1
|
Du C, Hu H, Zhu G, Duan Z, Shen Y, Lin L, Lu J, Zheng Z. Microencapsulation of Pickering nanoemulsions containing walnut oil stabilized using soy protein-curcumin composite nanoparticles: Fabrication and evaluation of a novel plant-based milk substitute. Food Chem 2025; 470:142654. [PMID: 39733619 DOI: 10.1016/j.foodchem.2024.142654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Plant protein-stabilized Pickering nanoemulsions show potential as plant-based milk substitutes; however, their stability is challenged by mechanical stress during transportation and oxidative deterioration during storage. Herein, soybean isolate protein-curcumin composite nanoparticle (SPI-Cur-NPs)-stabilized Pickering nanoemulsions were converted into microcapsule powders via spray-drying with maltodextrin (MD), trehalose anhydrous (TA), and inulin (IN) as wall materials. Robust intermolecular hydrogen bonds and an amorphous structure were formed using composite wall materials, reducing microcapsule surface fissures while improving encapsulation rate (92.7 %) and solubility (>95 %). Moisture sorption isotherms indicated that the composite wall microcapsules demonstrated moisture resistance at a low-water activity (aw < 0.43) and superior hygroscopicity at a high-water activity (aw > 0.67). Accelerated oxidation tests revealed that the presence of curcumin and composite wall materials enhanced oxidative stability, demonstrating a low peroxide value (2.21 mmol/kg [34.4 %]) and TBARS content (97.8 μg/g [18.7 %]). Consequently, microencapsulated powders prepared with SPI-Cur-NPs and MD-TA-IN could potentially improve the limitation of plant-based milk substitutes.
Collapse
Affiliation(s)
- Chenxing Du
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Hanwen Hu
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Ge Zhu
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhangqun Duan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 102209, China..
| | - Yizhong Shen
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Lin Lin
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
2
|
Li R, Guo X, Liu P, Li Y, Qiu S, Wang Y. Effect of carrageenan on stability and 3D printing performance of high internal phase pickering emulsion stabilized by soy protein isolate aggregates under neutral condition. Carbohydr Polym 2025; 349:123020. [PMID: 39638508 DOI: 10.1016/j.carbpol.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
High internal phase Pickering emulsion (HIPPE) stabilized by heat induced soy protein isolate aggregates (HSPI) alone had limited stability and poor 3D printing performance. While there is few research about HIPPE stabilized by HSPI and polysaccrides at neutral pH condition, where HSPI and ĸ-carrageenan (CG) were combined to fabricate HIPPE in this research. It was found that the incorporation of CG significantly decreased the droplet size and improved the storage stability of the resulting HIPPE. Moreover, the presence of CG improved the freeze-thaw stability of HIPPE after one freeze-thaw cycle. In addition, the addition of CG significantly improved the structural integrity of the 3D printed HIPPE and enhanced the printing precision. This was because the presence of CG decreased the interfacial tension, increased the zeta potential and viscosity of HSPI-CG, thus promoting the adsorption of particles to the oil-water interface more effectively. Moreover, the presence of CG significantly enhanced the viscoelasticity of the resulting HIPPE. These results can be further attributed to the strong hydrogen bonding and hydrophobic interaction between HSPI and CG at neutral pH condition, which can be confirmed from results of Fourier-transform infrared spectroscopy and Isothermal titration calorimeter. So the incorporation of CG endowed HIPPE with more excellent properties at a lower solid particle concentration.
Collapse
Affiliation(s)
- Rui Li
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province,College of Tobacco science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiuqin Guo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, China
| | - Pengfei Liu
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province,College of Tobacco science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuanyuan Li
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province,College of Tobacco science, Henan Agricultural University, Zhengzhou 450002, China
| | - Si Qiu
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, China.
| |
Collapse
|
3
|
Mei J, Shi X, Chen M, Cui Y, Fang C, Yang L. Unfolding bovine serum albumin decorated selenium nanoparticles crosslinking with chitosan: Achieve stabilization of Pickering emulsions gel and enhance resveratrol bioaccessibility. Int J Biol Macromol 2025; 289:138798. [PMID: 39689794 DOI: 10.1016/j.ijbiomac.2024.138798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Resveratrol (Res) is a natural polyphenol exhibiting anti-oxidant and anti-inflammatory activity. However, the applications of Res have been limited due to its low stability and water solubility. To enhance the bioaccessibility of Res, unfolding bovine serum albumin-modified selenium nanoparticles (UBSA@SeNPs) encapsulated within chitosan (CS)-coated Pickering emulsions (CS-UBSA@SeNPs-PE) were used to load Res. The results showed that Res-loaded CS(0.06 %)-UBSA@SeNPs-PE has small droplet size (16.13 μm), high gel properties and excellent antioxidant properties. During the simulated digestion process, CS reduced the release rate of Res from Res-loaded CS(0.06 %)-UBSA@SeNPs-PE (42.27 %) to reach a slow release effect. Importantly, Res could quickly release from CS-UBSA@SeNPs-PE within intestinal fluid or in the presence of chitosanase. In simulated absorption experiments, the intestinal permeability of Res in Res-loaded CS(0.06 %)-UBSA@SeNPs-PE were enhanced by 292.31 % compare to Res-loaded CS(0 %)-UBSA@SeNPs-PE. In pharmacokinetic studies, Res-loaded CS(0.06 %)-UBSA@SeNPs-PE had an area under the curve (AUC) up to 3467.99 ± 127.43 ng*h/mL. Furthermore, CS also improved the mucoadhesive nature of UBSA@SeNPs-PE, resulting in a gut-retention time of Res-loaded CS(0.06 %)-UBSA@SeNPs-PE that reached up to 60 h. In conclusion, CS-UBSA@SeNPs-PE can serve as an effective oral delivery system for improving the bioaccessibility of Res.
Collapse
Affiliation(s)
- Jingtao Mei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanan Cui
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chaoping Fang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
4
|
Xie Y, Li H, Deng Z, Peng H, Yu Y, Zhang B. Preparation and characterization of a new food-grade Pickering emulsion stabilized by mulberry-leaf protein nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1080-1090. [PMID: 39271605 DOI: 10.1002/jsfa.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Food-grade Pickering particles, particularly plant proteins, have attracted significant interest due to their bio-based nature, environmental friendliness, and edibility. Mulberry-leaf protein (MLP) is a high-quality protein with rich nutritional value and important functional properties. It has special amphoteric and emulsifying characteristics, making it valuable for use in Pickering emulsions. This study aimed to investigate the feasibility of using MLP nanoparticles as solid particles to stabilize Pickering emulsions. RESULTS The particle size of MLP nanoparticles was less than 300 nm under neutral and alkaline conditions. At pH 9, the zeta potential value reached -34.3 mV, indicating the electrostatic stability of the particles. As ion concentration increased, the particle size of MLP nanoparticles increased, and the zeta potential decreased. Throughout the storage process, no obvious aggregation or precipitation was observed in the dispersion of MLP nanoparticles, indicating strong stability. The particle size of the Pickering emulsion decreased with the increase in protein concentration. When the protein concentration was low, the particles on the oil-water interface became sparse, resulting in poor stability of the prepared emulsion and making it susceptible to aggregation and thus larger particle sizes. Increasing the oil-phase ratio to 70% (v/v) promotes the formation of Pickering emulsions, which exhibit exceptional stability when MLP nanoparticles are fixed at a concentration of 20 mg mL-1. CONCLUSION The overall findings indicated that MLP nanoparticles have potential as food-grade materials for Pickering emulsions, marking a novel application of these nanoparticles in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingshan Xie
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Han Peng
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Yanfang Yu
- Jiangxi Cash Crops Institute, Nanchang, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Liu X, Zhu X, Han Z, Liu H. Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review. Foods 2025; 14:105. [PMID: 39796395 PMCID: PMC11720141 DOI: 10.3390/foods14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and maintain its competitive position in the market. However, its high fat content, particularly unsaturated fatty acids, makes it highly susceptible to quality deterioration during storage. Key issues such as fat separation, lipid oxidation, and rancidity can significantly compromise its texture, flavor, and aroma, while also reducing its shelf life. Understanding the underlying mechanisms that drive these processes is essential for developing effective preservation strategies. This understanding not only aids food scientists and industry professionals in improving product quality but also enables health-conscious consumers to make informed decisions regarding the selection and storage of peanut butter. Recent research has focused on elucidating the mechanisms responsible for the quality deterioration of peanut butter, with particular attention to the intermolecular interactions among its key components. Current regulatory techniques aimed at improving peanut butter quality encompass raw material selection, advancements in processing technologies, and the incorporation of food additives. Among these innovations, plant protein nanoparticles have garnered significant attention as a promising class of green emulsifiers. These nanoparticles have demonstrated potential for stabilizing peanut butter emulsions, thereby mitigating fat separation and oxidation while aligning with the growing demand for environmentally friendly food production. Despite these advances, challenges remain in optimizing the stability and emulsifying efficiency of plant protein nanoparticles to ensure the long-term quality and stability of peanut butter. Future research should focus on improving the structural properties and functional performance of these nanoparticles to enhance their practical application as emulsifiers. Such efforts could provide valuable theoretical and practical insights into the development of stable, high-quality peanut butter, ultimately advancing the field of food science and technology.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100080, China; (X.L.); (X.Z.); (Z.H.)
