1
|
Mu Y, Ao X, Zhao Z, Liu D, Meng D, Chen L, Wang X, Lv Z. The anabolism of volatile compounds during the pasteurization process of sea buckthorn ( Hippophae rhamnoides) pulp. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1823-1832. [PMID: 39285994 PMCID: PMC11401805 DOI: 10.1007/s13197-024-05943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 09/19/2024]
Abstract
Pasteurization (PS) causes the abnormal changes in volatiles and off-flavors in juices and limit the commercial production of juices. Herein, the first study on the biochemical reaction of volatile and nonvolatile compounds in response to PS factors during the process of sea buckthorn pulp (SBP) was evaluated. Processing conditions (mainly 80 °C for 20 min) had significant effects on the volatile and nonvolatile compounds. The restricted unsaturated fatty acid metabolism led to the greatest decrease of 20.25% in esters with fruity odor, and furans, smelling like caramel and toast, exhibited the highest increase of 136.40% because of the enhancement of the Maillard reaction. Dimethyl sulfide and dimethyl trisulfide elicited a cooked onion-like off-flavor, generated mainly from Strecker degradation of sulfur-containing amino acids, strengthened by the high pH and sufficient substrates due to the highest consumption rates of 4.66% and 12.01% for organic acids and sugars. Reasonable temperature and time control are crucial to the improvement of the process for PS for the SBP industry. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05943-z.
Collapse
Affiliation(s)
- Yihan Mu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Xuan Ao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Zhichao Zhao
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou, 730060 China
| | - Dongwei Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Dehao Meng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Luyao Chen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Xue Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Zhaolin Lv
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
- Department of Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
2
|
Hu Z, Chen M, Zhu K, Liu Y, Wen H, Kong J, Chen M, Cao L, Ye J, Zhang H, Deng X, Chen J, Xu J. Multiomics integrated with sensory evaluations to identify characteristic aromas and key genes in a novel brown navel orange (Citrus sinensis). Food Chem 2024; 444:138613. [PMID: 38325085 DOI: 10.1016/j.foodchem.2024.138613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
'Zong Cheng' navel orange (ZC) is a brown mutant of Lane Late navel orange (LL) and emits a more pleasant odor than that of LL. However, the key volatile compound of this aroma and underlying mechanism remains unclear. In this study, sensory evaluations and volatile profiling were performed throughout fruit development to identify significant differences in sensory perception and metabolites between LL and ZC. It revealed that the sesquiterpene content varied significantly between ZC and LL. Based on aroma extract dilution and gas chromatography-olfactometry analyses, the volatile compound leading to the background aroma of LL and ZC is d-limonene, the orange note in LL was mainly attributed to octanal, whilst valencene, β-myrcene, and (E)-β-ocimene presented balsamic, sweet, and herb notes in ZC. Furthermore, Cs5g12900 and six potential transcription factors were identified as responsible for valencene accumulation in ZC, which is important for enhancing the aroma of ZC.
Collapse
Affiliation(s)
- Zhehui Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Mengjun Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Kaijie Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Huan Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jiatao Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Minghua Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Lixin Cao
- Citrus Variety Propagation Centre in Zigui County, Yichang 443600, PR China.
