1
|
Zheng X, Zou B, Cai W, Xu X, Du M, Na X, Zhu B, Wu C. Heat-induced agglomeration of water-soluble cod proteins toward gelled structures. Int J Biol Macromol 2024; 260:129418. [PMID: 38232880 DOI: 10.1016/j.ijbiomac.2024.129418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Cod proteins (CPs) have potential applications in designing desirable gel-based products, and this study aimed to unravel their heat-induced aggregation pattern and further probe the roles in protein gels. SDS-PAGE analysis indicated that high-precipitation-coefficient aggregates (HPCAs) of CPs aggregates were composed of considerable polymers of myosin heavy chains and actin, and their low-precipitation-coefficient aggregates (LPCAs) contained myosin light chains and tropomyosin. Studies from correlation analysis between the structure and aggregation kinetics revealed that the generation of β-sheet and SS bonds were responsible for their spontaneous thermal aggregation induced by heating temperature and protein concentration, respectively. Additionally, as protein denaturation ratio increased, more and larger HPCAs were formed, which was evidenced driving the network formation of protein gels and resulting in higher storage modulus (G') values. These novel findings may be applicable to other animal proteins for better tailoring the manufacturing of muscle gel-based products.
Collapse
Affiliation(s)
- Xiaohan Zheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, China; State Key Laboratory of Marine Food Processing and Safety Control, China; Liaoning Key Laboratory of Food Nutrition and Health, China
| | - Bowen Zou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, China; State Key Laboratory of Marine Food Processing and Safety Control, China; Liaoning Key Laboratory of Food Nutrition and Health, China
| | - Wenqiang Cai
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, China; State Key Laboratory of Marine Food Processing and Safety Control, China; Liaoning Key Laboratory of Food Nutrition and Health, China
| | - Xianbing Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, China; State Key Laboratory of Marine Food Processing and Safety Control, China; Liaoning Key Laboratory of Food Nutrition and Health, China
| | - Ming Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, China; State Key Laboratory of Marine Food Processing and Safety Control, China; Liaoning Key Laboratory of Food Nutrition and Health, China
| | - Xiaokang Na
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, China; State Key Laboratory of Marine Food Processing and Safety Control, China; Liaoning Key Laboratory of Food Nutrition and Health, China.
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, China; State Key Laboratory of Marine Food Processing and Safety Control, China; Liaoning Key Laboratory of Food Nutrition and Health, China
| | - Chao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, China; State Key Laboratory of Marine Food Processing and Safety Control, China; Liaoning Key Laboratory of Food Nutrition and Health, China.
| |
Collapse
|
2
|
Bourouis I, Li B, Pang Z, Chen C, Liu X. Effect of soy peptides with different hydrolysis degrees on the rheological, tribological, and textural properties of soy protein isolate gels. J Food Sci 2023; 88:5122-5135. [PMID: 37872837 DOI: 10.1111/1750-3841.16794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023]
Abstract
This study was performed to examine the effect of two soy peptides addition with hydrolysis degrees of 90% and 30% (hydrolysis degree (DH)90, DH30) at various concentrations (1-10 mg/mL) on soy protein isolate (SPI) gel behavior and pure SPI gel was set as control. SPI gels with adding peptides were prepared, and their rheological, textural, and tribological properties, as well as water-holding capacity, zeta potential, and particle size, were determined. During the rheological measurement, adding peptides reduced storage modulus (G') compared to the control, with larger particles formed. However, peptide addition could significantly reduce gelation time, showing a more significant effect with DH30. The gels' firmness, adhesiveness, and water-holding capacity decreased as peptide concentration increased. Syneresis was observed in gels with peptides, whereas the control sample showed no syneresis. Based on the rheological results, the shear stress in the control sample was higher than in the gels containing peptides indicating more resistance to shear. The gels with DH30 showed greater G' and G″ than DH90 at all studied concentrations. Nevertheless, there was an improvement in the lubrication behavior of SPI gels with peptide addition. DH30 showed a relatively more significant friction reduction than DH90, indicating their slightly better lubrication properties.
