk
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Magdalena Osowicka
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Natalia Dawidowska
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Rinaldi Idroes
- Pharmacy Department, Chemistry Department, Syiah Kuala University, Banda Aceh, Indonesia
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Claus Jacob
- Bioorganic Chemistry, Department of Pharmacy, Saarland University, Saarbruecken, Saarland, Germany
| |
Collapse
|
49
|
Müller C, van Loon J, Ruschioni S, De Nicola GR, Olsen CE, Iori R, Agerbirk N. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. PHYTOCHEMISTRY 2015; 118:139-148. [PMID: 26318325 DOI: 10.1016/j.phytochem.2015.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 08/11/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
Isothiocyanates (ITCs), released from Brassicales plants after hydrolysis of glucosinolates, are known for their negative effects on herbivores but mechanisms have been elusive. The ITCs are initially present in dissolved form at the site of herbivore feeding, but volatile ITCs may subsequently enter the gas phase and all ITCs may react with matrix components. Deterrence to herbivores resulting from topically applied volatile ITCs in artificial feeding assays may hence lead to ambiguous conclusions. In the present study, the non-volatile ITC moringin (4-(α-L-rhamnopyranosyloxy)benzyl ITC) and its glucosinolate precursor glucomoringin were examined for effects on behaviour and taste physiology of specialist insect herbivores of Brassicales. In feeding bioassays, glucomoringin was not deterrent to larvae of Pieris napi (Lepidoptera: Pieridae) and Athalia rosae (Hymenoptera: Tenthredinidae), which are adapted to glucosinolates. Glucomoringin stimulated feeding of larvae of the related Pieris brassicae (Lepidoptera: Pieridae) and also elicited electrophysiological activity from a glucosinolate-sensitive gustatory neuron in the lateral maxillary taste sensilla. In contrast, the ITC moringin was deterrent to P. napi and P. brassicae at high levels and to A. rosae at both high and low levels when topically applied to cabbage leaf discs (either 12, 120 or 1200 nmol moringin per leaf disc of 1cm diameter). Survival of A. rosae was also significantly reduced when larvae were kept on leaves treated with moringin for several days. Furthermore, moringin elicited electrophysiological activity in a deterrent-sensitive neuron in the medial maxillary taste sensillum of P. brassicae, providing a sensory mechanism for the deterrence and the first known ITC taste response of an insect. In simulated feeding assays, recovery of moringin was high, in accordance with its non-volatile nature. Our results demonstrate taste-mediated deterrence of a non-volatile, natural ITC to glucosinolate-adapted insects.
Collapse
Affiliation(s)
- Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Joop van Loon
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Blanche, 60131 Ancona, Italy
| | - Gina Rosalinda De Nicola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Carl Erik Olsen
- Copenhagen Plant Science Center and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Niels Agerbirk
- Copenhagen Plant Science Center and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
50
|
Hanschen FS, Yim B, Winkelmann T, Smalla K, Schreiner M. Degradation of Biofumigant Isothiocyanates and Allyl Glucosinolate in Soil and Their Effects on the Microbial Community Composition. PLoS One 2015; 10:e0132931. [PMID: 26186695 PMCID: PMC4505889 DOI: 10.1371/journal.pone.0132931] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/20/2015] [Indexed: 01/08/2023] Open
Abstract
Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils (model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products.
Collapse
Affiliation(s)
- Franziska S. Hanschen
- Department of Quality, Leibniz-Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, D-14979 Grossbeeren, Germany
| | - Bunlong Yim
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Section of Woody Plant and Propagation Physiology, Herrenhäuser Str. 2, D-30419 Hannover, Germany
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Messeweg 11–12, D-38104 Braunschweig, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Section of Woody Plant and Propagation Physiology, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Messeweg 11–12, D-38104 Braunschweig, Germany
| | - Monika Schreiner
- Department of Quality, Leibniz-Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, D-14979 Grossbeeren, Germany
| |
Collapse
|