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Hongyan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jiajing Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
3
|
Lu C, Zhang Y, Zhan P, Wang P, Tian H. Characterization of the key aroma compounds in four varieties of pomegranate juice by gas chromatography-mass spectrometry, gas chromatography-olfactometry, odor activity value, aroma recombination, and omission tests. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Chen F, Shen L, Shi X, Deng Y, Qiao Y, Wu W, Xiong G, Wang L, Li X, Ding A, Shi L. Characterization of flavor perception and characteristic aroma of traditional dry-cured fish by flavor omics combined with multivariate statistics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
5
|
Yuan L, Lao F, Shi X, Zhang D, Wu J. Effects of cold plasma, high hydrostatic pressure, ultrasound, and high-pressure carbon dioxide pretreatments on the quality characteristics of vacuum freeze-dried jujube slices. ULTRASONICS SONOCHEMISTRY 2022; 90:106219. [PMID: 36371874 PMCID: PMC9664403 DOI: 10.1016/j.ultsonch.2022.106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment combined with vacuum freeze-drying is an effective technique to extend the storage period of jujube fruits and reduce energy consumption and cost; however, the effects of pretreatment on the quality characteristics of jujube during vacuum freeze-drying remain unknown. In this study, the effects of cold plasma (CP), high hydrostatic pressure (HHP), ultrasound (US), high-pressure carbon dioxide (HPCD), and conventional blanching (BC) as pretreatments on the performance of vacuum freeze-dried jujube slices were investigated. The results indicated that the application of different pretreatments decreased the water activity and increased the rehydration capacity, owing to the pretreatment etching larger and more porous holes in the microstructure. Freeze-dried jujube slices pretreated with HPCD retained most of their quality characteristics (color, hardness, and volatile compounds), followed by the HHP- and US-pretreated samples, whereas samples pretreated with BC showed the greatest deterioration in quality characteristics, and hence, BC is not recommended as a pretreatment for freeze-dried jujube slices. Sensory evaluation based on hedonic analysis showed that jujube slices pretreated with HPCD and US were close to the control sample and scored highest. Compared to other pretreated samples and the control, freeze-dried jujube slices pretreated with HPCD showed the least degradation (4.93%) of cyclic adenosine monophosphate (cAMP), the highest contents of total phenol, total flavonoid, and l-ascorbic acid, and the highest antioxidant capacity. Partial least squares-discriminant analysis (PLS-DA) was performed to screen all the quality characteristic data of different pretreated samples, and 12 volatile compounds, including ethyl hexanoate and (E)-2-hexenal, along with color, l-ascorbic acid content, and cAMP content were found suitable to be used as discriminators for pretreated freeze-dried jujube slices. Therefore, non-thermal pretreatments, including HPCD, US, and HHP pretreatments, are promising techniques for the vacuum freeze-drying of jujube products.
Collapse
Affiliation(s)
- Lin Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xun Shi
- Haoxiangni Health Food Co., Ltd., Xinzheng 451100, China
| | - Donghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
6
|
Zhang X, Gao P, Xia W, Jiang Q, Liu S, Xu Y. Characterization of key aroma compounds in low-salt fermented sour fish by gas chromatography-mass spectrometry, odor activity values, aroma recombination and omission experiments. Food Chem 2022; 397:133773. [PMID: 35908468 DOI: 10.1016/j.foodchem.2022.133773] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022]
Abstract
In this study, key aroma compounds of low-salt fermented sour fish were characterized using headspace solid-phase micro extraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS), odor activity values (OAV) and aroma recombination and omission experiments. Eighty-eight volatile compounds, including esters, aldehydes, alcohols, acids, furans and pyrazines, were identified by HS-SPME-GC-MS. Eighteen aroma-active compounds were quantified by employing calculation of OAV greater than 1. A recombination aroma model prepared using aroma-active compounds based on the odorless fish matrix sensorially matched the aroma of fermented sour fish with a score of 4.5 out of 5. The omission experiment showed that 7 out of 18 compounds had a significant contribution to the overall aroma (P < 0.05). The key aroma compounds of fermented sour fish were concluded to be ethyl acetate (OAV = 189), ethyl hexanoate (OAV = 66), isoamyl acetate (OAV = 424), ethyl butyrate (OAV = 26), hexanal (OAV = 49), 1-hexadecanal (OAV = 14) and 2-pentylfuran (OAV = 13).
Collapse
Affiliation(s)
- Xiaojing Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China.
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China
| | - Shaoquan Liu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117546, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu1800, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Liu Y, Yang C, Wang Q, Zhang J, Zhang L. Identification and confirmation of key compounds causing cooked off-flavor in heat-treated tomato juice. J Food Sci 2022; 87:2515-2526. [PMID: 35590478 DOI: 10.1111/1750-3841.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
Abstract
Cooked off-flavor produced by heat treatment greatly limited the acceptability of commercial tomato juice. To screen and identify the cooked off-flavor compounds, gas chromatography-mass spectrometry-olfactometry (GC-MS-O), aroma extract dilution analysis (AEDA), gas chromatography-mass spectrometry (GC-MS), and odor activity value (OAV) calculation were applied simultaneously. The results showed that there were 17 aroma-active compounds in tomato juice samples. Among them, three newly formed sulfur-containing compounds (dimethyl sulfide, dimethyl trisulfide, and methional) and 1-octen-3-one, which exhibited cooked corn/potato, onion, and mushroom odor, were proved to be responsible for the cooked off-flavor in heat-treated tomato juice (HTJ) by omission experiments and electronic nose analysis. The three newly formed sulfur-containing compounds were further confirmed to be the key compounds responsible for the cooked off-flavor in four different tomato cultivars that were commonly consumed in the market. PRACTICAL APPLICATION: Tomato is one of the most popular vegetables in the world and tomato juice is an important part of the tomato industry. However, the cooked off-flavor of tomato juice after sterilization severely restricts its industrial development. This study analyzed and compared the changes of aroma compounds before and after sterilization, and identified and confirmed the major off-flavor components. This work could provide fundamental information for the prevention of cooked off-flavor.