| |
Collapse
|
6
|
Liu X, Zhang Z, Chen Y, Zhong M, Lei Y, Huo J, Ma L, Li S. Chain reactions of temperature-induced egg white protein amorphous aggregates: Formation, structure and material composition of thermal gels. Food Chem 2024; 460:140785. [PMID: 39121770 DOI: 10.1016/j.foodchem.2024.140785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Egg white protein is widely used in food, chemical, medical and other fields due to its excellent thermal gel properties. However, the regularity of egg white thermal gel (EWTG) by temperature influence is still unknown. In this study, we investigated the potential mechanism of temperature (75-95 °C, 15 min) gradient changes inducing thermal aggregation and gel formation of EWTG. The results showed that changes in textural characteristics and water holding capacity (WHC) of EWTGs depended on switching in protein aggregation morphology (spherical shape - chain shape - regiment shape) and gel network structure differences ("irregular bead-like" - "regular lamellar structure"). In addition, proteomics indicated that the generation of amorphous protein aggregates at 95 °C might be related to Mucin 5B as the aggregation core. The research revealed the EWTG formation from "whole egg white protein" to "single molecules", aiming to provide a reference for quality control in gel food processing.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ziwei Zhang
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yujie Chen
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Mengzhen Zhong
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yuqing Lei
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jiaying Huo
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lulu Ma
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shugang Li
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
7
|
Xiao F, Zhang L, Xie H, Ouyang K, Shi W, Xiong H, Zhao Q. The construction of Moringa oleifera seed protein emulsion: in vitro digestibility and delivery of β-carotene. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7953-7964. [PMID: 38856014 DOI: 10.1002/jsfa.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND β-Carotene (BC) is difficult to apply effectively in the food industry due to its low solubility and bioavailability. This work aimed to fabricate Moringa oleifera seed protein (MOSP) stabilized emulsions as delivery vehicles for BC and investigate the effect of aqueous phase conditions including pH and ionic strength on this system. RESULTS All MOSP samples were positively charged and the particle size of MOSP increased with the increase of pH. At pH 5.0 and 0.2 mol L-1 sodium chloride (NaCl), the MOSP emulsion demonstrated the highest stability coefficient and minimal creaming index, while exhibiting a lower release rate in vitro digestion. The rheological behavior of all MOSP emulsions within the frequency range of 0.1-10 Hz was dominated by viscoelasticity, forming an elastic network structure through dispersed droplets. Additionally, the MOSP emulsion loaded with BC prepared at pH 5.0 and 0.2 mol L-1 NaCl displayed enhanced ultraviolet light stability (52.31 ± 0.03% and 51.86 ± 0.05%) as well as thermal stability (72.39 ± 8.67% and 86.78 ± 10.69%). Furthermore, the BC in the emulsion at pH 7.0 exhibited favorable stability (65.14 ± 0.02%) and optimal bioaccessibility (40.30 ± 0.04%) in vitro digestion. CONCLUSION The results provided reference data for utilizing MOSP as a novel emulsifier and broadening the application of BC in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fangjie Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Liqiong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Wenyi Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Li H, Wu X, Wu W. Natural protein-polysaccharide-phenol complex particles from rice bran as novel food-grade Pickering emulsion stabilizers. Int J Biol Macromol 2024; 277:134314. [PMID: 39094879 DOI: 10.1016/j.ijbiomac.2024.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
To develop novel food-grade Pickering emulsion stabilizers, insoluble rice bran protein-polysaccharide-phenol natural complex (IRBPPP) was prepared into Pickering emulsion stabilizers after different mechanical pretreatments (shear, high-pressure homogenization, ultrasonic, and combined mechanical pretreatment). With the increase in mechanical pretreatment types, the covalent binding of proteins and polysaccharides in IRBPPP gradually enhanced, the breakage efficiency of IRBPPP gradually increased (IRBPPP particle size decreased from 220.54 to 67.89 μm, the specific surface area of IRBPPP particle increased from 993.47 to 2033.86 cm-1/g), and the microstructure of IRBPPP gradually showed an orderly network structure, which enhanced the IRBPPP dispersion stability and the Pickering emulsion stability. Pickering emulsion stability was highly correlated (P < 0.01) with the breakage efficiency of IRBPPP particles. Overall, the combined mechanical pretreatment improved the stability of the IRBPPP-stabilized Pickering emulsion. The study added value to rice bran products and offered a new way to create stable food-grade Pickering emulsions for functional foods using natural protein-polysaccharide-phenol complex particles.
Collapse
Affiliation(s)
- Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
9
|
Barea P, Melgosa R, Benito-Román Ó, Illera AE, Beltrán S, Sanz MT. Green fractionation and hydrolysis of fish meal to improve their techno-functional properties. Food Chem 2024; 452:139550. [PMID: 38735108 DOI: 10.1016/j.foodchem.2024.139550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
A green strategy employing water as solvent has been adopted to obtain protein hydrolysates from fish meal (FM), its water-soluble fraction (WSP), and its non-water-soluble fraction (NSP). The techno-functional properties of the hydrolysates have been investigated and compared to hydrolysates obtained with Alcalase®. In general, SWH hydrolysates presented higher content of free amino acids and higher degree of hydrolysis, which reflected on the molecular size distribution. However, Alcalase® hydrolysates presented better solubility (from 74 ± 4% for NSP at pH = 2 up to 99 ± 1% for WSP at pH = 4-7). According to fluorescence experiments, FM and NSP hydrolysates showed the highest surface hydrophobicity, which has been related to better emulsifying properties and higher emulsion stability. The emulsions stabilized with 2%wt. of SWH-treated NSP showed the smallest particle sizes, with D[4,3] = 155 nm at day 0, and good stability, with D[4,3] = 220 nm at day 7, proving that water fractionation followed by SWH treatment is a good method to improve the techno-functional properties of the hydrolysates.
Collapse
Affiliation(s)
- Pedro Barea
- Department of Biotechnology and Food Science (Chemical Engineering Division), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Rodrigo Melgosa
- Department of Biotechnology and Food Science (Chemical Engineering Division), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Óscar Benito-Román
- Department of Biotechnology and Food Science (Chemical Engineering Division), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Alba Esther Illera
- Department of Biotechnology and Food Science (Chemical Engineering Division), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Sagrario Beltrán
- Department of Biotechnology and Food Science (Chemical Engineering Division), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - María Teresa Sanz
- Department of Biotechnology and Food Science (Chemical Engineering Division), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
10
|
Rajendran AT, Vadakkepushpakath AN. Natural Food Components as Biocompatible Carriers: A Novel Approach to Glioblastoma Drug Delivery. Foods 2024; 13:2812. [PMID: 39272576 PMCID: PMC11394703 DOI: 10.3390/foods13172812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Efficient drug delivery methods are crucial in modern pharmacotherapy to enhance treatment efficacy, minimize adverse effects, and improve patient compliance. Particularly in the context of glioblastoma treatment, there has been a recent surge in interest in using natural dietary components as innovative carriers for drug delivery. These food-derived carriers, known for their safety, biocompatibility, and multifunctional properties, offer significant potential in overcoming the limitations of conventional drug delivery systems. This article thoroughly overviews numerous natural dietary components, such as polysaccharides, proteins, and lipids, used as drug carriers. Their mechanisms of action, applications in different drug delivery systems, and specific benefits in targeting glioblastoma are examined. Additionally, the safety, biocompatibility, and regulatory considerations of employing food components in drug formulations are discussed, highlighting their viability and future prospects in the pharmaceutical field.
Collapse
Affiliation(s)
- Arunraj Tharamelveliyil Rajendran
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Anoop Narayanan Vadakkepushpakath
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| |
Collapse
|
11
|
Zhu Q, Qiu Y, Zhang L, Lu W, Pan Y, Liu X, Li Z, Yang H. Encapsulation of lycopene in Pickering emulsion stabilized by complexes of whey protein isolate fibrils and sodium alginate: Physicochemical property, structural characterization and in vitro digestion property. Food Res Int 2024; 191:114675. [PMID: 39059937 DOI: 10.1016/j.foodres.2024.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
In present study, whey protein isolate fibrils and sodium alginate complexes (WPIFs-SA) were prepared and further used to stabilize Pickering emulsions for lycopene delivery. The optimal interaction between WPIFs and SA occurred at pH 3.0, with a mass ratio of 2:1. Increasing the oil fractions and the content of WPIFs-SA complexes significantly improved Pickering emulsions' stability, concurrently reducing droplet size and increasing viscoelasticity. Meanwhile, it facilitated the formation of a thicker protective layer and a compact network structure around the oil droplets, offering better protection for lycopene against thermal and photo degradation. In vitro digestion studies revealed that as the oil fractions and complex contents increased, the lipolysis degree decreased. The engineered WPIFs-SA Pickering emulsion could be used as an innovative delivery system for the protection and delivery of lycopene.