Collapse
Affiliation(s)
- Imane Bourouis
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Borui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Zhihua Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Cunshe Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
3
|
Li Y, Liu J, Zhang H, Shi X, Li S, Yang M, Zhang T, Xiao H, Du Z. A Comprehensive Review of Self-Assembled Food Protein-Derived Multicomponent Peptides: From Forming Mechanism and Structural Diversity to Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37486612 DOI: 10.1021/acs.jafc.3c02930] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Food protein-derived multicomponent peptides (FPDMPs) are a natural blend of numerous peptides with various bioactivities and multiple active sites that can assume several energetically favorable conformations in solutions. The remarkable structural characteristics and functional attributes of FPDMPs make them promising codelivery carriers that can coassemble with different bioactive ingredients to induce multidimensional structures, such as fibrils, nanotubes, and nanospheres, thereby producing specific health benefits. This review offers a prospective analysis of FPDMPs-based self-assembly nanostructures, focusing on the mechanism of formation of self-assembled FPDMPs, the internal and external stimuli affecting peptide self-assembly, and their potential applications. In particular, we introduce the exciting prospect of constructing functional materials through precursor template-induced self-assembly of FPDMPs, which combine the bioactivity and self-assembly capacity of peptides and could dramatically broaden the functional utility of peptide-based materials.
Collapse
Affiliation(s)
- Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xiaoxia Shi
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
4
|
Tang T, Wu N, Tang S, Xiao N, Jiang Y, Tu Y, Xu M. Industrial Application of Protein Hydrolysates in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1788-1801. [PMID: 36692023 DOI: 10.1021/acs.jafc.2c06957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Protein hydrolysates, which may be produced by the protein in the middle of the process or added as an ingredient, are part of the food formula. In food, protein hydrolysates are found in many forms, which can regulate the texture and functionality of food, including emulsifying properties, foaming properties, and gelation. Therefore, the relationship between the physicochemical and structural characteristics of protein hydrolysates and their functional characteristics is of significant importance. In recent years, researchers have conducted many studies on the role of protein hydrolysates in food processing. This Review explains the relationship between the structure and function of protein hydrolysates, and their interaction with the main ingredients of food, to provide reference for their development and further research.
Collapse
Affiliation(s)
- Tingting Tang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuaishuai Tang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nanhai Xiao
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Jiang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
5
|
Experimental and computational studies on the mechanism of the β-lactoglobulin-derived peptide inhibiting the antigenicity of β-lactoglobulin. Food Chem 2022; 393:133333. [PMID: 35661607 DOI: 10.1016/j.foodchem.2022.133333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
Abstract
In this study, through a combined simulated enzymolysis-molecular docking-molecular simulation-activity determination-action mechanism strategy, we screened a β-LG-derived peptide (VAGTWYSL) to inhibit the antigenicity of β-LG and explored its mechanism of action. Our results indicate that the inhibitory effect of the peptide on the antigenicity of β-LG is affected by different experimental conditions, including pH, reaction time and concentration. Three factors may contribute to the reduced allergenicity of β-LG. First, there must be sufficient forces between the peptide and β-LG, as a result, hydrophobic forces and hydrogen bonds are the main forces to maintain the structural stability of the complex. Second, the binding of the peptide changes the secondary structure of β-LG, especially with an increase in α-helices and a decrease in β-turns. Third, the peptide binds to the hydrophobic region of β-LG, involving the antigenic epitope region Val41-Lys60, which may reduce the antigenicity.
Collapse
|
6
|
Vahedifar A, Wu J. Self-assembling peptides: Structure, function, in silico prediction and applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Li L, He H, Wu D, Lin D, Qin W, Meng D, Yang R, Zhang Q. Rheological and textural properties of acid-induced soybean protein isolate gel in the presence of soybean protein isolate hydrolysates or their glycosylated products. Food Chem 2021; 360:129991. [PMID: 33965712 DOI: 10.1016/j.foodchem.2021.129991] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 11/25/2022]
Abstract
Enzymatic hydrolysis and glycosylation were successively applied to modify soybean protein isolate (SPI) and rheological and textural properties of acid-induced SPI gel added with the obtained SPI hydrolysates and their glycosylated products were then investigated. The incorporation of SPI hydrolysates decreased the elastic modulus (G') and hardness of SPI gel, which might be related to the random aggregation between SPI hydrolysates and native SPI molecules via hydrophobic interactions. In addition, as the molecular weight of SPI hydrolysates decreased, the reduction in G' and hardness became more significant. Although glycosylation of SPI hydrolysates weakened the adverse effects of hydrolysates on the SPI gel formation to some extent, the glycosylated SPI hydrolysates were still unable to improve the gel quality compared with the control. However, results of this research may provide important information for understanding the influencing mechanism of SPI hydrolysates and their glycosylated products on the formation of SPI gel.