Collapse
Affiliation(s)
- Yuanyuan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Zhang
- College of Food, Shihezi University, Shihezi, Xinjiang, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,College of Food, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
8
|
Impact of UHT processing on volatile components and chemical composition of sea buckthorn (Hippophae rhamnoides) pulp: A prediction of the biochemical pathway underlying aroma compound formation. Food Chem 2022; 390:133142. [PMID: 35551024 DOI: 10.1016/j.foodchem.2022.133142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022]
Abstract
The effects of ultrahigh-temperature sterilization (UHT) on the volatile components and chemical composition of sea buckthorn pulp (SBP) were evaluated firstly. UHT had significant effects on the volatiles of SBP (mainly occurring at 140 °C for 2 s and 4 s), in which 140 °C for 2 s resulted in a decrease of 3.48% and 14.60% in total volatiles and esters, and an increase of 6.73% in alcohols, while alcohols contents sharply decreased by 6.90% at 140 °C for 4 s. Moreover, 140 °C for 2 s and 4 s decreased the amino acid content by 35.39% and 29.75%, respectively, while UHT significantly promoted the increase of fatty acids, but only a small increase at 140 °C for 4 s. The speculation is that a large number of volatiles were formed during the 140 °C for 2 s and 4 s, mainly from amino acid reactions and lipid oxidation.
Collapse
|
9
|
Zhang J, Sun Y, Guan X, Qin W, Zhang X, Ding Y, Yang W, Zhou J, Yu X. Characterization of key aroma compounds in melon spirits using the sensomics concept. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Cheng H, Chen Y, Chen Y, Qin D, Ye X, Chen J. Comparison and evaluation of aroma‐active compounds for different squeezed Chinese bayberry (
Myrica rubra
) juices. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huan Cheng
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Ying Chen
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control Fuli Institute of Food Science Zhejiang University Hangzhou China
| | - Yixin Chen
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control Fuli Institute of Food Science Zhejiang University Hangzhou China
| | - Dan Qin
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control Fuli Institute of Food Science Zhejiang University Hangzhou China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control Fuli Institute of Food Science Zhejiang University Hangzhou China
| |
Collapse
|
11
|
Volatile and Sensory Characterization of La Mancha Trujillo Melons over Three Consecutive Harvests. Foods 2021; 10:foods10081683. [PMID: 34441460 PMCID: PMC8393871 DOI: 10.3390/foods10081683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, Trujillo melons were harvested across three years (2011–2013) in La Mancha region. Instrumental and sensory analysis were used for studying Trujillo melons. Solid phase extraction (SPE) was used for isolating free aroma compounds, and then, they were analysed by gas chromatography coupled with mass spectrometry (GC/MS). Fifty-five (55) volatile compounds were identified and quantified in La Mancha Trujillo melons over this three-year period. Experienced tasters evaluated the sensory profile of Trujillo melons, and it was characterized by jam/marmalade, cucumber, fresh fruit, sweet, green, honey and ripe fruit aroma descriptors and sweet, honey, jam/marmalade, cucumber, fresh fruit ripe fruit, spice and green flavour by mouth descriptors. This study represents the first complete aromatic characterization of Trujillo melons from La Mancha region. The obtained data suggested that these melons presented a great aromatic profile and that they represent a viable alternative for expanding the traditional market.