Collapse
Affiliation(s)
- Qiaomei Zhu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Yihua Qiu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lujia Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Wenjing Lu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yijun Pan
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xuanbo Liu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA
| | - Zhenjing Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Hua Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Keruiheng Biotechnology Co., Ltd., Tianjin 300450, PR China.
| |
Collapse
|
12
|
Cen S, Li S, Meng Z. Advances of protein-based emulsion gels as fat analogues: Systematic classification, formation mechanism, and food application. Food Res Int 2024; 191:114703. [PMID: 39059910 DOI: 10.1016/j.foodres.2024.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Fat plays a pivotal role in the appearance, flavor, texture, and palatability of food. However, excessive fat consumption poses a significant risk for chronic ailments such as obesity, hypercholesterolemia, and cardiovascular disease. Therefore, the development of green, healthy, and stable protein-based emulsion gel as an alternative to traditional fats represents a novel approach to designing low-fat food. This paper reviews the emulsification behavior of proteins from different sources to gain a comprehensive understanding of their potential in the development of emulsion gels with fat-analog properties. It further investigates the emulsifying potential of protein combined with diverse substances. Then, the mechanisms of protein-stabilized emulsion gels with fat-analog properties are discussed, mainly involving single proteins, proteins-polysaccharides, as well as proteins-polyphenols. Moreover, the potential applications of protein emulsion gels as fat analogues in the food industry are also encompassed. By combining natural proteins with other components such as polysaccharides, polyphenols, or biopolymers, it is possible to enhance the stability of the emulsion gels and improve its fat-analog texture properties. In addition to their advantages in protecting oil oxidation, limiting hydrogenated oil intake, and delivering bioactive substances, protein-based emulsion gels have potential in food 3D printing and the development of specialty fats for plant-based meat.
Collapse
Affiliation(s)
- Shaoyi Cen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Shaoyang Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Li Z, Jiang H, Guo M, Zhang Z, You X, Wang X, Ma M, Zhang X, Wang C. Modification of casein with oligosaccharides via the Maillard reaction: As natural emulsifiers. Food Res Int 2024; 191:114648. [PMID: 39059902 DOI: 10.1016/j.foodres.2024.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
In the present study, different oligosaccharides (fructooligosaccharide (FOS), galactooligosaccharide (GOS), isomaltooligosaccharide (IMO), and xylooligosaccharide (XOS)) were modified on casein (CN) via Maillard reaction. The CN-oligosaccharide conjugates were evaluated for modifications to functional groups, fluorescence intensity, water- and oil-holding properties, emulsion foaming properties, as well as general emulsion properties and stability. The results demonstrated that the covalent combination of CN and oligosaccharides augmented the spatial repulsion and altered the hydrophobic milieu of proteins, which resulted in a diminution in water-holding capacity, an augmentation in oil-holding capacity, and an enhancement in the emulsification properties of proteins. Among them, CN-XOS exhibited the most pronounced changes, with the emulsification activity index and emulsion stability index increasing by approximately 72% and 84.3%, respectively. Furthermore, CN-XOS emulsions have smaller droplet sizes and higher absolute potential values than CN emulsions. Additionally, CN-XOS emulsions demonstrate remarkable stability when ion concentration and pH are varied. These findings indicate that oligosaccharides modified via Maillard reaction can be used as good natural emulsifiers. This provides a theoretical basis for using oligosaccharides to modify proteins and act as natural emulsifiers.
Collapse
Affiliation(s)
- Zhenghao Li
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Hua Jiang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Min Guo
- Network Information Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xinyu You
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xipeng Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mengjia Ma
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaoning Zhang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Cunfang Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
14
|
Tang X, Chang H, Yao G, Chen J, Dong R. Desmodium intortum (Mill.) Urb. Protein Isolate Aggregates as Pickering Stabilizers: Physicochemical Characteristics and Emulsifying Properties. Molecules 2024; 29:3923. [PMID: 39203001 PMCID: PMC11357075 DOI: 10.3390/molecules29163923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
This work aimed to investigate the feasibility of fabricating Pickering emulsions stabilized by Desmodium intortum protein isolate (DIPI) aggregates. The DIPI aggregates were formed using heat treatment, and the effects of ionic strength and pH on their properties were investigated. The heat-treated protein exposes its hydrophobic groups due to structural damage, resulting in rapid aggregation of the protein into aggregates with a size of 236 nm. The results showed that the aggregates induced by ionic strength had larger particle size and higher surface hydrophobicity and partial wettability. Moreover, this study explored effective strategies for bolstering Pickering emulsion stability through optimized DIPI aggregate concentration (c) and oil fraction (ø). The DIPI Pickering emulsion (DIPIPE) formed at c = 5% and ø = 0.7 was still highly stable after 30 days of storage. As confirmed by laser confocal microscopy, DIPI aggregates could be adsorbed onto the oil-water interface to form a network structure that could trap oil droplets in the network. Collectively, the Pickering emulsion stabilized by DIPI aggregates exhibited excellent stability, which not only deeply utilizes the low-value protein resources in the Desmodium intortum for the first time, but also demonstrates the potential of DIPI for the bio-based field.
Collapse
Affiliation(s)
- Xuemei Tang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.C.); (G.Y.)
| | - Hui Chang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.C.); (G.Y.)
| | - Guanglong Yao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.C.); (G.Y.)
| | - Jian Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.C.); (G.Y.)
| | - Rongshu Dong
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- National Key Laboratory for Tropical Crop Breeding, Sanya 572024, China
| |
Collapse
|
15
|
Olsmats E, Rennie AR. Understanding Stabilization of Oil-in-Water Emulsions with Pea Protein─Studies of Structure and Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13386-13396. [PMID: 38904703 PMCID: PMC11223488 DOI: 10.1021/acs.langmuir.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
This study investigates the stability and structure of oil-in-water emulsions stabilized by pea protein. Of the wide range of emulsion compositions explored, a region of stability at a minimum of 5% w/v pea protein and 30-50% v/v oil was determined. This pea protein concentration is more than what is needed to form a layer covering the interface. X-ray scattering revealed a thick, dense protein layer at the interface as well as hydrated protein dispersed in the continuous phase. Shear-thinning behavior was observed, and the high viscosity in combination with the thick protein layer at the interface creates a good stability against creaming and coalescence. Emulsions in a pH range from acidic to neutral were studied, and the overall stability was observed to be broadly similar independently of pH. Size measurements revealed polydisperse protein particles. The emulsion droplets are also very polydisperse. Apart from understanding pea protein-stabilized emulsions in particular, insights are gained about protein stabilization in general. Knowledge of the location and the role of the different components in the pea protein material suggests that properties such as viscosity and stability can be tailored for various applications, including food and nutraceutical products.
Collapse
Affiliation(s)
- Eleonora Olsmats
- Macromolecular Chemistry, Department
of Chemistry—Ångström, Uppsala University, Box 538, 75121 Uppsala, Sweden
| | - Adrian R. Rennie
- Macromolecular Chemistry, Department
of Chemistry—Ångström, Uppsala University, Box 538, 75121 Uppsala, Sweden
| |
Collapse
|
16
|
Meng A, Luan B, Zhang W, Zheng Y, Guo B, Zhang B. Exploring changes in aggregation and gel network morphology of soybean protein isolate induced by pH, NaCl, and temperature in view of interactions. Int J Biol Macromol 2024; 273:132911. [PMID: 38844293 DOI: 10.1016/j.ijbiomac.2024.132911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
The texture of soybean protein-based products is primarily influenced by the aggregation and gel morphology of the protein, which is modulated by manufacturing factors. Interactions involved in protein morphology changes include disulfide bonds, hydrophobic interactions, electrostatic interactions, and hydrogen bonds. Notably, an interaction perspective probably provides a new way to explaining the aggregation and gel morphology, which could help overcome the hurdle of developing a textured product. Based on the interaction perspective, this review provides detailed information and evidence on aggregation, conformational stability, and gel network morphology of soybean protein and its components induced by pH, NaCl, and temperature. pH-induced electrostatic interactions and hydrogen bonds, NaCl-induced electrostatic interactions, and temperature-induced hydrophobic interactions and disulfide linkages are the main motivations responsible for changes in soybean aggregation and gel morphology. By reducing the proportion of strong-interactions, such as disulfide linkages and hydrophobic interactions, and increasing the proportion of weak-interactions, such as electrostatic interactions and hydrogen bonds, the protein total surface area expands, indicating increased conformational stretching and decreased cohesion. This possibly results in reduced hardness and increased toughness of textured proteins. The opposite effect can be observed when the proportion of strong interactions is increased and that of weak interactions is decreased.