Collapse
Affiliation(s)
- Lin Li
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Hui He
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Daize Wu
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China.
| |
Collapse
|
8
|
Hinnenkamp C, Reineccius G, Ismail BP. Efficient encapsulation of fish oil: Capitalizing on the unique inherent characteristics of whey cream and hydrolyzed whey protein. J Dairy Sci 2021; 104:6472-6486. [PMID: 33773781 DOI: 10.3168/jds.2020-19880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/06/2021] [Indexed: 11/19/2022]
Abstract
The effects of protein concentration and of blending a phospholipid-rich whey coproduct, Procream (Salibra 700 Procream, Glanbia Nutritionals), with intact or hydrolyzed whey protein concentrate, on fish oil microencapsulation efficiency and oxidative stability were assessed. Trypsin and protease M, from Aspergillus oryzae, were used to produce 2 unique hydrolysates. All microcapsules had excellent encapsulation efficiencies (>92%) and good physical properties, regardless of protein content and Procream inclusion. Intact α-lactalbumin and β-lactoglobulin and their peptides were involved in stabilizing oil droplets. Disulfide interchange resulted in formation of protein aggregates, which were more pronounced in samples containing Procream. Although all microcapsules had relatively good oxidative stability, most had better stability at 2 versus 0.5% protein. Protease M hydrolysate + Procream microcapsules had the highest stability, regardless of protein content. Results demonstrated that Procream, at a reduced protein inclusion level, can partially replace more expensive whey protein ingredients in microencapsulation, when blended with a select hydrolysate.
Collapse
Affiliation(s)
- Chelsey Hinnenkamp
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul 55108
| | - Gary Reineccius
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul 55108
| | - Baraem P Ismail
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul 55108.
| |
Collapse
|
9
|
Ultra high temperature (UHT) processability of high protein dispersions prepared from milk protein-soy protein hydrolysate mixtures. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Wang YH, Wang JM, Wan ZL, Yang XQ, Chen XW. Corn protein hydrolysate as a new structural modifier for soybean protein isolate based O/W emulsions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Çelebioğlu HY, Lee S, Chronakis IS. Interactions of salivary mucins and saliva with food proteins: a review. Crit Rev Food Sci Nutr 2019; 60:64-83. [PMID: 30632771 DOI: 10.1080/10408398.2018.1512950] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mucins are long glycoprotein molecules responsible for the gel nature of the mucous layer that covers epithelial surfaces throughout the body. Mucins, as the major salivary proteins, are also important proteins for the food oral processing and digestion. The interactions of salivary mucins and saliva with several food proteins and food protein emulsions, as well as their functional properties related to the food oral processing were reviewed in this paper. The target food proteins of focus were whey proteins (lactoferrin and beta-lactoglobulin) and non-whey proteins (casein, gelatin, galectin/lectin, and proline-rich proteins). Most of the studies suggest that electrostatic attraction (between positively charged food proteins with negatively charged moieties of mucin mainly on glycosylated region of mucin) is the major mode of interaction between them. On the other hand, casein attracts the salivary proteins only via non-covalent interactions due to its naturally self-assembled micellar structure. Moreover, recent studies related to β-lactoglobulin (BLG)-mucin interactions have clarified the importance of hydrophobic as well as hydrophilic interactions, such as hydrogen bonding. Furthermore, in vitro studies between protein emulsions and saliva observed a strong aggregating effect of saliva on caseinate and whey proteins as well as on surfactant-stabilized emulsions. Besides, the sign and the density of the charge on the surface of the protein emulsion droplets contribute significantly to the behavior of the emulsion when mixed with saliva. Other studies also suggested that the interactions between saliva and whey proteins depends on the pH in addition to the flow rate of the saliva. Overall, the role of interactions of food proteins and food protein emulsions with mucin/saliva-proteins in the oral perception, as well as the physicochemical and structural changes of proteins were discussed.
Collapse
Affiliation(s)
- Hilal Y Çelebioğlu
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Lyngby, Denmark
| | - Seunghwan Lee
- Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ioannis S Chronakis
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
12
|
Ruan Q, Guo J, Wan Z, Ren J, Yang X. pH switchable Pickering emulsion based on soy peptides functionalized calcium phosphate particles. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Lacou L, Léonil J, Gagnaire V. Functional properties of peptides: From single peptide solutions to a mixture of peptides in food products. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.01.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Çelebioğlu HY, Gudjónsdóttir M, Meier S, Duus JØ, Lee S, Chronakis IS. Spectroscopic studies of the interactions between β-lactoglobulin and bovine submaxillary mucin. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Croguennec T, Leng N, Hamon P, Rousseau F, Jeantet R, Bouhallab S. Caseinomacropeptide modifies the heat-induced denaturation–aggregation process of β-lactoglobulin. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|