Collapse
|
12
|
Ni R, Wang P, Zhan P, Tian H, Li T. Effects of different frying temperatures on the aroma profiles of fried mountain pepper (Litsea cubeba (Lour.) Pers.) oils and characterization of their key odorants. Food Chem 2021; 357:129786. [PMID: 33984740 DOI: 10.1016/j.foodchem.2021.129786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Fried mountain pepper (Litsea cubeba (Lour.) Pers.) oil is widely used as a traditional spice flavoring oil in Chinese home cooking. To investigate the effects of different frying temperatures on the aroma of fried mountain pepper oil (FPO), four FPO samples were analyzed by descriptive sensory analysis (DSA), E-nose, gas chromatography-olfactometry/detection frequency analysis (GC-O/DFA) and odor activity value (OAV) calculation. DSA and E-nose results both indicated that significant differences existed among 4 FPOs, among which FPO3 showed superiority in several sensory attributes. 16 and 20 aroma-active compounds were screened by DFA and OAV, respectively. Thereafter, three aroma recombination models were performed, and results indicated the model solution derived from the combination of OAV and DFA was more closely resembled the FPO aroma. Omission tests corroborated the significant contributions of 11 compounds (1-octen-3-ol, linalool, geraniol, nonanal, (E)-2-octenal, citral, citronellal, limonene, α-pinene, β-myrcene and methylheptenone) to the characteristic aroma of FPO.
Collapse
Affiliation(s)
- Ruijie Ni
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China
| | - Peng Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China
| | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China; The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an 710100, China.
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China; Food College of Shihezi University, Shihezi 832000, China; Shaanxi Provincial Research Center of Functional Food Engineering Technology, Xi'an 710100, China.
| | - Ting Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China
| |
Collapse
|
13
|
Identification of key aromas of Chinese muskmelon and study of their formation mechanisms. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03658-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Effect of the roasting degree on flavor quality of large-leaf yellow tea. Food Chem 2021; 347:129016. [PMID: 33486364 DOI: 10.1016/j.foodchem.2021.129016] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 11/20/2022]
Abstract
Roasting is crucial for producing large-leaf yellow tea (LYT) as it substantially affects chemical composition and sensory quality. However, the effect of roasting degree on LYT flavor quality is not clear. To investigate the effect of roasting degree on LYT flavor, the odor profiles and sensory evaluations of LYTs produced with small fire, medium fire and old fire roasting (OF) were determined. The OF was essential for the formation of LYT flavor with strong roasted, nutty, woody odors and weak fatty, fruity odors, and retaining high levels of GCG, total volatiles and heterocyclic compounds. Furthermore, the characteristic crispy-rice-like odor was only found in LYT with OF treatment and burnt flavor was missing. 2,3-Diethyl-5-methylpyrazine, trans-β-ionone with odor activity value above 1600 and 39 respectively offered roasted, floral odors, respectively in LYT. The current results provide a scientific basis for understanding the reactions that occur during the conventional production of LYT.
Collapse
|
15
|
Abstract
A melon core collection was analyzed for rind volatile compounds as, despite the fact that they are scarcely studied, these compounds play an important role in consumer preferences. Gas chromatography coupled to mass spectrometry allowed the detection of 171 volatiles. The high volatile diversity found was analyzed by Hierarchical Cluster Analysis (HCA), giving rise to two major clusters of accessions. The first cluster included climacteric and aromatic types such as Cantalupensis, Ameri, Dudaim and Momordica, rich in esters; the second one mainly included non-climacteric non-aromatic types such as Inodorus, Flexuosus, Acidulus, Conomon and wild Agrestis, with low volatiles content, specifically affecting esters. Many interesting accessions were identified, with different combinations of aroma profiles for rind and flesh, such as Spanish Inodorus landraces with low aroma flesh but rind levels of esters similar to those in climacteric Cantalupensis, exotic accessions sharing high contents of specific compounds responsible for the unique aroma of Dudaim melons or wild Agrestis with unexpected high content of some esters. Sesquiterpenes were present in rinds of some Asian Ameri and Momordica landraces, and discriminate groups of cultivars (sesquiterpene-rich/-poor) within each of the two most commercial melon horticultural groups (Cantalupensis and Inodorus), suggesting that the Asian germplasm is in the origin of specific current varieties or that this feature has been introgressed more recently from Asian sources. This rind characterization will encourage future efforts for breeding melon quality as many of the characterized landraces and wild accessions have been underexploited.