Collapse
Affiliation(s)
- Ang Meng
- Institute of Food Science and Technology CAAS, Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Binyu Luan
- Institute of Food Science and Technology CAAS, Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Wenjing Zhang
- Institute of Food Science and Technology CAAS, Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yan Zheng
- Wilmar Biotechnology Research and Development Center Company Limited, Shanghai 200000, China
| | - Boli Guo
- Institute of Food Science and Technology CAAS, Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Bo Zhang
- Institute of Food Science and Technology CAAS, Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
17
|
Yu Z, Gao Y, Shang Z, Wang T, He X, Lei J, Tai F, Zhang L, Chen Y. A stable delivery system for curcumin: Fabrication and characterization of self-assembling acylated kidney bean protein isolate nanogels. Food Chem 2024; 443:138526. [PMID: 38290298 DOI: 10.1016/j.foodchem.2024.138526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
The construction of protein-based nano-gels as curcumin delivery system effectively enhances the stability and bioavailability of curcumin. In this study, acylation modification and self-assembly techniques were jointly employed to construct acylated kidney bean protein isolate (AKBPI)-nanogels. Optimal conditions for AKBPI-nanogels were determined to be pH 7, concentration of 2 mg/mL, and temperature at 90℃ for 30 min. The optimized AKBPI-nanogels exhibited excellent uniformity as evidenced by decreasing average particle size (137.35 nm) and polydispersity index (0.38). Acylation enhanced the intermolecular interactions within the nanogel by reducing the polarity of tyrosine microenvironment and free sulfhydryl groups. AKBPI-nanogels demonstrated remarkable characteristics in terms of pH sensitivity, salt concentration, and storage tolerance. The curcumin-loaded AKBPI-nanogels exhibited an encapsulation efficiency of 92.30 % and maintained high antioxidant activity. In simulated gastrointestinal digestion, AKBPI-nanogels facilitated the controlled release and higher bioavailability of curcumin. Therefore, AKBPI-nanogels can be a stable tool for delivering curcumin.
Collapse
Affiliation(s)
- Zhihui Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Houji Laboratory in Shanxi Province, Taiyuan 030031, Shanxi, China; Food Nutrition and Safety Institute, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Yating Gao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Ziqi Shang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Tengfei Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Xuli He
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jian Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Fei Tai
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Lixin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Food Nutrition and Safety Institute, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| | - Yisheng Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Houji Laboratory in Shanxi Province, Taiyuan 030031, Shanxi, China; Food Nutrition and Safety Institute, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
18
|
Li M, Yu H, Gantumur MA, Guo L, Lian L, Wang B, Yu C, Jiang Z. Insight into oil-water interfacial adsorption of protein particles towards regulating Pickering emulsions: A review. Int J Biol Macromol 2024; 272:132937. [PMID: 38848834 DOI: 10.1016/j.ijbiomac.2024.132937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Over the past decade, Pickering emulsions (PEs) stabilized by protein particles have been the focus of researches. The characteristics of protein particles at the oil-water interface are crucial for stabilizing PEs. The unique adsorption behaviors of protein particles and various modification methods enable oil-water interface to exhibit controllable regulation strategies. However, from the perspective of the interface, studies on the regulation of PEs by the adsorption behaviors of protein particles at oil-water interface are limited. Therefore, this review provides an in-depth study on oil-water interfacial adsorption of protein particles and their regulation on PEs. Specifically, the formation of interfacial layer and effects of their interfacial characteristics on PEs stabilized by protein particles are elaborated. Particularly, complicated behaviors, including adsorption, arrangement and deformation of protein particles at the oil-water interface are the premise of affecting the formation of interfacial layer. Moreover, the particle size, surface charge, shape and wettability greatly affect interfacial adsorption behaviors of protein particles. Importantly, stabilities of protein particles-based PEs also depend on properties of interfacial layers, including interfacial layer thickness and interfacial rheology. This review provides useful insights for the development of PEs stabilized by protein particles based on interfacial design.
Collapse
Affiliation(s)
- Meng Li
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Haiying Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Lidong Guo
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Lian Lian
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Bo Wang
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Chunmiao Yu
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
19
|
Hu Y, Zhou C, Zeng X, Xia Q, Sun Y, Pan D. Phosphate type dependent phosphorylation on the interfacial and emulsion stabilizing behaviors of goose liver protein: Perspective of protein charging. Colloids Surf B Biointerfaces 2024; 238:113872. [PMID: 38555762 DOI: 10.1016/j.colsurfb.2024.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Elucidation on the emulsifying behaviors of goose liver protein (GLP) from interfacial perspective was scarce when protein charging was altered. This work aimed to elucidate the role of phosphorylation on the interfacial associative interaction and then emulsion stabilizing properties of GLP using three structurally relevant phosphates of sodium trimetaphosphate (STMP), sodium tripolyphosphate (STPP) and sodium pyrophosphate (TSPP). A monotonic increment of protein charging treated from STMP, STPP to TSPP caused progressively increased particle de-aggregation, surface hydrophobicity and structural flexibility of GLP. Compared with STMP and TSPP, STPP phosphorylation rendered the most strengthened interfacial equilibrium pressure (11.98 ± 0.24 mN/m) due to sufficient unfolding but moderated charging character conveyed. Desorption curve and interfacial protein microstructure indicated that STPP phosphorylation caused the highest interfacial connectivity between proteins adsorbed onto the same droplet, as was also verified by interfacial elastic modulus (10.3 ± 0.21 mN/m). STPP treated GLP also yielded lowest droplet size (8.16 ± 0.10 μm), flocculation (8.18%) and Turbiscan stability index (8.78 ± 0.36) of emulsion but most improved microrheological properties. Overall, phosphorylation functioned itself in fortifying the intradroplet protein-protein interaction but restraining the interdroplet aggregation, and STPP phosphorylation endowed the protein with most enhanced interfacial stabilization and emulsifying efficiency.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
20
|
Maria Medeiros Theóphilo Galvão A, Lamy Rasera M, de Figueiredo Furtado G, Grossi Bovi Karatay G, M Tavares G, Dupas Hubinger M. Lentil protein isolate (Lens culinaris) subjected to ultrasound treatment combined or not with heat-treatment: structural characterization and ability to stabilize high internal phase emulsions. Food Res Int 2024; 183:114212. [PMID: 38760140 DOI: 10.1016/j.foodres.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 05/19/2024]
Abstract
This study evaluated the effect of ultrasound treatment combined or not with heat treatment applied to lentil protein isolate (LPI) aiming to enhance its ability to stabilize high internal phase emulsions (HIPE). LPI dispersion (2%, w/w) was ultrasound-treated at 60% (UA) and 70% (UB) amplitude for 7 min; these samples were subjected to and then heat treatments at 70 °C (UAT70 and UBT70, respectively) or 80 °C (UAT80 and UBT80, respectively) for 20 min. HIPEs were produced with 25% untreated and treated LPI dispersions and 75% soybean oil using a rotor-stator (15,500 rpm/1 min). The LPI dispersions were evaluated for particle size, solubility, differential scanning calorimetry, electrophoresis, secondary structure estimation (circular dichroism and FT-IR), intrinsic fluorescence, surface hydrophobicity, and free sulfhydryl groups content. The HIPEs were evaluated for droplet size, morphology, rheology, centrifugal stability, and the Turbiscan test. Ultrasound treatment decreased LPI dispersions' particle size (∼80%) and increased solubility (∼90%). Intrinsic fluorescence and surface hydrophobicity confirmed LPI modification due to the exposure to hydrophobic patches. The combination of ultrasound and heat treatments resulted in a reduction in the free sulfhydryl group content of LPI. HIPEs produced with ultrasound-heat-treated LPI had a lower droplet size distribution mode, greater oil retention values in the HIPE structure (> 98%), lower Turbiscan stability index (< 2), and a firmer and more homogeneous appearance compared to HIPE produced with untreated LPI, indicating higher stability for the HIPEs stabilized by treated LPI. Therefore, combining ultrasound and heat treatments could be an effective method for the functional modification of lentil proteins, allowing their application as HIPE emulsifiers.
Collapse
Affiliation(s)
- Andrêssa Maria Medeiros Theóphilo Galvão
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil.
| | - Mariana Lamy Rasera
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme de Figueiredo Furtado
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Rod. Lauri Simões de Barros, km 12 - SP 189, Buri, SP 18290-000, Brazil
| | - Graziele Grossi Bovi Karatay
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme M Tavares
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Míriam Dupas Hubinger
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
21
|
Kuo YL, Chou YJ, Hu JY, Ting Y. Pickering emulsion emulsified using novel cellulose nanofibers significantly lowers the lipid release rate and cellular absorption. Food Funct 2024; 15:4399-4408. [PMID: 38563197 DOI: 10.1039/d3fo05219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A Pickering emulsion is an emulsion system stabilized by solid particles and represents a promising candidate for emulsifying lipids. Cellulose nanofibers (CNFs) have excellent ability to control the lipid release rate. This study aims to find the optimal formulation for a nanocellulose-stabilized Pickering emulsion that is the most effective in reducing the lipid release rate. The Pickering emulsion was prepared by homogenizing pretreated nanocellulose with medium-chain triglycerides using high-speed and ultrasonic homogenizers. The results show that the Pickering emulsion with 0.709% nanocellulose and 30.6% medium-chain fatty acid content yielded an average particle size of approximately 2.5 μm, which is the most stable and effective in reducing the amount of the lipids released. The nanocellulose Pickering emulsion formulation developed in this study forms a significant foundation for future research and applications regarding the use of nanotechnology and Pickering emulsions to maintain the balance between one's health and the desirable flavor of fat.