Collapse
|
16
|
Liao X, Yan J, Wang B, Meng Q, Zhang L, Tong H. Identification of key odorants responsible for cooked corn-like aroma of green teas made by tea cultivar ‘Zhonghuang 1′. Food Res Int 2020; 136:109355. [DOI: 10.1016/j.foodres.2020.109355] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 01/24/2023]
|
17
|
Insights into the major aroma-active compounds in clear red raspberry juice (Rubus idaeus L. cv. Heritage) by molecular sensory science approaches. Food Chem 2020; 336:127721. [PMID: 32763731 DOI: 10.1016/j.foodchem.2020.127721] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 01/12/2023]
Abstract
The major aroma-active compounds in clear red raspberry juice were identified by molecular sensory science approaches. Thirty-one aroma-active compounds were identified using detection frequency analysis and aroma extract dilution analysis. Among them, 18 volatiles with aroma activity in red raspberry were identified for the first time, while 14 volatiles with odor activity values (OAVs) ≥ 1 were confirmed as the major aroma-active compounds. Three C6 aldehydes showed the highest detection frequencies of 8, and β-ionone exhibited the highest OAV of 9507 and flavor dilution factor of 512, which indicated that the floral and grassy note could be dominant in overall aroma. Quantitative descriptive analysis suggested that the grassy, floral, woody, and caramel-like notes can be simulated using aroma recombination model 1. Electronic nose analysis also demonstrated that model 1 had closer similarity to the original juice than others. The combination strategy used here would help improve the knowledge of red raspberry aroma.
Collapse
|
18
|
He C, Li Z, Liu H, Zhang H, Wang L, Chen H. Characterization of the key aroma compounds in Semnostachya menglaensis Tsui by gas chromatography-olfactometry, odor activity values, aroma recombination, and omission analysis. Food Res Int 2020; 131:108948. [DOI: 10.1016/j.foodres.2019.108948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/19/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
|
19
|
Pei L, Li J, Xu Z, Chen N, Wu X, Chen J. Effect of high hydrostatic pressure on aroma components, amino acids, and fatty acids of Hami melon ( Cucumis melo L. var. reticulatus naud.) juice. Food Sci Nutr 2020; 8:1394-1405. [PMID: 32180949 PMCID: PMC7063374 DOI: 10.1002/fsn3.1406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/10/2022] Open
Abstract
The changes and relationships between the volatile compounds and fatty acids, and between volatile compounds and free amino acids were analyzed after they were handled by 400 and 500 MPa (45°C/10 min) high hydrostatic pressure (HHP). The volatile components of 31, 30, and 32 were detected in the untreated, 400, and 500 MPa samples, respectively. Unlike the ketones and acids, the three contents, including ester (59.59%-71.34%), alcohol (5.95%-7.56%), and aldehyde (0.36%-1.25%), were greatly changed. While HHP treatment exerted a few effects on the contents of 12 kinds of fatty acids. With the increase in pressure, the contents of palmitic acid, linolenic acid, and α-linolenic acid were remarkably reduced. The correlations between flavor compounds and amino acids, and between flavor compounds and fatty acids were studied by Pearson's correlation analysis and visualized with using the corrplot package in R software. The analysis showed that the amino acids were positively correlated with (E)-6-nonenal, (2E,6Z)-nona-2,6-dienal and (Z)-6-nonen-1-ol, while they were negatively correlated with nonanal, (Z)-3-hexen-1-ol and ethyl caproate. Besides, the fatty acids were positively correlated with the esters of 2,3-butanediol diacetate and 2-methyl propyl acetate, while they were negatively correlated with (E)-2-octenal and (Z)-6-nonen-1-ol.
Collapse
Affiliation(s)
- Longying Pei
- Department of Food Science and Engineering Xinjiang Institute of Technology Aksu China
| | - Jie Li
- Food College Shihezi University Shihezi China
| | - Zhenli Xu
- Food College Shihezi University Shihezi China
| | - Nan Chen
- Food College Shihezi University Shihezi China
| | - Xiaoxia Wu
- Food College Shihezi University Shihezi China
| | - Jiluan Chen
- Food College Shihezi University Shihezi China
| |
Collapse
|
20
|
Zhang W, Chen T, Tang J, Sundararajan B, Zhou Z. Tracing the production area of citrus fruits using aroma-active compounds and their quality evaluation models. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:517-526. [PMID: 31512252 DOI: 10.1002/jsfa.10026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aroma is one of the most important aspects of fruit quality and can reflect the characteristics of different fruits. Aroma-active compounds can usefully be employed to trace the production areas of two citrus cultivars ('Eureka' lemon and 'Huapi' kumquat) and to evaluate their aroma quality. RESULTS 'Huapi' kumquat peel displayed higher monoterpene and sesquiterpene compound content, whereas 'Eureka' lemon peel exhibited higher monoterpene and monoterpene aldehyde compound content. 'Eureka' lemon peel ('Wanzhou' cultivar) had higher nerol acetate and geraniol acetate compound content. Kumquat peel ('Suichuan' and 'Rongan' cultivars) had higher sesquiterpene content. In addition, 30 and 31 aroma-active compounds were observed in kumquat and lemon, respectively, based on their odor activity values. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) results indicated that classification for production areas based on aroma-active compounds was useful. The selected aroma-active compounds have been checked as aroma quality parameters that could be used with multivariate analysis to establish a model of aroma quality evaluation. Higher aroma quality values from kumquat and lemon were collected from Rongan and Wanzhou cultivars, respectively. CONCLUSION Aroma-active compounds can be used to discriminate production areas using multivariate statistics. An objective method was established to evaluate the aroma quality of citrus fruits. 'Huapi' kumquat and 'Eureka' lemon, which had the highest aroma quality, was harvested from the Rongan and Wanzhou production areas. This was the first time that the aroma quality of citrus fruits was evaluated using multivariate analysis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenlin Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Tingting Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | | | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- The Southwest Institute of Fruits Nutrition, Chongqing, China
| |
Collapse
|
21
|
Identification of the cooked off-flavor in heat-sterilized lychee (Litchi chinensis Sonn.) juice by means of molecular sensory science. Food Chem 2019; 301:125282. [DOI: 10.1016/j.foodchem.2019.125282] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 11/19/2022]
|
22
|
Zhang W, Dong P, Lao F, Liu J, Liao X, Wu J. Characterization of the major aroma-active compounds in Keitt mango juice: Comparison among fresh, pasteurization and high hydrostatic pressure processing juices. Food Chem 2019; 289:215-222. [DOI: 10.1016/j.foodchem.2019.03.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022]
|
23
|
Guo Q, Yu J, Su M, Wang C, Yang M, Cao N, Zhao Y, Xia P. Synergistic effect of musty odorants on septic odor: Verification in Huangpu River source water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1186-1191. [PMID: 30759558 DOI: 10.1016/j.scitotenv.2018.11.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Revealing the main contributors to septic odor is a challenge since diverse compounds are responsible for this odor, and there might exist synergistic effects among different odorants. In this study, based on a reconstitution evaluation, the contribution of eighteen odorants identified in Huangpu River source water to the septic odor was explored. The reconstitution test result showed that the three typical odorants, including bis(2‑chloroisopropyl) ether (BCIE), diethyl disulfide (DEDS) and dimethyl disulfide (DMDS), with respective average odor activity values (OAVs) of 2.35, 1.65 and 0.78, only contributed 61 ± 3% of the FPA intensity for septic odor in Huangpu source water. At a BCIE concentration of 50 ng/L, synergistic effect for the septic odor occurred at 10 ng/L for geosmin and 20 ng/L for 2‑methylisoborneol (MIB), showing that coexisting musty odorants could enhance the septic odor intensity caused by some typical odorants. When both geosmin and MIB, with an average OAV of 4.54 and 1.38, were further included in addition to the three typical odorants, 88 ± 4% of the septic odor in Huangpu River source water could be explained. With addition of the remaining odorants with much lower OAVs (<0.23), 94 ± 2% of the septic odor could be explained. The musty odor was not affected by the presence of the co-existing odorants at the concentration levels of the present study. This study indicated that the overall odor of water contaminated with musty and septic odorants is a combination of both concentrations of individual contaminants and their synergistic effects. This is the first study to reveal the synergistic effects of typical musty odorants on septic odor, and the results of this study demonstrated that the synergistic effects of other odorants should be considered when dealing with the septic odor in drinking water.