Collapse
Affiliation(s)
- Yin-Liang Kuo
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, Taiwan.
| | - Yu-Jou Chou
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, Taiwan.
| | - Jing-Yu Hu
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, Taiwan.
| | - Yuwen Ting
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, Taiwan.
| |
Collapse
|
22
|
Yu D, Xing K, Wang N, Wang X, Zhang S, Du J, Zhang L. Effect of dynamic high-pressure microfluidization treatment on soybean protein isolate-rutin non-covalent complexes. Int J Biol Macromol 2024; 259:129217. [PMID: 38184043 DOI: 10.1016/j.ijbiomac.2024.129217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
In this investigation, soybean protein isolate-rutin (SPI-RT) complexes were treated using dynamic high-pressure microfluidization (DHPM). The effects of this process on the physicochemical and thermodynamic properties of SPI were investigated at different pressures. Fourier-transform infrared spectroscopy and fluorescence spectroscopy provided evidence that the SPI structure had been altered. The binding of SPI to RT resulted in a decrease in the percentage of α-helices and random curls as well as an increase in the percentage of β-sheets. In particular, the α-helix content decreased from 29.84 % to 26.46 %, the random curl content decreased from 17.45 % to 15.57 %, and the β-sheet content increased from 25.37 % to 26.53 %. Moreover, fluorescence intensity decreased, and the emission peak of the complex was red-shifted by 6 nm, exposing the internal groups. Based on fluorescence quenching analysis, optimal SPI-RT complexation was achieved after 120-MPa DHPM treatment, and molecular docking analysis verified the interaction between SPI and RT. The minimum particle size, maximum absolute potential, and total phenolic content of the complexes were 78.06 nm, 21.4 mV and 74.35 nmol/mg protein, respectively. Furthermore, laser confocal microscopy revealed that the complex particles had the best microstructure. Non-covalent interactions between the two were confirmed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Moreover, the hydrophobicity of the complex particle's surface increased to 16,045 after 120-MPa DHPM treatment. The results of this study suggest that DHPM strongly promotes the improvement of the physicochemical properties of SPI, and provide a theoretical groundwork for further research.
Collapse
Affiliation(s)
- Dianyu Yu
- Northeast Agricultural University, Harbin 150030, China.
| | - Kaiwen Xing
- Northeast Agricultural University, Harbin 150030, China.
| | - Ning Wang
- Northeast Agricultural University, Harbin 150030, China
| | - Xu Wang
- Northeast Agricultural University, Harbin 150030, China
| | | | - Jing Du
- Northeast Agricultural University, Harbin 150030, China.
| | - Lili Zhang
- Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
23
|
Liu R, Yan X, Liu R, Wu Q, Gao Y, Muhindo EM, Zhi Z, Wu T, Sui W, Zhang M. Lima bean (Phaseolus lunatus Linn.) protein isolate as a promising plant protein mixed with xanthan gum for stabilizing oil-in-water emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:818-828. [PMID: 37683050 DOI: 10.1002/jsfa.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Lima bean protein isolate (LPI) is an underutilized plant protein. Similar to other plant proteins, it may display poor emulsification properties. In order to improve its emulsifying properties, one effective approach is using protein and polysaccharide mixtures. This work investigated the structural and emulsifying properties of LPI as well as the development of an LPI/xanthan gum (XG)-stabilized oil-in-water emulsion. RESULTS The highest protein solubility (84.14%) of LPI was observed and the molecular weights (Mw ) of most LPI subunits were less than 35 kDa. The enhanced emulsifying activity index (15.97 m2 g-1 ) of LPI might be associated with its relatively high protein solubility and more low-Mw subunits (Mw < 35 kDa). The effects of oil volume fraction (ϕ) on droplet size, microstructure, rheological behavior and stability of emulsions were investigated. As ϕ increased from 0.2 to 0.8, the emulsion was arranged from spherical and dispersed oil droplets to polyhedral packing of oil droplets adjacent to each other, while the LPI/XG mixtures changed from particles (in the uncrowded interfacial layer) to lamellae (in the crowded interfacial layer). When ϕ was 0.6, the emulsion was in a transitional state with the coexistence of particles and lamellar structures on the oil droplet surface. The LPI/XG-stabilized emulsions with ϕ values of 0.6-0.8 showed the highest stability during a 14-day storage period. CONCLUSION This study developed a promising plant-based protein resource, LPI, and demonstrates potential application of LPI/XG as an emulsifying stabilizer in foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Xuebing Yan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Ruixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Qifan Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Yuhong Gao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Esther Mwizerwa Muhindo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
24
|
Yan Z, Liu J, Cao S, Wang Z, Li C, Ren J, Zhang R, Zhang M, Liu X. Substitution of sucrose by erythritol in angel cake: Effect on protein foaming, baking performance and digestion properties. Int J Biol Macromol 2023; 253:126759. [PMID: 37678696 DOI: 10.1016/j.ijbiomac.2023.126759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Sugars played an important role in the processing of products such as cakes, however, their high-calorie character often posed a health risk to consumers. Therefore, this paper aimed to better investigate the effect of sugar substitutes on the improvement of egg white foaming properties and angle cake digestibility characteristics. It was demonstrated that the addition of erythritol improved the surface properties of egg whites, thus enhancing their foaming properties. Particularly, when the erythritol substitution was 50 %, the sugar-egg white complex structure unfolded and had the best foaming capacity. On this basis, the baking performance of angel cakes with sucrose replaced by erythritol was analyzed. When the erythritol substitution was lower than 50 %, the specific volume and the baking loss rate of the cakes were basically unchanged, and the texture and sensory taste of the cakes were all excellent. Finally, the gastrointestinal digestive kinetic analysis suggested that erythritol substitution for sucrose was beneficial for reducing blood glucose levels in vivo. Furthermore, for the MgCl2-based samples, both the degree of protein destruction after digestion was weakened and the glucose-lowering effect was better exerted. Overall, this study provided a new theoretical basis for the low-calorie sugar-substituted health food products development in the future.
Collapse
Affiliation(s)
- Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Cao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhi Wang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chenman Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jianqi Ren
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Renzhao Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Min Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
25
|
Schmid T, Leue-Rüegg R, Müller N. Heat and shear stability of particle stabilised foams for application in gluten-free bread. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2772-2781. [PMID: 37711581 PMCID: PMC10497492 DOI: 10.1007/s13197-023-05794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 09/16/2023]
Abstract
Bread forms an integral part of the daily diet in many cultures worldwide. At the same time, a significant number of people try to avoid wheat-based products for either health reasons or due to personal preferences. The absence of a protein network in gluten free bread affects its structure, taste, texture and shelf-life. This paper suggests a technological solution to this issue that uses a pre-foamed mass of gluten free raw materials which is mixed with the bread's ingredients, then kneaded and baked to form a high quality gluten free bread. To survive the high shear stresses during kneading and temperature increase during baking, the foam requires exceptional stability. This stability was achieved through particle stabilisation of the bubble interfaces. Both of the tested foams (with and without particles) exhibited thermal stability up to 80 °C. However, resistance to shear stresses was higher in the particle stabilised foams. Of all the tested particles, linseed press cake and banana powder led to the best results. In conclusion, particle stabilised foams seem very well suited to applications in gluten free baked goods. Further application potential is seen for vegan foamed desserts.
Collapse
Affiliation(s)
- T. Schmid
- Zurich University of Applied Science (ZHAW), Einsiedlerstrasse 34, 8820 Wädenswil, Switzerland
| | - R. Leue-Rüegg
- Zurich University of Applied Science (ZHAW), Einsiedlerstrasse 34, 8820 Wädenswil, Switzerland
| | - N. Müller
- Zurich University of Applied Science (ZHAW), Einsiedlerstrasse 34, 8820 Wädenswil, Switzerland
| |
Collapse
|
26
|
Ding Y, Zengin A, Cheng W, Wang L, Ettelaie R. Emulsifying properties of plant-derived polypeptide and their conjugates: a self-consistent-field calculation study of the impact of hydrolysis. SOFT MATTER 2023; 19:7443-7458. [PMID: 37747041 DOI: 10.1039/d3sm00855j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
By considering the hydrolysates of soy protein produced by trypsin as an example, the emulsion stabilizing properties of plant-based protein fragments have been investigated theoretically. We apply Self-Consistent-Field (SCF) calculations to determine the colloidal interactions induced between a pair of droplets stabilized by adsorbed layers of various soy protein fragments. The study is extended to conjugates of such polypeptides, formed by covalent bonding with a suitable hydrophilic sidechain (e.g. a polysaccharide). Our results show that the relatively longer fragments, with a greater number of hydrophobic amino acids, will display a stronger degree of adsorption affinity compared to the smaller hydrolysates, even where the latter may have a higher overall ratio of hydrophobic residues. This suggested that the degree of protein hydrolysis should be carefully controlled and limited to modest values to avoid the generation of a large number of short polypeptides, while still sufficient to improve solubility. While the emulsion stabilizing performance of a protein fragment type is strongly dependent on the conformation it adopts on the interface, we find this to be less critical for the conjugated polypeptides. However, we argue that with increasing degree of hydrolysis, many small fragments will not have the chance to form bonds with polysaccharides. It is demonstrated that the abundance of these unreacted polypeptides in the system severely reduces the efficiency of the conjugated longer protein fragments, preventing their presence on the surface of the droplets through competitive adsorption process.
Collapse
Affiliation(s)
- Yue Ding
- College of Food and Bioengineering, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471000, P. R. China.