Collapse
Affiliation(s)
- Qingyuan Guo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100019, China.
| | - Ming Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100019, China
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100019, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100019, China
| | - Nan Cao
- Beijing Waterworks (Group) Co. Ltd., Beijing 100031, China
| | - Yu Zhao
- Beijing Waterworks (Group) Co. Ltd., Beijing 100031, China
| | - Ping Xia
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd., Shanghai 200082, China
| |
Collapse
|
24
|
Esteras C, Rambla JL, Sánchez G, López-Gresa MP, González-Mas MC, Fernández-Trujillo JP, Bellés JM, Granell A, Picó MB. Fruit flesh volatile and carotenoid profile analysis within the Cucumis melo L. species reveals unexploited variability for future genetic breeding. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3915-3925. [PMID: 29369359 DOI: 10.1002/jsfa.8909] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Aroma profile and carotenoids content of melon flesh are two important aspects influencing the quality of this fruit that have been characterized using only selected genotypes. However, the extant variability of the whole species remains unknown. RESULTS A complete view of the volatile/carotenoid profiles of melon flesh was obtained analyzing 71 accessions, representing the whole diversity of the species. Gas chromatography-mass spectrometry and high-performance liquid chromatography were used to analyze 200 volatile compounds and five carotenoids. Genotypes were classified into two main clusters (high/low aroma), but with a large diversity of differential profiles within each cluster, consistent with the ripening behavior, flesh color and proposed evolutionary and breeding history of the different horticultural groups. CONCLUSION Our results highlight the huge amount of untapped aroma diversity of melon germplasm, especially of non-commercial types. Also, landraces with high nutritional value with regard to carotenoids have been identified. All this knowledge will encourage melon breeding, facilitating the selection of the genetic resources more appropriate to develop cultivars with new aromatic profiles or to minimize the impact of breeding on melon quality. The newly characterized sources provide the basis for further investigations into specific genes/alleles contributing to melon flesh quality. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV) Universitat Politècnica de València, Valencia, Spain
| | - Jose Luis Rambla
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia, Spain
| | - Gerardo Sánchez
- Estación Experimental Agropecuaria San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), San Pedro, Argentina
| | - M Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia, Spain
| | - M Carmen González-Mas
- Fundación AgroAlimed, Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | | | - Jose María Bellés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia, Spain
| | - M Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV) Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
25
|
Gong X, Han Y, Zhu J, Hong L, Zhu D, Liu J, Zhang X, Niu Y, Xiao Z. Identification of the aroma-active compounds in Longjing tea characterized by odor activity value, gas chromatography- olfactometry, and aroma recombination. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1336719] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xiaowei Gong
- R&D Center, China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Yi Han
- R&D Center, China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - JianCai Zhu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Liu Hong
- R&D Center, China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Donglai Zhu
- R&D Center, China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - JunHua Liu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Xia Zhang
- R&D Center, China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - YunWei Niu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - ZuoBing Xiao
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
26
|
Niu Y, Chen X, Xiao Z, Ma N, Zhu J. Characterization of aroma-active compounds in three Chinese Moutai liquors by gas chromatography-olfactometry, gas chromatography-mass spectrometry and sensory evaluation. Nat Prod Res 2016; 31:938-944. [DOI: 10.1080/14786419.2016.1255892] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, PR China
| | - Xiaomei Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, PR China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, PR China
- Shanghai Research Institute of Fragrance and Flavor Industry, Shanghai Institute of Technology, Shanghai, PR China
| | - Ning Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, PR China
| | - Jiancai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, PR China
| |
Collapse
|
27
|
Cheng H, Chen J, Chen S, Wu D, Liu D, Ye X. Characterization of aroma-active volatiles in three Chinese bayberry (Myrica rubra) cultivars using GC–MS–olfactometry and an electronic nose combined with principal component analysis. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Xiao Z, Shang Y, Chen F, Niu Y, Gu Y, Liu S, Zhu J. Characterisation of aroma profiles of commercial sufus by odour activity value, gas chromatography-olfactometry, aroma recombination and omission studies. Nat Prod Res 2015; 29:2007-12. [DOI: 10.1080/14786419.2015.1023200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zuobing Xiao
- Department of Perfume and Aroma Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road No. 100, Shanghai, SC 201400, P.R. China
| | - Yi Shang
- Department of Perfume and Aroma Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road No. 100, Shanghai, SC 201400, P.R. China
| | - Feng Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson 29634, USA
| | - Yunwei Niu
- Department of Perfume and Aroma Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road No. 100, Shanghai, SC 201400, P.R. China
| | - Yongbo Gu
- Department of Perfume and Aroma Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road No. 100, Shanghai, SC 201400, P.R. China
| | - Shengjiang Liu
- Department of Perfume and Aroma Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road No. 100, Shanghai, SC 201400, P.R. China
| | - Jiancai Zhu
- Department of Perfume and Aroma Technology, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road No. 100, Shanghai, SC 201400, P.R. China
| |
Collapse
|
29
|
Gao W, Fan W, Xu Y. Characterization of the key odorants in light aroma type chinese liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5796-5804. [PMID: 24909925 DOI: 10.1021/jf501214c] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The light aroma type liquor is widely welcomed by consumers due to its pleasant fruity and floral aroma, particularly in northern China. To answer the puzzling question of which key aroma compounds are responsible for the typical aroma, three typical liquors were studied in this paper. A total of 66 aroma compounds were identified in three liquors by means of gas chromatography-olfactometry (GC-O) coupled with mass spectrometry (MS), and 27 odorants were further screened out as the important odorants according to quantitative study and odor activity values (OAVs). For OAV calculation, odor thresholds of the odorants were determined in a hydroalcoholic solution at 46% ethanol by volume. The typical light type aroma dominated by fruity and floral notes was successfully simulated by dissolving these important odorants in the 46% vol hydroalcoholic solution in their natural concentrations. Omission experiments further confirmed β-damascenone and ethyl acetate as the key odorants and revealed the significance of the entire group of esters, particularly ethyl lactate, geosmin, acetic acid, and 2-methylpropanoic acid, for the overall aroma of the light aroma type Chinese liquor.
Collapse
Affiliation(s)
- Wenjun Gao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | | | | |
Collapse
|
30
|
Caramel odor: Contribution of volatile compounds according to their odor qualities to caramel typicality. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Comparative characterization of phenolic and other polar compounds in Spanish melon cultivars by using high-performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectrometry. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Zhao JH, Hu R, Xiao HW, Yang Y, Liu F, Gan ZL, Ni YY. Osmotic dehydration pretreatment for improving the quality attributes of frozen mango: effects of different osmotic solutes and concentrations on the samples. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12388] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jin-Hong Zhao
- College of Food Science and Nutritional Engineering; China Agricultural University; Box 303, No.17 Qinghua East Road Beijing 100083 China
- National Engineering Research Center for Fruit and Vegetable Processing; Beijing 100083 China
- Key Laboratory of Fruit and Vegetable Processing; Ministry of Agriculture; Beijing 100083 China
| | - Rui Hu
- College of Food Science and Nutritional Engineering; China Agricultural University; Box 303, No.17 Qinghua East Road Beijing 100083 China
- National Engineering Research Center for Fruit and Vegetable Processing; Beijing 100083 China
- Key Laboratory of Fruit and Vegetable Processing; Ministry of Agriculture; Beijing 100083 China
| | - Hong-Wei Xiao
- College of Engineering; China Agricultural University; Box 194, No.17 Qinghua East Road Beijing 100083 China
| | - Yang Yang
- College of Food Science and Nutritional Engineering; China Agricultural University; Box 303, No.17 Qinghua East Road Beijing 100083 China
- National Engineering Research Center for Fruit and Vegetable Processing; Beijing 100083 China
- Key Laboratory of Fruit and Vegetable Processing; Ministry of Agriculture; Beijing 100083 China
| | - Fang Liu
- College of Food Science and Nutritional Engineering; China Agricultural University; Box 303, No.17 Qinghua East Road Beijing 100083 China
- National Engineering Research Center for Fruit and Vegetable Processing; Beijing 100083 China
- Key Laboratory of Fruit and Vegetable Processing; Ministry of Agriculture; Beijing 100083 China
| | - Zhi-Lin Gan
- College of Food Science and Nutritional Engineering; China Agricultural University; Box 303, No.17 Qinghua East Road Beijing 100083 China
- National Engineering Research Center for Fruit and Vegetable Processing; Beijing 100083 China
- Key Laboratory of Fruit and Vegetable Processing; Ministry of Agriculture; Beijing 100083 China
| | - Yuan-Ying Ni
- College of Food Science and Nutritional Engineering; China Agricultural University; Box 303, No.17 Qinghua East Road Beijing 100083 China
- National Engineering Research Center for Fruit and Vegetable Processing; Beijing 100083 China
- Key Laboratory of Fruit and Vegetable Processing; Ministry of Agriculture; Beijing 100083 China
| |
Collapse
|