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Adem Zengin
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan Sakarya, Turkey
| | - Weiwei Cheng
- College of Food and Bioengineering, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471000, P. R. China.
| | - Libo Wang
- College of Food and Bioengineering, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471000, P. R. China.
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| |
Collapse
|
27
|
Li W, Li W, Wan Y, Zhou T, Wang L. Thymol-loaded Zein-pectin composite nanoparticles as stabilizer to fabricate Pickering emulsion of star anise essential oil for improved stability and antimicrobial activity. J Food Sci 2023; 88:3807-3819. [PMID: 37530639 DOI: 10.1111/1750-3841.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023]
Abstract
The aim of the present study was to prepare a new antimicrobial Pickering emulsion of which the star anise essential oil was added to the oil phase, and to investigate the effect of stabilization by bio-based active nanoparticles consisting of zein and pectin loaded with thymol. First, the thymol-loaded zein/pectin composite nanoparticles (ZTNPs) were fabricated as uniformly distributed spherical nanoparticles with an average diameter of 200 nm through antisolvent precipitation. Second, the effects of nanoparticles' concentration, oil phase ratio, and storage time on the stability of emulsions were explored according to particle size potential, interfacial tension, rheology, and micromorphology. Finally, the antibacterial results showed that Pickering emulsion inhibited Escherichia coli and Staphylococcus aureus compared to the control group by nearly 7 log colony-forming unit/g at 36 h, which was twice as much as the inhibition by thymol or star anise essential oils and ZTNPs. Therefore, the proposed Pickering emulsion with star anise essential oil could be used as a green and safe plant-derived antimicrobial agent in the food industry.
Collapse
Affiliation(s)
- Wei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Wenqing Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Yulian Wan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Tao Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Longfeng Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|
28
|
Gao Y, Lin D, Peng H, Zhang R, Zhang B, Yang X. Low oil Pickering emulsion gels stabilized by bacterial cellulose nanofiber/soybean protein isolate: An excellent fat replacer for ice cream. Int J Biol Macromol 2023; 247:125623. [PMID: 37392915 DOI: 10.1016/j.ijbiomac.2023.125623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Food-grade Pickering emulsion gels with different oil phase fractions stabilized by Bacterial cellulose nanofibers/Soy protein isolate complex colloidal particles were prepared by one-step method. The properties of Pickering emulsion gels with different oil phase fractions (5 %, 10 %, 20 %, 40 %, 60 %, 75 %, v/v) and their applications in ice cream were investigated in the present study. The microstructural results showed that Pickering emulsion gels with the low oil phase fractions (5 %-20 %) were an emulsion droplet-filled gel, where the oil droplets were embedded in the network structure of cross-linked polymer, while Pickering emulsion gels with higher oil phase fractions (40 %-75 %) were an emulsion droplet-aggregated gel, which formed a network structure by flocculated oil droplets. The rheology result showed that the low oil Pickering emulsion gels had the same excellent performance as the high oil Pickering emulsion gels. Furthermore, the low oil Pickering emulsion gels showed good environmental stability under harsh conditions. Consequently, Pickering emulsion gels with 5 % oil phase fraction were used as fat replacers in ice cream and ice cream with different fat replacement rates (30 %, 60 % and 90 %, w/w) was prepared in this work. The results showed the appearance and texture of the ice cream with low oil Pickering emulsion gels as fat replacers was similar to that of the ice cream with no fat replacers, and the melting rate of the ice cream with low oil Pickering emulsion gels as fat replacers showed the lowest value of 21.08 % during the 45 min of melting experiment, as the fat replacer rate in the ice cream reached to 90 %. Therefore, this study demonstrated that low oil Pickering emulsion gels were excellent fat replacers and had great potential application in low calorie food production.
Collapse
Affiliation(s)
- Yin Gao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Runguan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
29
|
Wu C, Wu F, Ju Q, Zhang Y, Yuan Y, Kang S, Hu Y, Luan G. The role of β-subunit in emulsifying performance of β-conglycinin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
30
|
A “smart-sensing” bactericidal protein-based Pickering emulsion. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
31
|
Huang S, Wang Z, Zhou Q, Yang S, Huang R, Mai K, Qin W, Huang J, Yu G, Feng Y, Li J. Tuning interfacial microstructure of alginate-based amphiphile by dynamic bonding for stabilizing Pickering emulsion. Carbohydr Polym 2023; 310:120720. [PMID: 36925246 DOI: 10.1016/j.carbpol.2023.120720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Polysaccharide-based soft colloidal particles mediated by the dynamic bonding-engineered interfacial self-assembly can regulate the properties of oil-water interfacial films, availing the stability of emulsions under a wide pH range. The amphiphilic phenylboronic alginate soft colloidal particles (Alg-PBA) were designed to stabilize pH-responsive Pickering emulsions (PEs). Combining stability analysis with quartz crystal microbalance and dissipation monitoring (QCM-D), the microstructure and viscoelasticity of Alg-PBA at the oil-water interface were determined. The results showed that PEs stabilized by Alg-PBA due to a thicker and stronger viscoelastic interface film induced by BO bonds and hydrogen bonds. The structure-function relationship of the Alg-PBA emulsifier driven by dynamic bonds was further elaborated at multiple scales by laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Meanwhile, the microstructure of aerogels templated by emulsion could be tuned by adjusting dynamic bonds, which provides a new idea for polysaccharide soft material engineering.
Collapse
Affiliation(s)
- Shuntian Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Zhaojun Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qichang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Riting Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Keyang Mai
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Wenqi Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Junhao Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
32
|
Liu C, Tian Y, Ma Z, Zhou L. Pickering Emulsion Stabilized by β-Cyclodextrin and Cinnamaldehyde/β-Cyclodextrin Composite. Foods 2023; 12:2366. [PMID: 37372577 DOI: 10.3390/foods12122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A Pickering emulsion was prepared using β-cyclodextrin (β-CD) and a cinnamaldehyde (CA)/β-CD composite as emulsifiers and corn oil, camellia oil, lard oil, and fish oil as oil phases. It was confirmed that Pickering emulsions prepared with β-CD and CA/β-CD had good storage stability. The rheological experiments showed that all emulsions had G' values higher than G″, thus confirming their gel properties. The results of temperature scanning rheology experiments revealed that the Pickering emulsion prepared with β-CD and CA/β-CD composites had high stability, in the range of 20-65 °C. The chewing properties of Pickering emulsions prepared by β-CD and corn oil, camellia oil, lard, and herring oil were 8.02 ± 0.24 N, 7.94 ± 0.16 N, 36.41 ± 1.25 N, and 5.17 ± 0.13 N, respectively. The chewing properties of Pickering emulsions made with the CA/β-CD composite and corn oil, camellia oil, lard, and herring oil were 2.51 ± 0.05 N, 2.56 ± 0.05 N, 22.67 ± 1.70 N, 3.83 ± 0.29 N, respectively. The texture properties confirmed that the CA/β-CD-composite-stabilized-emulsion had superior palatability. After 28 days at 50 °C, malondialdehyde (MDA) was detected in the emulsion. Compared with the β-CD and CA + β-CD emulsion, the CA/β-CD composite emulsion had the lowest content of MDA (182.23 ± 8.93 nmol/kg). The in vitro digestion results showed that the free fatty acid (FFA) release rates of the CA/β-CD composite emulsion (87.49 ± 3.40%) were higher than those of the β-CD emulsion (74.32 ± 2.11%). This strategy provides ideas for expanding the application range of emulsifier particles and developing food-grade Pickering emulsions with antioxidant capacity.
Collapse
Affiliation(s)
- Caihua Liu
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yachao Tian
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zihan Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
33
|
Jiang Y, Wang W, Huang Q. Impacts of crosslinking conditions on Pickering emulsions stabilized by genipin-crosslinked chitosan-caseinophosphopeptides nanocomplexes. Int J Biol Macromol 2023:125154. [PMID: 37268081 DOI: 10.1016/j.ijbiomac.2023.125154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Polysaccharide-polypeptide nanocomplexes are promising colloidal Pickering stabilizers. The resulting Pickering emulsions, however, are susceptible to pH and ionic strength changes. This phenomenon was also observed in our recently developed Pickering emulsions stabilized by the chitosan (CS)-caseinophosphopeptides (CPPs) nanocomplexes. To improve the stability of these Pickering emulsions, we herein crosslinked the CS-CPPs nanocomplexes with a natural crosslinker genipin. The genipin-crosslinked CS-CPPs nanocomplexes (GCNs) were used to prepare Pickering emulsions. The impacts of genipin concentration, crosslinking temperature, and duration on the characteristics of GCNs and the GCNs-stabilized Pickering emulsions (GPEs) were systemically investigated. GCNs showed crosslinking strength-dependent variations in their physical properties. Crosslinking at a weak or strong condition weakened the emulsification ability of GCNs at low concentrations. A strong crosslinking condition also compromised the capacity of GCNs to stabilize a high fraction of oil. GPEs were oil-in-water type and gel-like. GCNs crosslinked at a lower temperature and for a shorter crosslinking duration stabilized stronger gel-like GPEs. Moreover, GPEs had high pH and ionic strength stabilities. This work provided a feasible way to enhance the stability and regulate the physical properties of Pickering emulsions stabilized by polysaccharide-polypeptide nanocomplexes.
Collapse
Affiliation(s)
- Yike Jiang
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
34
|
Xiao L, Hou Y, Xue Z, Bai L, Wang W, Chen H, Yang H, Yang L, Wei D. Soy Protein Isolate/Genipin-Based Nanoparticles for the Stabilization of Pickering Emulsion to Design Self-Healing Guar Gum-Based Hydrogels. Biomacromolecules 2023; 24:2087-2099. [PMID: 37079862 DOI: 10.1021/acs.biomac.2c01507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nowadays, stretchable self-healing hydrogels designed by biomass-based materials have gathered remarkable attention in numerous frontier fields such as wound healing, health monitoring issues, and electronic skin. In this study, soy protein isolate (SPI), a common plant protein, was cross-linked to nanoparticles (SPI NPs) by Genipin, (Gen) which was attracted from the native Geniposide. Oil-in-water (O/W) Pickering emulsion was formed by SPI NPs wrapping the linseed oil, and further implanted into poly(acrylic acid)/guar gum (PAA/GG)-based self-healing hydrogels by multiple reversible weak interactions. With the addition of Pickering emulsion, the hydrogels have achieved a remarkable self-healing ability (self-healing efficiency could reach 91.6% within 10 h) and mechanical properties (tensile strength of 0.89 MPa and strain of 853.2%). Therefore, these hydrogels with good reliable durability have outstanding application prospects in sustainable materials.
Collapse
Affiliation(s)
- Lixuan Xiao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Yaning Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Zhiyan Xue
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|
35
|
Elshall AA, Ghoneim AM, Abd-Elmonsif NM, Osman R, Shaker DS. Boosting hair growth through follicular delivery of Melatonin through lecithin-enhanced Pickering emulsion stabilized by chitosan-dextran nanoparticles in testosterone induced androgenic alopecia rat model. Int J Pharm 2023; 639:122972. [PMID: 37084830 DOI: 10.1016/j.ijpharm.2023.122972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The strategy in this work was loading Melatonin (MEL), the powerful antioxidant photosensitive molecule, in novel Pickering emulsions (PEs) stabilized by chitosan-dextran sulphate nanoparticles (CS-DS NPs) and enhanced by lecithin, for treatment of androgenic alopecia (AGA). Biodegradable CS-DS NPs dispersion was prepared by polyelectrolyte complexation and optimized for PEs stabilization. PEs were characterized for droplet size, zeta potential, morphology, photostability and antioxidant activity. Ex-vivo permeation study through rat full thickness skin was conducted with optimized formula. Differential tape stripping trailed by cyanoacrylate skin surface biopsy was executed, for quantifying MEL in skin compartments and hair follicles. In-vivo evaluation of MEL PE hair growth activity was performed on testosterone induced AGA rat model. Visual inspection followed by anagen to telogen phase ratio (A/T) and histopathological examinations were conducted and compared with marketed 5% minoxidil spray "Rogaine ®". Data showed that PE improved MEL antioxidant activity and photostability. Ex-vivo results displayed MEL PE high follicular deposition. In-vivo study demonstrated that MEL PE treated testosterone induced AGA rat group, restored hair loss and produced maximum hair regeneration along with prolonged anagen phase amongst tested groups. The histopathological examination revealed that MEL PE prolonged anagen stage, increased follicular density and A/T ratio by 1.5-fold. The results suggested that lecithin-enhanced PE stabilized by CS-DS NPs was found to be an effective approach to enhance photostability, antioxidant activity and follicular delivery of MEL. Thus, MEL-loaded PE could be a promising competitor to commercially marketed Minoxidil for treatment of AGA.
Collapse
Affiliation(s)
- Asmaa A Elshall
- Department of Applied Biotechnology, Biotechnology School, Nile University, Sheikh Zayed, Giza, Egypt.
| | - Amira M Ghoneim
- Department of Pharmaceutics &Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt.
| | - Nehad M Abd-Elmonsif
- Department of Oral Biology, Faculty of oral and dental medicine, Future University in Egypt (FUE), Cairo, Egypt
| | - Rihab Osman
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Dalia S Shaker
- Department of Pharmaceutics &Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| |
Collapse
|
36
|
Chakraborty R, Kashyap P, Gadhave RK, Jindal N, Kumar S, Guiné RPF, Mehra R, Kumar H. Fluidized Bed Drying of Wheatgrass: Effect of Temperature on Drying Kinetics, Proximate Composition, Functional Properties, and Antioxidant Activity. Foods 2023; 12:foods12081576. [PMID: 37107371 PMCID: PMC10137845 DOI: 10.3390/foods12081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Wheatgrass is a valuable source of nutrients and phytochemicals with therapeutic properties. However, its shorter life span makes it unavailable for use. So, storage-stable products must be developed through processing in order to enhance its availability. Drying is a very important part of the processing of wheatgrass. Thus, in this study, the effect of fluidized bed drying on the proximate, antioxidant, and functional properties of wheatgrass was investigated. The wheatgrass was dried in a fluidized bed drier at different temperatures (50, 55, 60, 65, 70 °C) using a constant air velocity of 1 m/s. With increasing temperature, the moisture content was reduced at a faster rate, and all drying processes took place during the falling rate period. Eight mathematical models under thin layer drying were fitted into the moisture data and were evaluated. The Page model was the most effective in explaining the drying kinetics of wheatgrass, followed by the Logarithmic model. The R2, chi-square, and root mean squared value for Page model was 0.995465-0.999292, 0.000136-0.0002, and 0.013215-0.015058, respectively. The range of effective moisture diffusivity was 1.23-2.81 × 10-10 m2/s, and the activation energy was 34.53 kJ/mol. There was no significant difference in the proximate composition of was seen at different temperatures. The total phenolic content (117.16 ± 0.41-128.53 ± 0.55 mgGAE/g), antioxidant activity (33.56 ± 0.08-37.48 ± 0.08% (DPPH), and FRAP (1.372 ± 0.001-1.617 ± 0.001 mgAAE/g) increased with the rise in temperature. A significant increase was observed in functional properties, except for the rehydration ratio, which decreased with rising temperature. The current study suggests that fluidized bed drying improves the nutritional retention of wheatgrass with good antioxidant activity and functional properties that can be used to make functional foods.
Collapse
Affiliation(s)
- Ranjika Chakraborty
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab 148106, India
| | - Piyush Kashyap
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab 148106, India
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Punjab 144001, India
| | - Ram Kaduji Gadhave
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab 148106, India
| | - Navdeep Jindal
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab 148106, India
| | - Shiv Kumar
- Food Science & Technology MMICT&BM(HM), Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Raquel P F Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, Campus Politécnico, 3504-510 Viseu, Portugal
| | - Rahul Mehra
- Food Science & Technology MMICT&BM(HM), Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Harish Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| |
Collapse
|
37
|
Galani E, Ly I, Laurichesse E, Schmitt V, Xenakis A, Chatzidaki MD. Pea and Soy Protein Stabilized Emulsions: Formulation, Structure, and Stability Studies. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
During the last decades, there has been a huge consumer concern about animal proteins that has led to their replacement with plant proteins. Most of those proteins exhibit emulsifying properties; thus, the food industry begins their extensive use in various food matrices. In the present study, pea and soy protein isolates (PPI and SPI) were tested as potential candidates for stabilizing food emulsions to encapsulate α-tocopherol and squalene. More specifically, PPI and SPI particles were formulated using the pH modification method. Following, emulsions were prepared using high-shear homogenization and were observed at both a microscopic and macroscopic level. Furthermore, the adsorption of the proteins was measured using the bicinchoninic acid protein assay. The emulsions’ droplet size as well as their antioxidant capacity were also evaluated. It was found that the droplet diameter of the SPI-based emulsions was 60.0 μm, while the PPI ones had a relatively smaller diameter of approximately 57.9 μm. In the presence of the bioactives, both emulsions showed scavenging activity of the 2,20-Azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical cation (ABTS·+) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, with the ones loaded with α-tocopherol having the greatest antioxidant capacity. Overall, the proposed systems are very good candidates in different food matrices, with applications ranging from vegan milks and soups to meat alternative products.
Collapse
Affiliation(s)
- Eleni Galani
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Food Chemistry & Human Nutrition, School of Food, Biotechnology and Development, Agricultural University of Athens, 11855 Athens, Greece
| | - Isabelle Ly
- CNRS Centre de Recherche Paul Pascal, University of Bordeaux, 33600 Bordeaux, France
| | - Eric Laurichesse
- CNRS Centre de Recherche Paul Pascal, University of Bordeaux, 33600 Bordeaux, France
| | - Veronique Schmitt
- CNRS Centre de Recherche Paul Pascal, University of Bordeaux, 33600 Bordeaux, France
| | - Aristotelis Xenakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria D. Chatzidaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
38
|
Wen J, Jin H, Wang L, Zhang Y, Jiang L, Sui X. Fabrication and characterization of high internal phase Pickering emulsions based on pH-mediated soy protein-epigallocatechin-3-gallate hydrophobic and hydrophilic nano-stabilizer. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
39
|
Xu W, Ning Y, Sun Y, Sun H, Jia Y, Chai L, Luo D, Shah BR. Reversibility of freeze-thaw/re-emulsification on Pickering emulsion stabilized with gliadin/sodium caseinate nanoparticles and konjac glucomannan. Int J Biol Macromol 2023; 233:123653. [PMID: 36780967 DOI: 10.1016/j.ijbiomac.2023.123653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
The reversibility of freeze-thaw/re-emulsification of Pickering emulsion stabilized by gliadin/sodium caseinate nanoparticles (Gli/CAS NPs) was improved by adding konjac glucomannan (KGM). With the increase in the KGM concentration, the delamination of emulsions after freeze-thaw treatment was significantly improved. The microstructure showed that the presence of KGM helped to maintain the network structure of continuous phases. In particular, the particle size of the emulsion did not increase significantly after three freeze-thaw cycles when the KGM concentration was 0.6 % and the oil phase fraction was 60 %. The results of flocculation degree and coalescence degree also indicated that KGM promoted the cross-linking between particles on the surface of the droplet and increased the thickness of the interfacial film of the droplet. Rheological analysis also proved the same result: the elastic modulus of the emulsion was still larger than the viscous modulus, which showed the ideal freeze thaw reversibility. After adding KGM, the emulsion formed a strong network structure with good stability for long-term storage and reversibility for freeze-thaw cycling/re-emulsification. Thus, the emulsion has broad application prospects in food, cosmetics, and pharmaceutical fields.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Yuli Ning
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yuanyuan Sun
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Haomin Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yin Jia
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Liwen Chai
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Bakht Ramin Shah
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
40
|
Han W, Liu TX, Tang CH. Facilitated formation of soy protein nanoemulsions by inhibiting protein aggregation: A strategy through the incorporation of polyols. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
An Z, Liu Z, Mo H, Hu L, Li H, Xu D, Chitrakar B. Preparation of Pickering emulsion gel stabilized by tea residue protein/xanthan gum particles and its application in 3D printing. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Amagliani L, van de Langerijt TM, Morgenegg C, Bovetto L, Schmitt C. Influence of charged and non-charged co-solutes on the heat-induced aggregation of soy and pea proteins at pH 7.0. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Sun P, Sun W, Wei Z, Wu S, Xiang N. Soy protein nanoparticles prepared by enzymatic cross-linking with enhanced emulsion stability. SOFT MATTER 2023; 19:2099-2109. [PMID: 36857685 DOI: 10.1039/d2sm01461k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particle-stabilized emulsions have shown increasing potential application in food emulsion systems. Here, soy protein, an abundant and inexpensive plant-based protein, was used to develop nanoparticles for emulsion stabilizer applications. An enzymatic cross-linking method based on microbial transglutaminase (mTG) was developed for the fabrication of soy protein nanoparticles (SPNPs). The emulsion stability was compared between soy protein isolate (SPI) and three different nanoparticles. The size of SPNPs ranged from 10 nm to 40 nm, depending on the production conditions. The emulsions stabilized by SPNPs were stable for at least 20 days at room temperature, whereas the emulsion that was stabilized by SPI showed a significant creaming and phase separation phenomenon. The SPNPs also showed a higher antioxidant and reducing effect compared to SPI. The use of mTG induced cross-linking resulted in the formation of covalent bonding between protein molecules, and led to the formation of nanoparticles with higher stability. The approaches support the utilization of inexpensive and abundant plant-based resources as emulsion stabilizers in food applications.
Collapse
Affiliation(s)
- Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, 310014, P. R. China
| | - Weijun Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Zhengxun Wei
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, 310014, P. R. China
| | - Sihong Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Ning Xiang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, 310014, P. R. China
| |
Collapse
|
44
|
Ghelichi S, Hajfathalian M, Yesiltas B, Sørensen ADM, García-Moreno PJ, Jacobsen C. Oxidation and oxidative stability in emulsions. Compr Rev Food Sci Food Saf 2023; 22:1864-1901. [PMID: 36880585 DOI: 10.1111/1541-4337.13134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
Emulsions are implemented in the fabrication of a wide array of foods and therefore are of great importance in food science. However, the application of emulsions in food production is restricted by two main obstacles, that is, physical and oxidative stability. The former has been comprehensively reviewed somewhere else, but our literature review indicated that there is a prominent ground for reviewing the latter across all kinds of emulsions. Therefore, the present study was formulated in order to review oxidation and oxidative stability in emulsions. In doing so, different measures to render oxidative stability to emulsions are reviewed after introducing lipid oxidation reactions and methods to measure lipid oxidation. These strategies are scrutinized in four main categories, namely storage conditions, emulsifiers, optimization of production methods, and antioxidants. Afterward, oxidation in all types of emulsions, including conventional ones (oil-in-water and water-in-oil) and uncommon emulsions in food production (oil-in-oil), is reviewed. Furthermore, the oxidation and oxidative stability of multiple emulsions, nanoemulsions, and Pickering emulsions are taken into account. Finally, oxidative processes across different parent and food emulsions were explained taking a comparative approach.
Collapse
Affiliation(s)
- Sakhi Ghelichi
- Department of Chemistry and Biochemistry Research, Daneshafzayan-e-Fardaye Giti Research and Education Co., Gorgan, Iran
| | - Mona Hajfathalian
- Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
45
|
Qiao X, Liu F, Kong Z, Yang Z, Dai L, Wang Y, Sun Q, McClements DJ, Xu X. Pickering emulsion gel stabilized by pea protein nanoparticle induced by heat-assisted pH-shifting for curcumin delivery. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
46
|
Lin J, Tang ZS, Brennan CS, Chandrapala J, Gao W, Han Z, Zeng XA. Thermomechanically micronized sugar beet pulp: Emulsification performance and the contribution of soluble elements and insoluble fibrous particles. Food Res Int 2023; 165:112467. [PMID: 36869480 DOI: 10.1016/j.foodres.2023.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/04/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
In this work, thermomechanically micronized sugar beet pulp (MSBP), a micron-scaled plant-based byproduct comprised of soluble elements (∼40 wt%) and insoluble fibrous particles (IFPs, ∼60 wt%), was used as a sole stabilizer for oil-in-water emulsion fabrication. The influence of emulsification parameters on the emulsifying properties of MSBP was investigated, including emulsification techniques, MSBP concentration, and oil weight fraction. High-speed shearing (M1), ultrasonication (M2), and microfludization (M3) were used to fabricate oil-in-water emulsions (20% oil) with 0.60 wt% MSBP as stabilizer, in which the d4,3 value was 68.3, 31.5, and 18.2 μm, respectively. Emulsions fabricated by M2 and M3 (higher energy input) were more stable than M1 (lower energy input) during long-term storage (30 days) as no significant increase of d4,3. As compared to M1, the adsorption ratio of IFPs and protein was increased from ∼0.46 and ∼0.34 to ∼0.88 and ∼0.55 by M3. Fabricated by M3, the creaming behavior of emulsions was completely inhibited with 1.00 wt% MSBP (20% oil) and 40% oil (0.60 wt% MSBP), showing a flocculated state and could be disturbed by sodium dodecyl sulfate. The gel-like network formed by IFPs could be strengthened after storage as both viscosity and module were significantly increased. During emulsification, the co-stabilization effect of the soluble elements and IFPs enabled a compact and hybrid coverage onto the droplet surface, which acted as a physical barrier to endow the emulsion with robust steric repulsion. Altogether, these findings suggested the feasibility of using plant-based byproducts as oil-in-water emulsion stabilizers.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Charles S Brennan
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Jayani Chandrapala
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Wenhong Gao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Han
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| |
Collapse
|
47
|
Preparation of Pangasius hypophthalmus protein-stabilized pickering emulsions and 3D printing application. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Francisco CRL, Santos TP, Cunha RL. Nano and micro lupin protein-grape seed extract conjugates stabilizing oil-in-water emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
3D printing of salmon fillet mimic: Imparting printability via high-pressure homogenization and post-printing texturisation via transglutaminase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
50
|
Gricius Z, Øye G. Recent advances in the design and use of Pickering emulsions for wastewater treatment applications. SOFT MATTER 2023; 19:818-840. [PMID: 36649133 DOI: 10.1039/d2sm01437h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pickering emulsions have recently emerged as versatile systems capable of targeting many applications of wastewater treatment. The unique properties, which include high emulsion stability, easy preparation, low toxicity, and stimuli-responsiveness, pave the way for advances in common pollutant control processes. This review aims to provide a comprehensive overview on different aspects in the Pickering emulsion design focusing on the key structural relations and their implications in specific applications. The first section is dedicated to the critical parameters governing the Pickering emulsion type, droplet size and stability. Furthermore, a section describing methods for demulsification and particle recovery is included, in which various stimuli have been explored. Finally, the most potent applications of Pickering emulsions such as photocatalytic degradation, adsorption, extraction, and separation of common wastewater pollutants are presented and discussed with a great deal of attention towards the efficacy, current limitations, and future potential. Recognizing the rise of innovative Pickering emulsion solutions is expected to induce profound effects facilitating the technology transfer to industrial processes.
Collapse
Affiliation(s)
- Zygimantas Gricius
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| | - Gisle Øye
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| |
Collapse
|